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Abstract

The behavior of meromorphic solutions of differential equations has been the subject of
study. Research has concentrated on the value distribution of meromorphic solutions and th
of growth. The purpose of the present paper is to show that a thorough search will yield a lis
meromorphic solutions of a multi-parameter ordinary differential equation introduced by Hay
This equation does not appear to be integrable for generic choices of the parameters so w
find all solutions—only those that are meromorphic. This is achieved by combining Wiman–V
theory and local series analysis. Hayman conjectured that all entire solutions of this equation
finite order. All meromorphic solutions of this equation are shown to be either polynomials or
functions of order one.
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1. Introduction

Much research has been undertaken concerning the behavior of meromorphic so
of differential equations (see [19] and references therein). In this paper we will consid
problem posed by Hayman [11] of showing that all meromorphic solutions to the ord
differential equation (ODE)

ff ′′ − f ′2 = k0 + k1f + k2f
′ + k3f

′′, (1.1)

where thekj are constants, are of finite order. By way of solving this problem we will
swer a more fundamental question, namely: what are the meromorphic solutions of
The key mathematical methods that we use are Wiman–Valiron theory, local series
sis, and reduction of order. It should be stressed that we do not find the general s
of (1.1) explicitly, which may well be impossible—we only find the meromorphic s
tions.

In general, finding explicit solutions of nonlinear differential equations in terms of fi
combinations of known functions is difficult, if not impossible. However, it was obse
in the late nineteenth and early twentieth centuries that ODEs whose general soluti
meromorphic appear to be integrable in that they can be solved explicitly or they a
compatibility conditions of certain types of linear problems (see, e.g., [1, Chapter 7
the 1880s Kovalevskaya [17,18] considered the equations of motion for a spinnin
which form a sixth-order system depending on parameters describing the mass, ce
mass, and moments of inertia of the top. For special choices of these parameters th
tions of motion had been solved by Euler and Lagrange. Kovalevskaya observed tha
known solutions were meromorphic when extended to the complex plane. She dete
all choices of the parameters for which the general solution was meromorphic. She
one new case, which she then solved explicitly in terms of ratios of hyper-elliptic func
(see also [5]). No further cases in which these equations can be solved explicitly hav
discovered in the intervening 113 years.

From the many examples known in the literature it appears that many, perhaps all,
whose general solutions are meromorphic can be solved explicitly or are the comp
ity condition for a related spectral problem. Furthermore, the condition that the ge
solution is meromorphic can be replaced by the condition that the ODE possess
Painlevé property (that all solutions are single-valued about all movable singularitie
The Painlevé property will be discussed in Section 6.

The philosophy underlying Kovalevskaya’s work is that we should be able to fin
general solution of an ODE if its general solution is meromorphic. Here we extend thi
to the problem of finding all (particular) meromorphic solutions of an ODE, regard
of whether the general solution is meromorphic. Hence meromorphicity can be u
uncover explicit particular solutions of nonintegrable equations.

We begin by discussing the significance of (1.1) in complex function theory. F
order functions have special properties and so they have been the subject of intens
(see [10] and the reference therein). The major result concerning the order of gro
meromorphic solutions of first-order ODEs is the following theorem due to Gol’dberg
For the standard notation and terminology of Nevanlinna theory, see [10,19].



Y.M. Chiang, R.G. Halburd / J. Math. Anal. Appl. 281 (2003) 663–677 665

been

istic

on of

equa-
re, he

nctions

[3]
Theorem A (Gol’dberg).All meromorphic solutions of the first-order ODE

Ω(z,f,f ′)= 0, (1.2)

whereΩ is polynomial in all its arguments, are of finite order.

A generalization of Gol’dberg’s result to second-order algebraic equations has
conjectured by Bank [4]. Letf be any meromorphic solution of the ODE

Ω(z,f,f ′, f ′′)= 0, (1.3)

whereΩ is polynomial in all of its arguments. In terms of the Nevanlinna character
T (r, f ) (see, e.g., [10] or [19]), Bank [4] conjectured that

T (r, f ) < K2 exp(K1r
c), 0 � r <+∞, (1.4)

whereK1,K2, andc are positive constants. In [11], Hayman described a generalizati
this conjecture tonth-order ODEs, known as theclassical conjecture. Iff (z) is a mero-
morphic solution of

Ω
(
z, f,f ′, . . . , f (n)

) = 0, (1.5)

whereΩ is polynomial inz, f ′, . . . , f (n), then we have

T (r, f ) < a expn−1(br
c), 0 � r <+∞, (1.6)

wherea, b, andc are constants andexp� is defined by

exp0(x)= x, exp1(x)= ex, exp� = exp
{
exp�−1(x)

}
.

Clearly the Bank conjecture (1.4) is a special case of the Classical Conjecture whenn= 2.
Hayman credited the conjecture to S. Bank and L. Rubel.

Steinmetz [21] proved the classical conjecture for any second-order polynomial
tion which is homogeneous in its dependent variable and its derivatives. Furthermo
showed how the solution of such an equation can be expressed in terms of entire fu
of finite order.

Theorem B (Steinmetz).Suppose that in(1.3), Ω is homogeneous inf,f ′, f ′′. Then all
meromorphic solutions of(1.3) take the form

f (z)= g1(z)

g2(z)
exp

{
g3(z)

}
, (1.7)

wheregj (z), j = 1,2,3, are entire functions of finite order. In particularf satisfies(1.4).

For example, the functionf (z)= eez satisfies (1.4) and the differential equation

ff ′′ − (f ′)2 − ff ′ = 0 (1.8)

and is of infinite order.
Bank proved in [4] that if a meromorphic solutionf of (1.3) satisfiesN(r, aj , f ) =

O(er
c
) where theaj , j = 1,2, belong to the extended complex planeĈ wherec is some

positive constant, thenf satisfies (1.4). This result improved upon Bank’s own result
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where a weaker assumption thatN(r, aj , f )=O(rc) for aj , j = 1,2 is assumed. In fac
Gol’dberg [7] proved a stronger result for a special subclass of (1.9). Hayman [11] g
alized this result to higher-order algebraic ODEs of the form (1.5). LetΩ take the form

Ω =
∑
λ∈Λ

dλ(z)f
i0(f ′)i1 · · · (f (n))in , (1.9)

whereΛ= {(i0, i1, . . . , in) ∈ Nn: ni ∈ N} is a finite set anddλ are polynomials inz.
Hayman formulated the following theorem in terms of thedegree|λ| = i0+ i1+· · ·+ in

and theweight‖λ‖ = i0 + 2i1 + · · · + (n+ 1)in of the terms in (1.5).

Theorem C (Hayman).Let f (z) be an entire solution of(1.5)whereΩ is given by(1.9).
Let Γ be the subset ofΛ in (1.5) such that it contains those terms in(1.9) with the high-
est weights among those with the highest degree. Let the highest degree among
polynomialsdλ(z) bed and suppose further that∑

λ∈Γ
dλ(z) 
= 0. (1.10)

Thenf (z) has finite order of growthmax{2d, d + 1} at most.

Hayman [11] has suggested the problem of showing that all entire solutions of
where thekj are either constants or rational functions of the independent variablez, are of
finite order. As explained in [11], this is in some sense the simplest differential equ
that is neither covered by the results of Steinmetz (since (1.1) is not homogeneou
Hayman (since (1.10) is violated) and yet appears to have only finite-order solutions

2. Statement of results

In this paper we will consider the case in which thekj are constants. Not only will w
show that Hayman’s conjecture is correct, namely that all entire solutions of (1.1)
finite order, we will also show by explicit construction that all meromorphic solutions
either polynomials or entire functions of order one, and in fact linear combinatio
exponential functions and constants.

Note that the transformationf =w+ k3 takes (1.1) to

w
d2w

dz2 −
(
dw

dz

)2

= αw+ β
dw

dz
+ γ, (2.1)

whereα = k1, β = k2, andγ = k0+k1k3. For some purposes, which will be apparent la
it will be convenient to write (2.1) as

(w′′ − α)w = (w′ − a+)(w′ − a−), (2.2)

where

a± = −β ± √
β2 − 4γ

.

2



Y.M. Chiang, R.G. Halburd / J. Math. Anal. Appl. 281 (2003) 663–677 667

wever
s

-

n

rameter
f
an

ediate
We will see that (2.1) always contains some particular meromorphic solutions. Ho
its general solution is meromorphic if and only if eitherα = γ = 0 orβ = 0. In these case
it is straightforward (see Section 5) to prove the following.

Lemma 2.1. If α = γ = 0 then the general solution of(2.1) is given by

w(z)= β

c1
+ c2ec1z, (2.3)

w(z)= −βz+ c1, (2.4)

w(z)= 0, (2.5)

wherec1 andc2 are arbitrary constants.

Lemma 2.2. If β = 0 then the general solution of(2.1) is given by

w(z)= c1 exp

(
±i α√

γ
z

)
− γ

α
, if α 
= 0, (2.6)

w(z)= c1 ± i
√
γ z, if α = 0, (2.7)

w(z)= 1

c2
1

[
α +

√
α2 + γ c2

1 cosh(c1z+ c2)
]
, wherec1 
= 0, (2.8)

w(z)= −α

2
z2 + c2αz− γ + c2

2α
2

2α
, if α 
= 0, (2.9)

wherec1 andc2 are arbitrary constants.

The central result of this paper is the following.

Theorem 2.3. If α andγ are not both zero and ifβ 
= 0 then the only meromorphic solu
tions of (2.1)are

w(z)= c1 exp

(
αz

a∓

)
− γ

α
, (2.10)

if α 
= 0 and

w(z)= c1 + a±z, (2.11)

if α = 0, wherec1 is an arbitrary constant. Ifα = γ = 0 or β = 0 then the general solutio
of (2.1) is meromorphic and given by Lemmas2.1and2.2, respectively.

The general solution of (2.1) depends on two parameters (c1 and c2 in Lemmas 2.1
and 2.2). The solutions described by (2.10) and (2.11) each represent two one-pa
(c1) families of special solutions of (2.1). The two families are labelled by the choice oa+
anda− (there is only one family ifa+ = a−). In the generic case, all solutions other th
those given in Theorem 2.3 are branched.

The order of the transcendental meromorphic solutions of (2.1) comes as an imm
corollary to Theorem 2.3.
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Corollary 2.4. All transcendental meromorphic solutions of(2.1)are entire and of order
one.

In Section 3 we use asymptotic estimates from Wiman–Valiron theory to show th
only nonvanishing entire solutions of (2.1) are of the formc2ec1z, wherec1 and c2 are
constants. Cauchy’s existence and uniqueness theorem (see, e.g., [13, p. 284]) gu
that the initial value problemw(z0)=w0 andw′(z0)=wp for (2.1) has a unique analyt
solution in a neighborhood ofz = z0 provided thatw0 andwp are finite andw0 
= 0.
Hence checking the existence of local series expansions will only provide inform
regarding expansions about either the zeros or the poles ofw. A straightforward leading
order analysis (see Section 4) shows that no solution of (2.1) can possess a pole
order. This implies that all meromorphic solutions are entire.

In Section 4 we use local series analysis about a zero ofw to show that either the onl
entire solutions of (2.1) are those given in (2.10) and (2.11) or at least one of the para
β,γ must be zero. In Section 5 we complete the classification of entire solutions by fi
all entire solutions in the caseβ = 0 and in the caseγ = 0. Here we use the fact that (2.
is autonomous (i.e., it does not contain the independent variablez explicitly) to reduce it
to a first-order equation fory :=w′(z) as a function ofx :=w(z). This equation is of Abe
type which we solve by transforming it to a separable equation. This leads to a first
equation forw as a function ofz.

Although we do not construct the general solution (which is branched) of (2.1) i
generic case (i.e.,β 
= 0 andα, γ not both zero), we are nonetheless able to find all en
(and therefore all meromorphic) solutions.

3. Zero-free solutions

In this section we will consider nonvanishing entire solutionsw of (2.1). In this case
there exists an entire functiong such that the solutionw has the form

w(z)= eg(z). (3.1)

We will show thatg is necessarily a linear function ofz. Specifically, we will prove the
following.

Lemma 3.1. The only zero-free entire solutions of(2.1)are given by

w(z)=
{
c2ec1z, if α = β = γ = 0,
c1e−αz/β, if β 
= 0, γ = 0,
−γ /α, if α 
= 0,

(3.2)

wherec1 andc2 are arbitrary nonzero constants.

We note that each of the three solutions given by (3.2) above is a special case
solutions in the list in Theorem 2.3. Our argument relies on the classical result given
in Lemma D, which states that ifg is transcendental then near its maximum on a la
circle, |z| = r, there is a simple asymptotic relationship betweeng and its derivatives
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We will use this relationship together with the fact thatg satisfies a particular third-orde
polynomial ODE (3.7) to constrain the parametersα, β , andγ in (2.1). Subject to thes
constraints, we are able to find all zero-free meromorphic solutions of (2.1) exactly.

Substituting (3.1) into (2.1) and rearranging gives

e2gg′′ = (α + βg′)eg + γ. (3.3)

Differentiating (3.3) with respect toz and dividing by eg gives

eg(g′′′ + 2g′g′′)= αg′ + β
[
g′′ + (g′)2

]
. (3.4)

We wish to divide (3.4) byg′′′ + 2g′g′′ which we can only do provided that this express
does not vanish identically. Ifg is entire and

g′′′ + 2g′g′′ = 0 (3.5)

theng is linear in z. (Equation (3.5) can be solved explicitly since it is a differentia
Riccati equation.) It follows from (3.1) that

w(z)=AeBz, (3.6)

whereA andB are arbitrary constants. Substituting (3.6) into (2.1) yields(α+βB)AeBz+
γ = 0 for all z. Solving this equation forA andB and using (3.6) shows that the on
solutions of (2.1) arising from (3.5) are those given by (3.2). We note that no entire so
of (3.4) can be a polynomial of degree greater than one since, if it were, then the le
of (3.4) would grow exponentially while the right side would be a polynomial.

We now consider the case in whichg is transcendental entire. In this case (3.5) is
satisfied identically. Solving (3.4) for eg as a function ofg′, g′′, andg′′′ and using this to
eliminate the eg and e2g terms in (3.3) shows thatg satisfies the third-order ODE

g′′{αg′ + β
[
g′′ + (g′)2

]}2

= γ (g′′′ + 2g′g′′)2 + (α+ βg′)(g′′′ + 2g′g′′)
{
αg′ + β

[
g′′ + (g′)2

]}
. (3.7)

We will use Lemma D below to compareg and its derivatives in (3.7). Before introdu
ing the lemma, however, we define the central index of an entire function.

Definition 3.2. Let

g(z)=
∞∑
n=0

anz
n

be entire. Thecentral indexν(r, f ) is the greatest nonnegative integerm such that

|am|rm = max
n�0

|an|rn.

In terms of the central index we have the following (see, for example, [14, pp. 33
pp. 197–199], [9], [19, pp. 50–52]).
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Lemma D. Letg be a transcendental entire function, andν = ν(r, g) be its central index
Suppose that0< δ < 1/4, that |z| = r, and that∣∣g(z)∣∣>M(r,g)ν(r, g)−1/4+δ, whereM(r,g)= max|z|=r

∣∣g(z)∣∣. (3.8)

Then there exists a subsetF of R of finite logarithmic measure, i.e.,
∫
F dt/t <+∞, and

such that

g(m)(z)=
(
ν(r, g)

z

)m(
1+ o(1)

)
g(z) (3.9)

holds wheneverm� 0 andr /∈ F . We also have for larger outsideF ,

ν(r, g) <
[
logM(r,g)

]1+δ
. (3.10)

Further if g has finite orderσ then

σ = lim sup
r→+∞

log logM(r,g)

logr
= lim sup

r→+∞
logν(r, g)

logr
. (3.11)

We now return to our analysis of transcendental entire solutions of (3.7). Chooser
outsideF and thenz, such that|z| = r and (3.8) holds, and assume thatg is transcendenta
Using the asymptotic relation (3.9) in (3.7) gives, to leading order, a polynomial equ
in ν/z andg(z). The termsβ2(g′)4g′′ and 2β2(g′)4g′′ on the left and right sides of (3.7
respectively, are the only terms which generate the factor(ν/z)6 (1+ o(1))g5(z) on appli-
cation of (3.9). All other terms have degrees strictly less than five ing. For transcendenta
functions, the central indexν(r, g) is an increasing function ofr which, according to (3.10
grows much slower thanM(r,g). Therefore (3.7) can hold for a transcendental entire fu
tion g only if β = 0. If β = 0 then (3.7) becomes,

γ (g′′′ + 2g′g′′)2 + α2g′(g′′′ + g′g′′)= 0. (3.12)

The leading term in (3.12) is given by the term 4γ g′2g′′2 = 4γ (ν/z)6(1 + o(1))g4. Thus
γ = 0. Similarly we deduce thatα = 0. This corresponds to the case whenα = β = γ = 0
in the solution (3.2) and sog is linear—a contradiction.

Remark 3.3. In the special caseγ 
= 0, a simple argument from Nevanlinna theory can
used to show that there are no transcendental zero-free entire solutions. We will n
Nevanlinna theory again so we will not describe the necessary terminology and sta
identities (see, e.g., Hayman [10]). Writing (2.1) as

γ

w2 = w′′

w
−

(
w′

w

)2

− 1

w

(
α + β

w′

w

)
,

we have

m
(
r,w−2) �m

(
r,w−1) + S(r,w).

Som(r,w−1)= S(r,w). This givesT (r,w−1)= S(r,w), which contradicts Nevanlinna
first main theorem.
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4. Local series expansions

In this section we will consider local series expansions of solutions of (2.1). We
show that all meromorphic solutions are entire. We will also show that ifw is an entire
solution of (2.1) that vanishes at a pointz = z0 then eitherw is given by the solutions
(2.10)–(2.11) or at least one of the parametersβ , γ in (2.1) must vanish. In the last cas
we will show in Section 5 how to obtain all entire solutions that have a zero usin
method of reduction of order. Throughout this section we will assumeβγ 
= 0.

Note that Cauchy’s existence and uniqueness theorem (see, e.g., [12,13]) guaran
existence of a unique locally analytic solution of (2.1) with the initial conditionsw(z0)=
w0 andw′(z0) = wp providedw0 andwp are finite andw0 
= 0. We will investigate the
case wherew(z0) is zero or infinity.

Let w be a meromorphic solution of (2.1) that either vanishes or has a pole at
point z0 in the finite complex plane. Thenw has a Laurent expansion which converge
a punctured disc centred atz= z0,

w(z)=
∞∑
n=0

an(z− z0)
p+n, (4.1)

wherea0 
= 0 andp is a nonzero integer. We substitute the expansion (4.1) into (2.1
keep only the leading-order behavior of each of the terms in the equation. This yield[

a2
0p(p− 1)(z− z0)

2p−2 + · · ·] − [
a2

0p
2(z− z0)

2p−2 + · · ·]
= α

[
a0(z− z0)

p + · · ·] + β
[
a0p(z− z0)

p−1 + · · ·] + γ. (4.2)

The lowest power ofz− z0 on the left of (4.2) is 2p− 2. If βγ 
= 0, then the lowest powe
of z− z0 on the right is eitherp − 1 or 0 (from the constant termγ ). We see that there i
only one possible balance of these powers, namelyp = 1. Whenp = 1, we see on equatin
constant terms in (4.2) thata0 = a±. The following two lemmas follow immediately.

Lemma 4.1. Any solution,w, of (2.1)does not possess a pole of any order. In particu
any meromorphic solution of(2.1) is entire.

Lemma 4.2. Letw be any solution of(2.1)analytic in a neighborhood of the pointz= z0
such thatw(z0)= 0. Thenw′(z0)= a±.

Having obtained the leading-order behavior of any meromorphic solution of (2.1
vanishes atz= z0, we will now derive a recurrence relation for thean in the expansion (4.1
with p = 1 anda0 = a±. (2.1) becomes

∞∑
n=0

[
n∑

m=0

(n−m+ 1)(n− 2m− 1)aman−m

]
(z− z0)

n

= [βa0 + γ ] +
∞∑[

αan−1 + β(n+ 1)an
]
(z− z0)

n. (4.3)

n=1
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The constant term in (4.3) vanishes identically sincea0 = a± solvesa2
0 + βa0 + γ = 0.

Equating the coefficients of(z− z0)
n for n= 1,2, . . . gives the recurrence relation

(n+ 1)
([n− 2]a0 − β

)
an =Gn(a0, a1, . . . , an−1), n= 1,2, . . . , (4.4)

where

Gn(a0, a1, . . . , an−1) := αan−1 −
n−1∑
m=1

(n−m+ 1)(n− 2m− 1)aman−m.

Note that if the coefficient ofan on the left side of (4.4) does not vanish for any posit
integern then we can uniquely determine the power series expansion ofw aboutz = z0
(after choosing eithera0 = a+ or a0 = a−). We have proved the following.

Lemma 4.3. Suppose that(n − 2)a0 − β 
= 0 for all positive integersn, wherea0 = a+
or a0 = a−. Then there is at most one solutionw of (2.1) satisfyingw(z0) = 0 and
w′(z0)= a0, which is analytic in a neighborhood ofz= z0.

For any choice of the parametersα, β , andγ we can in fact produce an explicit solutio
of (2.1) which satisfies

w(z0)= 0 and w′(z0)= a±. (4.5)

This solution is given by choosing the constantc1 in the solutions (2.10) and (2.11) liste
in Theorem 2.3 such thatw(z0) = 0. These solutions will be derived systematically
Section 5, for now it is sufficient to note that they are indeed solutions. We have

w(z)= γ

α

[
exp

(
α

a∓
(z− z0)

)
− 1

]
(4.6)

if α 
= 0 and

w(z)= a±(z− z0) (4.7)

if α = 0. So the following is a consequence of Lemmas 4.2 and 4.3.

Lemma 4.4. Suppose that(n− 2)a0 − β 
= 0 for all positive integersn. Then(4.6)–(4.7)
are the only solutions of(2.1) that satisfyw(z0) = 0 and are analytic in a neighborhoo
of z= z0.

Now we consider the case in which the left side of (4.4) vanishes for some po
integern. Recall that solutions of (2.1) can have at most two types of zeros as descri
Lemma 4.2. First we consider the case in whichw vanishes atz+ andz− andw′(z+)= a+
andw′(z−) = a− (a+ 
= a−). Sincew is not one of the solutions (4.6)–(4.7), it follow
from Lemma 4.4 that the left side of (4.4) must vanish at bothz+ and z− for positive
integersn=N+ andn=N−, respectively. It follows that

β = (N+ − 2)a+ = (N− − 2)a−.
Recall thata+ + a− = −β , so that, ifβ 
= 0, then

1 + 1 = 1,

2−N+ 2−N−
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which is not possible for positive integersN+ andN−—a contradiction.
The only case remaining is that in whichw is entire and has at least one zero and

the zeros ofw are the same type (i.e., eitherw′(z0) = a+ at all zerosz0 or w′(z0) = a−
at all zeros). Without loss of generality we assumew′(z0) = a+ at all pointsz0 such that
w(z0)= 0. Since, by the initial assumption of this section,γ 
= 0, we havea± 
= 0, so the
function

v := w′ − a+
w

(4.8)

is entire since the numerator vanishes at the zeros of the denominator and these z
simple.

From (4.8) we obtain

w′ = vw+ a+, (4.9)

w′′ = (
v′ + v2)w+ a+v. (4.10)

Now (2.2) becomes

v′w = α − a−v. (4.11)

Note that, ifv is a nonzero constant, thenv = α/a− by (4.11), and this yields (2.10).
v ≡ 0, then by (4.9)w′ = a+ and this yields (2.11). We now show that, ifv is a nonconstan
entire function, thenγ = 0. If v is not a constant then solving (4.11) forw and substituting
it into (4.9) gives

a−
(
v2v′ + vv′′ − v′2) − a+v′2 = α(v′′ + vv′). (4.12)

We wish to show that there are no nonconstant entire solutions of (4.12).
A simple leading-order analysis shows that (4.12) has no nonconstant polynom

lutions. There is only one term of highest degree in (4.12), namelya−v2v′ ∼ a−(ν/z)v3.
From (3.10) we see that for large|z| = r, the central indexν(r, v) is negligible compared to
the maximum modulus ofv, M(r,f ) = max|z|=r |v(z)|. Hence applying Wiman–Valiro
theory as in Section 2 to any transcendental solutionv of Eq. (4.12) givesa− = 0 which
implies thatγ = 0.

We have proved the following.

Lemma 4.5. Let w be a solution of(2.1) such that there is a pointz0 ∈ C such that
w(z0)= 0 andw is analytic in a neighborhood ofz= z0. Then either

(1) w(z)= γ
α
[exp( α

a∓ (z− z0))− 1] (if α 
= 0), or
(2) w(z)= a±(z− z0) (if α = 0), or
(3) β = 0, or
(4) γ = 0.

Cases (1) and (2) of the above lemma correspond to the solutions (2.10) and (2
Theorem 2.3.
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5. Reduction to first order

In order to complete our analysis of (2.1), we need to find all entire solutions when
β = 0 or γ = 0 andw vanishes somewhere. First we will solve the caseβ = 0 (Case 1)
exactly. We will then reduce (2.1) to a first-order ODE for general parameters, whic
will analyse in the caseγ = 0.

Case 1 (β = 0). If α andγ are both zero then any constant will satisfy (2.1), otherwise
only constant solution isw(z)= −γ /α (provided thatα 
= 0). If w is not a constant the
multiplying (2.1) byw−3wz and integrating gives

w2
z = c2

1w
2 − 2αw− γ, (5.1)

wherec1 is a constant. Equation (5.1) can be integrated to give the solutions (2.8
c1 
= 0, and (2.9), forc1 = 0, α 
= 0, and (2.7), with a slight change of notation, f
c1 = α = 0, γ 
= 0.

We will consider the case in whichγ = 0. Before considering this case, however,
will show how (2.1) can be reduced to a first-order ODE forw as a function ofz for any
choice of the parametersα, β , andγ .

Since (2.1) is autonomous (i.e., it admits the symmetryz �→ z + ε), it can be reduced
to a first-order equation fory :=wz as a function ofx :=w (in any domain in whichw is
one-to-one). This yields the equation

dy

dx
= y2 + αx + βy + γ

xy
⇔ dy

dx
= (y − a+)(y − a−)+ αx

xy
. (5.2)

Equation (5.2) is an Abel equation of the second kind (see, e.g., [16]). We first consid
case in whichα = γ = 0. The general solution of (5.2) is then given by

y(x)= c1x − β,

wherec1 is an arbitrary constant, which is a linear ODE forw(z) corresponding to the
solutions (2.3) and (2.4) of (2.1). This proves Lemma 2.1. Ifα andγ do not both vanish
andy is not identically zero, then in terms of the new dependent variable

u(x)= αx + γ

y(x)
, (5.3)

Eq. (5.2) becomes the separable equation

x(αx + γ )
du

dx
+ (u− a+)(u− a−)u= 0.

Hence, either

u≡ a∓ (5.4)

or separation of variables gives

du/dx + 1 = 0. (5.5)

u(u− a+)(u− a−) x(αx + γ )



Y.M. Chiang, R.G. Halburd / J. Math. Anal. Appl. 281 (2003) 663–677 675

-

at

ular

. The
umber
llustrate
ential
f finite
orphic

n the
only

the

is
orphic

ns are
ses the

ut
omor-
rty have
The solutions (5.4) correspond to

y(x)= a± + α

a∓
x ⇔ w′(z)= a± + α

a∓
w(z),

leading (again) to the solutions (2.10) and (2.11) in Theorem 2.3.
We now consider the caseγ = 0. We assume thatβ 
= 0 since the solutions for whichβ

is also zero have been considered in Case 1.

Case 2 (γ = 0, α 
= 0, β 
= 0. Soa+ = 0 anda− = −β). Using partial fractions to inte
grate (5.5) together with the fact thatu= αw/wz andx =w, we obtain

wz

w
+ α

β
= c1 exp

(
β

α

[
wz + β

w

])
. (5.6)

Recall that we were led to consider the caseγ = 0 in Lemma 4.5 under the assumption th
w vanishes at some pointz0 in C. From (5.6) we see that the left side has a pole atz= z0
but according tow′(z0)= a± the right side either has an essential singularity or a reg
point atz0, respectively. Hence there are no entire solutions that vanish in this case.

6. Discussion

In this paper we have provided a complete list of all meromorphic solutions of (1.1)
advantage of producing such lists for classes of differential equations is that from a n
of examples, further observations and conjectures can be generated and also to i
the relative scarcity of meromorphic solutions in the solution space of generic differ
equations. As a consequence we have shown that all entire solutions of (1.1) are o
order, as had been conjectured by Hayman. In fact, we have shown that all merom
solutions are entire and of order one (except for polynomial solutions).

For differential equations, meromorphic solutions are the exception rather tha
rule—even for rational equations. Indeed, Malmquist’s theorem [20] states that the
equation, of the form

dw

dz
=R(z,w),

whereR is rational inw andz, that admits a transcendental meromorphic solution is
Riccati equation,

dw

dz
= a(z)w2 + b(z)w+ c(z),

wherea, b, and c are rational functions ofz. Although no general analogous result
known for the case in which a second-order equation admits a transcendental merom
solution, much is known about second-order rational ODEs whose general solutio
meromorphic. In fact, much is known in the case that a second-order ODE posses
Painlevé property, which we will now discuss.

An ODE is said to possess thePainlevé propertyif all solutions are single-valued abo
all movable singularities. In particular, any equation whose general solution is mer
phic possesses the Painlevé property. Equations possessing the Painlevé prope
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attracted much interest because of their connection with integrable systems and
called soliton equations (see, e.g., [1]).

Painlevé, Gambier, and Fuchs classified all second-order equations of the form

w′′ = F(w,w′; z), (6.1)

that possess the Painlevé property, whereF is rational inw andw′ and locally analytic
in z (see [12,13] and references therein). The notion of the order of meromorphic sol
appears to play an important role in the generalization of the Painlevé property to diffe
equations [2].

All the equations found in this work of Painlevé et al. can be solved in term
classically-known functions (e.g., elliptic functions, hypergeometric functions, etc.) e
those equations that can be mapped to one of six canonical equations, called the P
equations. The first two Painlevé equations (PI andPII ) are

d2y

dz2
= 6y2 + z, (6.2)

d2y

dz2 = 2y3 + zy + α, (6.3)

whereα is an arbitrary complex constant. Each of the Painlevé equations can be w
as the compatibility of an associated linear (iso-monodromy) problem [15]. The Painlev
equations are themselves used to define new transcendental functions.

The general solution of (2.1) is meromorphic if and only if eitherβ = 0 or α = γ = 0
and is branched in all other cases. Therefore it possesses the Painlevé property
these choices of the parametersα, β , andγ and we can solve the equation explicitly.
the generic case in which the general solution is branched, we can nonetheless fin
special solutions that are meromorphic. This suggests the possibility of catalogu
meromorphic solutions to particular classes of ODEs. In [8] one-parameter families
lutions to an ODE arising in general relativity are found such that all movable singula
are poles. This method appears to generate all exact solutions of this equation in th
ature again suggesting that meromorphicity or the absence of movable branch poi
lead to explicit particular solutions even when the equation is not integrable.
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