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Abstract

The behavior of meromorphic solutions of differential equations has been the subject of much
study. Research has concentrated on the value distribution of meromorphic solutions and their rates
of growth. The purpose of the present paper is to show that a thorough search will yield a list of all
meromorphic solutions of a multi-parameter ordinary differential equation introduced by Hayman.
This equation does not appear to be integrable for generic choices of the parameters so we do not
find all solutions—only those that are meromorphic. This is achieved by combining Wiman—Valiron
theory and local series analysis. Hayman conjectured that all entire solutions of this equation are of
finite order. All meromorphic solutions of this equation are shown to be either polynomials or entire
functions of order one.
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1. Introduction

Much research has been undertaken concerning the behavior of meromorphic solutions
of differential equations (see [19] and references therein). In this paper we will consider the
problem posed by Hayman [11] of showing that all meromorphic solutions to the ordinary
differential equation (ODE)

ff' = fP=ko+kof +kof +kaf”, (1.2)

where thek; are constants, are of finite order. By way of solving this problem we will an-
swer a more fundamental question, namely: what are the meromorphic solutions of (1.1)?
The key mathematical methods that we use are Wiman—Valiron theory, local series analy-
sis, and reduction of order. It should be stressed that we do not find the general solution
of (1.1) explicitly, which may well be impossible—we only find the meromorphic solu-
tions.

In general, finding explicit solutions of nonlinear differential equations in terms of finite
combinations of known functions is difficult, if not impossible. However, it was observed
in the late nineteenth and early twentieth centuries that ODEs whose general solutions are
meromorphic appear to be integrable in that they can be solved explicitly or they are the
compatibility conditions of certain types of linear problems (see, e.g., [1, Chapter 7]). In
the 1880s Kovalevskaya [17,18] considered the equations of motion for a spinning top,
which form a sixth-order system depending on parameters describing the mass, centre of
mass, and moments of inertia of the top. For special choices of these parameters the equa-
tions of motion had been solved by Euler and Lagrange. Kovalevskaya observed that these
known solutions were meromorphic when extended to the complex plane. She determined
all choices of the parameters for which the general solution was meromorphic. She found
one new case, which she then solved explicitly in terms of ratios of hyper-elliptic functions
(see also [5]). No further cases in which these equations can be solved explicitly have been
discovered in the intervening 113 years.

From the many examples known in the literature it appears that many, perhaps all, ODEs
whose general solutions are meromorphic can be solved explicitly or are the compatibil-
ity condition for a related spectral problem. Furthermore, the condition that the general
solution is meromorphic can be replaced by the condition that the ODE possesses the
Painlevé property (that all solutions are single-valued about all movable singularities) [1].
The Painlevé property will be discussed in Section 6.

The philosophy underlying Kovalevskaya’s work is that we should be able to find the
general solution of an ODE if its general solution is meromorphic. Here we extend this idea
to the problem of finding all (particular) meromorphic solutions of an ODE, regardless
of whether the general solution is meromorphic. Hence meromorphicity can be used to
uncover explicit particular solutions of nonintegrable equations.

We begin by discussing the significance of (1.1) in complex function theory. Finite
order functions have special properties and so they have been the subject of intense study
(see [10] and the reference therein). The major result concerning the order of growth of
meromorphic solutions of first-order ODEs is the following theorem due to Gol'dberg [6].
For the standard notation and terminology of Nevanlinna theory, see [10,19].
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Theorem A (Gol'dberg).All meromorphic solutions of the first-order ODE
2@ f. =0, (1.2)
wheres2 is polynomial in all its arguments, are of finite order.

A generalization of Gol'dberg’s result to second-order algebraic equations has been
conjectured by Bank [4]. Lef be any meromorphic solution of the ODE

Q@ f. f. =0, (1.3)
where$2 is polynomial in all of its arguments. In terms of the Nevanlinna characteristic
T(r, f) (see, e.g., [10] or [19]), Bank [4] conjectured that

T(r, f) < Koexp(K1r¢), 0<r <+o0, (1.4)

whereK1, K2, andc are positive constants. In [11], Hayman described a generalization of
this conjecture tarth-order ODEs, known as thdassical conjecture. Iff (z) is a mero-
morphic solution of

2 fifl fM)=0, (1.5)
whereg is polynomial inz, f/, ..., ™, then we have
T(r, f) <aexp,_1(br9, 0<r <+oo, (1.6)

wherea, b, andc are constants andxp, is defined by
expy(x) = x, exp,(x) =€", exp, = exp{exp,_1(x)}.

Clearly the Bank conjecture (1.4) is a special case of the Classical Conjecturewh2n
Hayman credited the conjecture to S. Bank and L. Rubel.

Steinmetz [21] proved the classical conjecture for any second-order polynomial equa-
tion which is homogeneous in its dependent variable and its derivatives. Furthermore, he
showed how the solution of such an equation can be expressed in terms of entire functions
of finite order.

Theorem B (Steinmetz) Suppose that i(1.3), 2 is homogeneous irf, f, f”. Then all

meromorphic solutions ofl.3)take the form

_ 81
82(2)

whereg;(z), j = 1, 2, 3, are entire functions of finite order. In particulgf satisfieg1.4).

f @

exp|{g3(2)}. (1.7)

For example, the functiofi(z) = € satisfies (1.4) and the differential equation

ff" = (fH2 = ff'=0 (1.8)
and is of infinite order.
Bank proved in [4] that if a meromorphic solutigh of (1.3) satisfiesN (r, a;, f) =

0 (€°) where theu;, j =1, 2, belong to the extended complex plaevherec is some
positive constant, theyi satisfies (1.4). This result improved upon Bank’s own result [3]
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where a weaker assumption thétr, a;, f) = O(r) for a;, j = 1, 2 is assumed. In fact,
Gol'dberg [7] proved a stronger result for a special subclass of (1.9). Hayman [11] gener-
alized this result to higher-order algebraic ODEs of the form (1.5) fL.¢ake the form

2= di@fOf)r - (FO)", (1.9)
LEA
whereA = {(ig, i1, ..., in) € N*: n; € N} is afinite set and,, are polynomials irx.

Hayman formulated the following theorem in terms of tlegregA| = ig+i1+---+in
and theweight||A|| = io + 2i1 + - - - + (n + 1)i, of the terms in (1.5).

Theorem C (Hayman).Let f(z) be an entire solution of1.5)wheres2 is given by(1.9).

Let I" be the subset afi in (1.5) such that it contains those terms (ih.9) with the high-

est weights among those with the highest degree. Let the highest degree among all the
polynomialsd, (z) bed and suppose further that

> di(z) #0. (1.10)

rel’
Then f (z) has finite order of growtimax2d, d + 1} at most.

Hayman [11] has suggested the problem of showing that all entire solutions of (1.1)
where thek; are either constants or rational functions of the independent vatiaaie of
finite order. As explained in [11], this is in some sense the simplest differential equation
that is neither covered by the results of Steinmetz (since (1.1) is nhot homogeneous) nor
Hayman (since (1.10) is violated) and yet appears to have only finite-order solutions.

2. Statement of results

In this paper we will consider the case in which #jeare constants. Not only will we
show that Hayman'’s conjecture is correct, namely that all entire solutions of (1.1) have
finite order, we will also show by explicit construction that all meromorphic solutions are
either polynomials or entire functions of order one, and in fact linear combinations of
exponential functions and constants.

Note that the transformatiofi= w + k3 takes (1.1) to

d?w dw
dz? dz
wherex = k1, 8 = k2, andy = ko + k1k3. For some purposes, which will be apparent later,
it will be convenient to write (2.1) as

2
dw
w ) =aw+ B— +vy, (2.1)
dz

W —aw=w —a)(w —a_), (2.2)

where

BV
.



Y.M. Chiang, R.G. Halburd / J. Math. Anal. Appl. 281 (2003) 663—-677 667

We will see that (2.1) always contains some particular meromorphic solutions. However
its general solution is meromorphic if and only if eitlke= y = 0 or 8 = 0. In these cases
it is straightforward (see Section 5) to prove the following.

Lemma 2.1. If « = y = 0 then the general solution qR.1)is given by

w@=£+qﬂi (2.3)
c1

w(z) = —Bz +c1, (2.4)

w(z) =0, (2.5)

wherec andcp are arbitrary constants.

Lemma 2.2. If 8 = 0then the general solution d2.1)is given by

. a 14 .
w(z) =c1 exp(:l:l —z) — =, ifa#0, (2.6)
Vr o
w(z)=c1tiyz, ifa=0, (2.7)
1
I 2 2 X
w(z) = C% [(x + /@ +yct coshciz + cz)], wherecy # 0, (2.8)
2.2
w(z):—zzz—i—czaz— m, if o #£0, (2.9)
2 20

wherec andcp are arbitrary constants.
The central result of this paper is the following.

Theorem 2.3. If « andy are not both zero and i # 0 then the only meromorphic solu-
tions of (2.1)are

w@:qw%%>—L (2.10)
a; o
if « 2£0and

w(z) =c1+axz, (2.11)

if @ = 0, wherecs is an arbitrary constant. I& = y = 0 or 8 = 0 then the general solution
of (2.1)is meromorphic and given by Lemniad and 2.2, respectively.

The general solution of (2.1) depends on two parametarsifd c2 in Lemmas 2.1
and 2.2). The solutions described by (2.10) and (2.11) each represent two one-parameter
(c1) families of special solutions of (2.1). The two families are labelled by the choigg of
anda_ (there is only one family it =a_). In the generic case, all solutions other than
those given in Theorem 2.3 are branched.

The order of the transcendental meromorphic solutions of (2.1) comes as an immediate
corollary to Theorem 2.3.
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Corallary 2.4. All transcendental meromorphic solutions @.1) are entire and of order
one.

In Section 3 we use asymptotic estimates from Wiman—Valiron theory to show that the
only nonvanishing entire solutions of (2.1) are of the farpe‘1, wherec; andc; are
constants. Cauchy'’s existence and uniqueness theorem (see, e.g., [13, p. 284]) guarantees
that the initial value problerw(zo) = wo andw’(z0) = w, for (2.1) has a unique analytic
solution in a neighborhood of = zo provided thatwg and w, are finite andwg # 0.

Hence checking the existence of local series expansions will only provide information
regarding expansions about either the zeros or the poles Afstraightforward leading-

order analysis (see Section 4) shows that no solution of (2.1) can possess a pole of any
order. This implies that all meromorphic solutions are entire.

In Section 4 we use local series analysis about a zero tof show that either the only
entire solutions of (2.1) are those givenin (2.10) and (2.11) or at least one of the parameters
B,y must be zero. In Section 5 we complete the classification of entire solutions by finding
all entire solutions in the cage= 0 and in the casg = 0. Here we use the fact that (2.1)
is autonomous (i.e., it does not contain the independent variadglicitly) to reduce it
to a first-order equation for := w’(z) as a function ok := w(z). This equation is of Abel
type which we solve by transforming it to a separable equation. This leads to a first-order
equation forw as a function of.

Although we do not construct the general solution (which is branched) of (2.1) in the
generic case (i.e4 # 0 anda, y not both zero), we are nonetheless able to find all entire
(and therefore all meromorphic) solutions.

3. Zero-freesolutions

In this section we will consider nonvanishing entire solutionsf (2.1). In this case
there exists an entire functignsuch that the solutiom has the form

w(z) =e$@, (3.1)

We will show thatg is necessarily a linear function aef Specifically, we will prove the
following.

Lemma 3.1. The only zero-free entire solutions (&.1) are given by
CoEF1%, fa=B8=y=0,
w(z)=1{ce /P if p£0,y =0, (3.2)
—y/a, if «#£0,
wherec1 andc; are arbitrary nonzero constants.

We note that each of the three solutions given by (3.2) above is a special case of the
solutions in the listin Theorem 2.3. Our argument relies on the classical result given below
in Lemma D, which states that ¥ is transcendental then near its maximum on a large
circle, |z| = r, there is a simple asymptotic relationship betwgeand its derivatives.
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We will use this relationship together with the fact tigagatisfies a particular third-order

polynomial ODE (3.7) to constrain the parameterss, andy in (2.1). Subject to these

constraints, we are able to find all zero-free meromorphic solutions of (2.1) exactly.
Substituting (3.1) into (2.1) and rearranging gives

e8g" = (a + g)es +y. (3.3)
Differentiating (3.3) with respect tp and dividing by & gives
eg(g/// + 2g/g//) — ag’ + ,B[g” + (g/)Z]. (34)

We wish to divide (3.4) by’ + 2¢’¢” which we can only do provided that this expression
does not vanish identically. § is entire and

g/// + 2g/g// — 0 (3.5)
theng is linear inz. (Equation (3.5) can be solved explicitly since it is a differentiated
Riccati equation.) It follows from (3.1) that

w(z) = AeP?, (3.6)

whereA andB are arbitrary constants. Substituting (3.6) into (2.1) yigtds 8 B) AeB* +
y = 0 for all z. Solving this equation fod and B and using (3.6) shows that the only
solutions of (2.1) arising from (3.5) are those given by (3.2). We note that no entire solution
of (3.4) can be a polynomial of degree greater than one since, if it were, then the left side
of (3.4) would grow exponentially while the right side would be a polynomial.

We now consider the case in whighis transcendental entire. In this case (3.5) is not
satisfied identically. Solving (3.4) foFeas a function o’, ¢”, andg”” and using this to
eliminate the & and &2 terms in (3.3) shows that satisfies the third-order ODE

g”{otg' +’3[g// + (g/)Z]}Z
=y(g" +2¢'¢") + (@ + B (g" +2¢'g"Hag' + B¢ + (g)?]}. (3.7)

We will use Lemma D below to compageand its derivatives in (3.7). Before introduc-
ing the lemma, however, we define the central index of an entire function.

Definition 3.2. Let

o0

g =) an"

n=0

be entire. Theentral indexv(r, f) is the greatest nonnegative integesuch that
|am|r™ = max|a,|r".
n=>0

=

In terms of the central index we have the following (see, for example, [14, pp. 33-35,
pp. 197-199], [9], [19, pp. 50-52]).
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Lemma D. Let g be a transcendental entire function, and= v(r, g) be its central index.
Suppose thdd < § < 1/4, that|z| =r, and that

lg(@)| > M(r, g)v(r, &)Y/, whereM(r, g) = maxXg(z)|. (3.8)

lz|=r

Then there exists a subsgtof R of finite logarithmic measure, i.efF dt/t < +o0, and
such that

" v(r, &) \"

g™ ()= (Tg> (1+0(1)g(2) (3.9)
holds wheneven > 0 andr ¢ F. We also have for large outsideF,

v(r, g) < [logM (r, )] (3.10)
Further if g has finite ordew then

loglogM I
o :Iimsupw = limsup 0gv(r. 8) (3.11)
r—-+oo |Ogr r—-+o0o |Ogr

We now return to our analysis of transcendental entire solutions of (3.7). Choose first
outsideF’ and thery, such thatz| = r and (3.8) holds, and assume tlgas transcendental.
Using the asymptotic relation (3.9) in (3.7) gives, to leading order, a polynomial equation
in v/z andg(z). The termsg?(g')*g” and 22(g’)*g” on the left and right sides of (3.7),
respectively, are the only terms which generate the faetan® (1+ o(1))g°(z) on appli-
cation of (3.9). All other terms have degrees strictly less than fige For transcendental
functions, the central index(r, g) is an increasing function efwhich, according to (3.10)
grows much slower thaM (r, g). Therefore (3.7) can hold for a transcendental entire func-
tion g only if 8 =0. If 8 =0 then (3.7) becomes,

y(g/// + zg/g//)z + azg/(gm + g/g//) —=0. (3.12)
The leading term in (3.12) is given by the termg?s”? = 4y (v/2)8(1 + o(1))g*. Thus
y = 0. Similarly we deduce that = 0. This corresponds to the case wheg § =y =0
in the solution (3.2) and sg is linear—a contradiction.

Remark 3.3. In the special casg # 0, a simple argument from Nevanlinna theory can be
used to show that there are no transcendental zero-free entire solutions. We will not use
Nevanlinna theory again so we will not describe the necessary terminology and standard
identities (see, e.g., Hayman [10]). Writing (2.1) as

y w” w 2 1 w

Bt () Heord)

w w w w w
we have

m(r, wfz) < m(r, wil) + S, w).

Som(r,w™1) = S(r, w). This givesT (r, w™1) = S(r, w), which contradicts Nevanlinna’s
first main theorem.
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4. Local seriesexpansions

In this section we will consider local series expansions of solutions of (2.1). We will
show that all meromorphic solutions are entire. We will also show that i§ an entire
solution of (2.1) that vanishes at a point zo then eitherw is given by the solutions
(2.10)—(2.11) or at least one of the paramefgry in (2.1) must vanish. In the last case,
we will show in Section 5 how to obtain all entire solutions that have a zero using the
method of reduction of order. Throughout this section we will assgmez 0.

Note that Cauchy’s existence and uniqueness theorem (see, e.g., [12,13]) guarantees the
existence of a unique locally analytic solution of (2.1) with the initial conditioiisy) =
wo andw’(zo) = w, providedwo andw, are finite andwg # 0. We will investigate the
case wherev(zp) is zero or infinity.

Let w be a meromorphic solution of (2.1) that either vanishes or has a pole at some
point zg in the finite complex plane. Then has a Laurent expansion which converges in
a punctured disc centred at zo,

w@) =Y an(z—z20""", (4.1)

n=0

whereag # 0 andp is a nonzero integer. We substitute the expansion (4.1) into (2.1) and
keep only the leading-order behavior of each of the terms in the equation. This yields

[acz)p(P ~D(z—z20 2+ ] — [a%pz(z — 70224 .. ]
=afaoz —z0)” + ]+ laop (e —z0)" "+ ]+, (4.2)

The lowest power of — zp on the left of (4.2) is 2 — 2. If By # 0, then the lowest power
of z — zo on the right is eithep — 1 or O (from the constant term). We see that there is
only one possible balance of these powers, namel/l. Whenp = 1, we see on equating
constant terms in (4.2) thap = a+.. The following two lemmas follow immediately.

Lemma 4.1. Any solutionw, of (2.1) does not possess a pole of any order. In particular,
any meromorphic solution d.1)is entire.

Lemma4.2. Letw be any solution of2.1)analytic in a neighborhood of the poiat= zg
such thatw(zg) = 0. Thenw’(zg) = a+.

Having obtained the leading-order behavior of any meromorphic solution of (2.1) that
vanishes at = zg, we will now derive a recurrence relation for thyein the expansion (4.1)
with p =1 andag = a+. (2.1) becomes

Z[ Y (n—m+1(n—2m— 1)amanm:| (z—z0)"

n=0L m=0

=[Bao+y1+ Y _[eay—1+ B(n+ Day]z —z0)". (4.3)
n=1
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The constant term in (4.3) vanishes identically singe= a+ SO|V€Sa(2) + Bao+y =0.
Equating the coefficients @t — z0)" forn =1, 2, ... gives the recurrence relation

n+ 1)([n — 2]ao — ,B)an =Gy(ag,a1,...,ap-1), n=12..., 4.4)
where
n—1
Gulag,ax,...,ay—1) ;= aday—1 — Z(n —m+1(n—2m—VDayna,_pn.
m=1

Note that if the coefficient of,, on the left side of (4.4) does not vanish for any positive
integern then we can uniquely determine the power series expansianafoutz = zg
(after choosing eithetg = a4 or ag = a_). We have proved the following.

Lemma 4.3. Suppose thatn — 2)ag — 8 # 0 for all positive integers:, whereag = a
or ag=a—_. Then there is at most one solutian of (2.1) satisfyingw(zg) = 0 and
w’(z0) = ao, Which is analytic in a neighborhood ef= zo.

For any choice of the parametersf, andy we can in fact produce an explicit solution
of (2.1) which satisfies
w(zg) =0 and w'(zg) =ax. (4.5)

This solution is given by choosing the constanin the solutions (2.10) and (2.11) listed
in Theorem 2.3 such thab(zg) = 0. These solutions will be derived systematically in
Section 5, for now it is sufficient to note that they are indeed solutions. We have

wi@) =2 [eXp<i(z - ZO)) — 1] (4.6)
o as
if « £20and
w(z) = a+(z — z0) (4.7)

if « = 0. So the following is a consequence of Lemmas 4.2 and 4.3.

Lemma 4.4. Suppose thatn — 2)ag — 8 # O for all positive integers:. Then(4.6)—(4.7)
are the only solutions 0f2.1) that satisfyw(zg) = 0 and are analytic in a neighborhood
of z = zo.

Now we consider the case in which the left side of (4.4) vanishes for some positive
integern. Recall that solutions of (2.1) can have at most two types of zeros as described in
Lemma 4.2. First we consider the case in whickanishes at; andz_ andw’(z+) = a4
andw’(z—) = a_ (a+ # a_). Sincew is not one of the solutions (4.6)—(4.7), it follows
from Lemma 4.4 that the left side of (4.4) must vanish at bpthand z_ for positive
integers: = N, andn = N_, respectively. It follows that

,3 = (N+ — 2)a+ = (N, — 2)617.
Recall thatey + a— = —8, so that, if8 £ 0, then
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which is not possible for positive integels, and N_—a contradiction.

The only case remaining is that in whiehis entire and has at least one zero and all
the zeros ofw are the same type (i.e., eithef(zg) = a4 at all zeroszg or w'(zg) = a—
at all zeros). Without loss of generality we assuwi€zo) = a4 at all pointszg such that
w(zp) = 0. Since, by the initial assumption of this sectign# 0, we havery # 0, so the
function

/
vi= LT (4.8)
w

is entire since the numerator vanishes at the zeros of the denominator and these zeros are
simple.

From (4.8) we obtain

w =vw+ag, (4.9)

w’' =+ vz)w +ayv. (4.10)
Now (2.2) becomes

Vw=a—a_v. (4.11)

Note that, ifv is a nonzero constant, then= «a/a_ by (4.11), and this yields (2.10). If
v =0, then by (4.9’ = a and this yields (2.11). We now show thatyifs a nonconstant
entire function, thery = 0. If v is not a constant then solving (4.11) forand substituting

it into (4.9) gives

a_(v¥ + '’ — v/z) —av?=a( +w). (4.12)

We wish to show that there are no nonconstant entire solutions of (4.12).

A simple leading-order analysis shows that (4.12) has no nonconstant polynomial so-
lutions. There is only one term of highest degree in (4.12), namelfv’ ~ a_ (v/z)vS.
From (3.10) we see that for largg = r, the central index(r, v) is negligible compared to
the maximum modulus of, M(r, f) = max; =, |v(z)|. Hence applying Wiman—Valiron
theory as in Section 2 to any transcendental solutiaf Eq. (4.12) gives:— = 0 which
implies thaty = 0.

We have proved the following.

Lemma 4.5. Let w be a solution of(2.1) such that there is a poingg € C such that
w(zo) = 0 andw is analytic in a neighborhood af= zg. Then either

(1) w@) = Elexp(y- (z — z0) — 11 (if o # 0), or
(2) w(z) =a+(z —zo) (if « =0), or

(3) p=0,0r

4) y=0.

Cases (1) and (2) of the above lemma correspond to the solutions (2.10) and (2.11) of
Theorem 2.3.
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5. Reduction to first order

In order to complete our analysis of (2.1), we need to find all entire solutions when either
B =0 ory =0 andw vanishes somewhere. First we will solve the cAse 0 (Case 1)
exactly. We will then reduce (2.1) to a first-order ODE for general parameters, which we
will analyse in the casg = 0.

Casel (B =0). If « andy are both zero then any constant will satisfy (2.1), otherwise the
only constant solution i&(z) = —y /a (provided thatx # 0). If w is not a constant then
multiplying (2.1) byw 3w, and integrating gives

w?:c%wz—Zaw -, (5.1)
wherec; is a constant. Equation (5.1) can be integrated to give the solutions (2.8), for
c1#0, and (2.9), forc; =0, a # 0, and (2.7), with a slight change of notation, for
ci=a=0,y #0.

We will consider the case in which = 0. Before considering this case, however, we
will show how (2.1) can be reduced to a first-order ODE#oas a function ot for any
choice of the parametess 8, andy .

Since (2.1) is autonomous (i.e., it admits the symmetry z + €), it can be reduced
to a first-order equation for := w, as a function ok := w (in any domain in whichw is
one-to-one). This yields the equation

d Z+ox + By + d - —a )+
dy _ytox+py+y 4y _O-a)b—a)tax (5.2)
dx Xy dx Xy

Equation (5.2) is an Abel equation of the second kind (see, e.g., [16]). We first consider the
case in whiche = y = 0. The general solution of (5.2) is then given by
y(x)=c1x — B,

wherec; is an arbitrary constant, which is a linear ODE fo¢z) corresponding to the
solutions (2.3) and (2.4) of (2.1). This proves Lemma 2.k €ndy do not both vanish
andy is notidentically zero, then in terms of the new dependent variable

ax +y

u(x) = , 53
y(x) (5:3)
Eq. (5.2) becomes the separable equation
d
x(ax + )/)—u +w—ay)wu—a_)u=0.
dx
Hence, either
u=ax (5.4)
or separation of variables gives
du/d 1
u/dx (5.5)

=0.
uw—ay)w—a-) x(ax+vy)
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The solutions (5.4) correspond to

o , o
yx)=a+r+—x & w@=ax+—w(2),
ax ax
leading (again) to the solutions (2.10) and (2.11) in Theorem 2.3.
We now consider the cage= 0. We assume that # 0 since the solutions for which
is also zero have been considered in Case 1.

Case2(y =0,a#0, 8#0. Soa; =0 anda_ = —p8). Using partial fractions to inte-
grate (5.5) together with the fact that= w/w, andx = w, we obtain
ke S clexp<ﬁ[wz—+ﬂ}>. (5.6)
w B o w

Recall that we were led to consider the case 0 in Lemma 4.5 under the assumption that
w vanishes at some poigg in C. From (5.6) we see that the left side has a pole-atzg

but according tav’(zo) = a+ the right side either has an essential singularity or a regular
point atzg, respectively. Hence there are no entire solutions that vanish in this case.

6. Discussion

In this paper we have provided a complete list of all meromorphic solutions of (1.1). The
advantage of producing such lists for classes of differential equations is that from a number
of examples, further observations and conjectures can be generated and also to illustrate
the relative scarcity of meromorphic solutions in the solution space of generic differential
equations. As a consequence we have shown that all entire solutions of (1.1) are of finite
order, as had been conjectured by Hayman. In fact, we have shown that all meromorphic
solutions are entire and of order one (except for polynomial solutions).

For differential equations, meromorphic solutions are the exception rather than the
rule—even for rational equations. Indeed, Malmquist’'s theorem [20] states that the only
equation, of the form

dw R( )
— = R(z, w),
dz ¢
whereR is rational inw andz, that admits a transcendental meromorphic solution is the

Riccati equation,

dw =a(Qw+b(@w+ c(2),
dz

wherea, b, andc are rational functions of. Although no general analogous result is
known for the case in which a second-order equation admits a transcendental meromorphic
solution, much is known about second-order rational ODEs whose general solutions are
meromorphic. In fact, much is known in the case that a second-order ODE possesses the
Painlevé property, which we will now discuss.

An ODE is said to possess tRainlevé propertyf all solutions are single-valued about
all movable singularities. In particular, any equation whose general solution is meromor-
phic possesses the Painlevé property. Equations possessing the Painlevé property have
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attracted much interest because of their connection with integrable systems and the so-
called soliton equations (see, e.g., [1]).
Painlevé, Gambier, and Fuchs classified all second-order equations of the form

w’ =Fw,w';z), (6.1)

that possess the Painlevé property, wheres rational inw andw’ and locally analytic

in z (see [12,13] and references therein). The notion of the order of meromorphic solutions
appears to play an importantrole in the generalization of the Painlevé property to difference
equations [2].

All the equations found in this work of Painlevé et al. can be solved in terms of
classically-known functions (e.qg., elliptic functions, hypergeometric functions, etc.) except
those equations that can be mapped to one of six canonical equations, called the Painlevé
equations. The first two Painlevé equatioRs &nd P ) are

—~ =6 , 6.2
422 Vo +z (6.2)
dZ
22y +a (6.3)
dz

wherew is an arbitrary complex constant. Each of the Painlevé equations can be written
as the compatibility of an associated linemo¢monodromyproblem [15]. The Painlevé
equations are themselves used to define new transcendental functions.

The general solution of (2.1) is meromorphic if and only if eitfee O ora =y =0
and is branched in all other cases. Therefore it possesses the Painlevé property only for
these choices of the parametersg, andy and we can solve the equation explicitly. In
the generic case in which the general solution is branched, we can nonetheless find those
special solutions that are meromorphic. This suggests the possibility of cataloguing all
meromorphic solutions to particular classes of ODEs. In [8] one-parameter families of so-
lutions to an ODE arising in general relativity are found such that all movable singularities
are poles. This method appears to generate all exact solutions of this equation in the liter-
ature again suggesting that meromorphicity or the absence of movable branch points can
lead to explicit particular solutions even when the equation is not integrable.

Acknowledgment

The authors would like to thank the referee for a number of useful comments.

References

[1] M.J. Ablowitz, P.A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, in: London
Math. Soc. Lecture Note Ser., Vol. 149, Cambridge Univ. Press, Cambridge, 1991.

[2] M.J. Ablowitz, R. Halburd, B. Herbst, On the extension of the Painlevé property to difference equations,
Nonlinearity 13 (2000) 889-905.

[3] S.B. Bank, On the growth of certain meromorphic solutions of arbitrary second order algebraic differential
equations, Proc. Amer. Math. Soc. 25 (1970) 791-797.



Y.M. Chiang, R.G. Halburd / J. Math. Anal. Appl. 281 (2003) 663—-677 677

[4] S.B. Bank, Some results on analytic and meromorphic solutions of algebraic differential equations, Adv.
Math. 15 (1975) 41-61.
[5] R. Cooke, The mathematics of Sonya Kovalevskaya, Springer-Verlag, New York, 1984.
[6] A.A. Gol'dberg, On single valued solutions of first order differential equations, Ukrain. Mat. Zh. 8 (1956)
254-261, in Russian.
[7] A.A. Gol'dberg, Growth of meromorphic solutions of second-order differential equations, Differential Equa-
tions 14 (1978) 584-588.
[8] R.G. Halburd, Shear-free relativistic fluids and the absence of movable branch points, J. Math. Phys. 43
(2002) 1966-1979.
[9] W.K. Hayman, The local growth of power series: a survey of the Wiman—Valiron method, Canad. Math.
Bull. 17 (3) (1974) 317-358.
[10] W.K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1975.
[11] W.K. Hayman, The growth of solutions of algebraic differential equations, Rend. Mat. Acc. Lincei, Ser. (9) 7
(1996) 67-73.
[12] E. Hille, Ordinary Differential Equations in the Complex Domain, Wiley, New York, 1976.
[13] E.L. Ince, Ordinary Differential Equations, Dover, New York, 1956.
[14] G. Jank, L. Volkmann, Einfiihrung in die Theorie der ganzen und Meromorphen Funktionen mit Anwendun-
gen auf Differentialgleichungen, Birkhauser, Basel, 1985.
[15] M. Jimbo, T. Miwa, Monodromy preserving deformations of linear ordinary differential equations with
rational coefficients, Ill, Physica 4D (1981) 26—46.
[16] E. Kamke, Differentialgleichungen Lésungsmethoden und Lésungen, Chelsea, New York, 1959.
[17] S. Kovalevskaya, Sur le probléme de la rotation d'un corps solid autour d’'un point fixé, Acta Math. 12
(1889) 177-232.
[18] S. Kovalevskaya, Sur une propriété d'un systéme d'équations différ entielles qui definit la rotation d'un
corps solide autour d'un point fixé, Acta Math. 14 (1889) 81-93.
[19] I. Laine, Nevanlinna Theory and Complex Differential Equations, de Gruyter, Berlin, 1993.
[20] J. Malmquist, Sur les fonctions & un nombre fini des branches définies par les équations différentielles du
premier ordre, Acta Math. 36 (1913) 297-343.
[21] N. Steinmetz, Uber das Anwachsen der Lésungen homogener algebraischer Differentialgleichungen zweiter
Ordnung, Manuscripta Math. 3 (1980) 303—-308.



