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COMPLEX OSCILLATION THEORY AND SPECIAL
FUNCTIONS

YIK-MAN CHIANG AND MOURAD E. H. ISMAIL

Presented by R. S. C. Wong, FRSC

RESUME.  Ceci est une announce de nétre resultat [10] dans lequel
nous montrons que les représentations des solutions non-oscillatoires de
certaines équations differentielles ordinaires proviennent des fonctions hy-
pergéométriques confluents avec un nombre fini de zéros et aussi des poly-
nomes orthogonaux.

Nous caractérisons les distributions nulles et les représentations des so-
lutions de deux classes des équations differentielles ordinaires et indiquons
que la solution du probléme dans les autres cas est relié & un probléme de
Heine.

1. Introduction. Let f(z) be an entire function and denote its order by
o(f). The exponent of convergence of f is A(f) = limsup,_, ,  logn(r, f)/logr,
where n(r, f) denotes the number of the zeros of f in |z| < r. It is an easy
consequence of Weierstrass™ theorem that A(f) < o(f) (see [15]).

The complex oscillation problem (sce [18]) we are interested in is to study the
quantity A(f) in relation to o(f) for entire functions f satisfying

(1.1) F(2) + A(2) f(z) = 0,

and A(z) is an entire transcendental function of finite order. One of the main
problems is to seek sufficient conditions on A(z) that guarantee that each solution
fof (1.1) to satisfy

(1.2) A(f) = +oo.

Some basic oscillation problems are considered in [5], followed by [6] which
deals with periodic coefficients, and [7] which deals with meromorphic solutions.
We refer to [18, Chapter 5] and the references therein for subsequent works.

The equation (1.1) considered by Bank and Laine in [6] has periodic coefficient

(1.3) A(z) =B(e*), B() =Kl ™ +  + Ko+ +Kit, £>0,k>0,
where K¢K} # 0. They established the following theorem when (1.2) is violated.
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THEOREM 1.1. Let A(z) be an entire function given by (1.3). If (1.1) admits
a non-trivial solution f with A(f) < +oo, then there exist constants d, d;, and a
polynomial (¢) with only simple roots, such that if € is odd in (1.8), then k =0,
and

i
(1.4) f(z) =?,b{ez/2)exp(2djejz/2 —I—dz),

=0
where d; = 0 for even j. If £ is even, then k is also even, and

0/2

(1.5) f(z) :w(ez)exp( Z djejz-i-dz).

j=—k/2

It appears to be a difficult problem to characterize the choices of B(¢) in (1.3)
so that equation (1.1) would admit a solution f with A(f) < 4o0, and to write
down such a solution explicitly [4], [9], [12]. The major difficulty is to verify the
existence of the polynomial 4(¢) that appears in (1.4) and (1.5).

This announcement summarizes our findings in [10] where we show that the
above mentioned problem is closely related to special functions and in some
cases to orthogonal polynomials. We have shown that for the well-studied classes
of (1.3), equation (1.1) can be transformed to equations satisfied by two classes
of special functions—the Bessel functions and Coulomb wave functions. We solve
these two subclasses of (1.1) completely—general and explicit solutions f(z) to
(1.1) are found regardless of whether A(f) < +oc or = +00. Moreover, we repro-
duce the polynomial component in the solution f(z) via the confluent hypergeo-
metric functions. This extends our understanding of the polynomial components
found by Bank, Laine and Langley [6], [8]. This establishes a connection be-
tween the finding of ¥(¢) for (1.4)-(1.5) for (1.1) in the above question and to
a class of orthogonal polynomials—Bessel polynomials. The key is the following
transformation due to Lommel {21, p. 97]

x=oat’, yz)=t"u(t),

where «, 3 and v are constants. We have identified the transformations needed
to transform (1.1) to the above-mentioned equations. We then establish another
connection to (1.1) with the remaining (1.3) not covered in the previous consider-
ation of the Heine problem for differential equations with polynomial coefficients
[20]. The study here is based on the solutions (1.4) and (1.5). In the case when
¢ >0, k =0 and ¢ is odd, we shall give a characterization of the coefficients
{K;} in (1.3) based on the Heine problem. This extends the results obtained in
[9] where only zero-free solutions were studied.

We also study the closely related subnormal solution problem first studied by
Frei. [11], then by Wittich [22] and then by Bank and Laine [6].
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The subnormal solution problem can be transformed to be an oscillation prob-
lem of (1.1) with specific (1.3) in one of the two above-mentioned subclasses of
(1.3). Hence the corresponding subnormal solution problem can be solved com-
pletely to the same effect as the oscillation problem.

We follow notations in Watson [21] for Bessel functions and in Grosswald [13]
for the Bessel polynomials. The notations of the Coulomb wave functions are as
in [1].

We first review what was obtained by Bank, Laine and Langley in [8].

THEOREM 1.2. Let K be a compler number. The equation
(1.6) f 4+ (e —K)f =0
admits a non-trivial solution f with A(f) < +oc if and only if
(1.7) K = (2n + 1)*/16,
where n is a non-neqative integer, and
(1.8) f(2) = ¥(e*/?) explde’? — (2n + 1)2/4],

where 1 is a polynomial of degree n, and d* +4 = 0. Conversely, when K is given
in (1.7), then f of (1.8) is a solution to (1.6) with A(f) < 400.

Our findings show that the polynomial component %({) in (1.8) and more
generally in (1.4) and (1.5) are very special polynomials for two special classes
of (1.3). One of these is essentially given in equation (1.6). Moreover, we shall
show that the general solution of this equation is related to Bessel functions. The
other class that has this property turns out to be the equation of the form

(19) f” + (Kﬁze_gz + K _1e7% + K(])f =0

to be discussed in the next section. The equations (1.6) (and its generalization
(1.10)) and (1.9) seem to be the only two subclasses among the general case of
(1.1) with coefficient {1.3) that are related to classical confluent hypergeometric
functions and hence can be solved completely. We now state our first main result.

THEOREM 1.3. Let Ky and K be compler constants. Then any two linearly
independent solutions of the equation

(1.10) "+ (Kie* = Ko)f =0
are given by
(1.11)  ya(2) = Axdy e (F2VK1627%) + BL Y, (22 K1 e/3).

The solutions (1.11) have a finite exponent of convergence if and only if

2/ Ko =n+1/2,
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where n 15 an integer, and, if n > 0, then

3 ay
(112 yi(2) = 0, (¥2i/K1e*/?) exp(R2i VK167 + d2),
where 0, (x) is the reverse Bessel polynomial of degree n and d = (—2n — 1)/4.
If, however, n = —m, m > 1, then we replace all the n in (1.12) by m — 1.

We note that (1.6) was already considered by Lommel in 1871 [19].

2., Subnormal solutions. The oscillation problem of the second class of
equation that we have found exact solutions are the ones given in the form (1.9).
The following special case

(2.1) "4+ K+ (2 —e2)/4)f=0

is considered by Bank and Laine in [6] in connection with subnormal solutions of
the differential equation (2.4) below first considered by Frei.

Let P(¢) and Q(() be two polynomials at least one of which is non-constant.
Then it is known that the growth of an entire solution g(z) of the equation

(2.2) g"(2) + P(e®)g'(z) + Q(e*)g(z) = 0
can reach infinite order. We say that g(z) is subnormal if it satisfies

loglog M(r,g)

(2.3) lim sup 0.

r— 400 r
That is, the subnormal solutions of (2.2) are those solutions that grow slower
than the maximum speed allows (i.e., infinite order). Wittich [22] showed that
any subnormal solution can be written in the form g(z) = e?*S(e®) for some
polynomial S(¢). However, Frei [11] considered the special case

(2.4) g'(z) +e7%¢'(2) + Kg(2) = 0,

and she showed that equation (2.4) will have a subnormal solution if and only if
K = —n? for some integer n. Moreover, the polynomial S(¢) mentioned above
has exact degree n.

By applying the transformation f(z) = g(z)exp(—e~*/2), Bank and Laine
[6] showed that equation (2.4) can be transformed to (2.1). It follows from this
transformation that the solution f(z) of (2.1) that satisfies A(f) < +oo if and
only if g(z) is a subnormal solution to (2.4). Indeed, they proved:

THEOREM 2.1. Let K be a non-zero complex number. Suppose equation (2.1)
admits a non-trivial solution f that satisfies A(f) < +4oo, then there exists a
positive integer n with K = —n? and f must be equal to either

—{n-1)

fi(z) = ( Z B_;;ejz) exp(nz + e °/2)

§=0
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or
falz) = (Z bje-’z) exp(nz —e 7/2).
F=0
Conversely, for.each positive integer n, equation (2.1) with K = —n? possesses

two linearly independent solutions of the above forms.

The equations (2.2) and (2.4) and their generalizations were also considered in
[2], [14]. In particular, we mention the works of Gundersen, Langley and Ozawa
(see [18] and the references therein).

We show that equation (1.9) is closely related to the Coulomb Wave equation

(2.5) y' +[1—2nz! = L(L + 1)y =0,

where L, n are complex constants. Two linearly independent solutions of (2.5)
are given by Fr(n,x)} and G (n,z) known as the reqular and irreqular Coulomb
Wave functions respectively [1]. We have:

THEOREM 2.2, Let K_o, K_{ and Ky be complexr numbers such that
K_2K_1 #0. Then two linearly independent solutions of (1.9) are given by

(2.6) f+(2) = ArFr(ne,are™®) + B2Gr(ns, aze™ ),

where
(.yi =K , —-2nyay=K_,;, L= %{71 + 2iv Ko).

The solutions (2.6) have M fy) < +oo if and only if there are non-negative
integers ne and n_, ny > n_ > 0 such that

i(?\/ Ko+ I{...l/\/ Kg) =2n4 +1,

or equivalently

K /K o=ny—n_ and 2ivVKo=n4+n_+1,

and, by wrilingn =ny, n =ny —n_, we have

(2.7) fr(z) = e2Pem Um0 /D2y, (% s ay by ) exp(—bye™?/2),
(2.8) f(2) = e*/2e(170-/D2y, _ .i(e® ;a—,b_)exp(~b_e*/2),
where ay = 2(1 + iny) and by = —2iay, and the y; in (2.7) and (2.8) are

generalized Bessel polynomials.

We deduce immediately, as a simple corollary, the complete solution of the
oscillation problem of equation (2.1).
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THEOREM 2.3. Let K be a complex constant. Then any two linearly indepen-
dent solutions of equation (2.1) are given by

fi(z) = AiFL(:E%,:E%G_Z) + B+Gp, (i%,i%e_"),

where L = %(—1 + 2iVK). Moreover, we have A(f+) < +oo if and only if L =

n+ 1 or equivalently K = —(L + 3)* = —n? for some positive integer n, and
(2.9) F+(2) = ynle® 5 1,1) exp(—e™*/2),
(2.10) f-(2) = e*yn_1(e* ; 3,—1) exp(e™*/2).

Here the y; in (2.9) and (2.10) are generalized Bessel polynomials.

3. Heine problems. We next consider the remaining classes of equa-
tion (1.1) not covered by the previous discussion. We recall that the solution
f to (1.1) must satisfy (1.2) if both the integers ¢ and k in (1.3) are not equal
to zero [3], [12]. Thus no representation of the forms (1.4) or (1.5) are possible.
Hence it suffices to consider the case where £ > 0 and k& = 0. We choose to
consider £ being odd below.

Here we shall take an approach to the problem yet again different from that of
Bank [4]. We shall suppose that (1.1) has a solution f(z) with A(f) < +oco. Hence
f(z) must admit either the representation (1.4) or (1.5) depending on whether ¢
is odd or even respectively [9, Prop. 1]. Write f(z) in the standard form

(3.11) F(z) = ¥(e*/9) exp(P(e*/?) + dz)
where

G
P = Y, d&¢,
j=1

g =1if ¢ is even or ¢ = 2 when ¢ is odd [9, Prop. 1], d is a constant and 9(() is

a polynomial of degree n. We may assume that ¢/(0) # 0. One can show that the

¥(C) satisfies a second order differential equation with polynomial coeflicients.
We can then apply a theorem of Heine (see [20]) and prove the following.

THEOREM 3.1. Let £, £ > 3, be odd and the coefficients Ky, ..., Ke-;: be given

in (1.3). Then there are at most

2(” + {F?: 1)/2)

choices for the remaining coefficients Ke1, ..., Ky so that the differential equa-
tion (1.1) can admit a solution f(z) given by (8.11) where ¥(C) is a polynomial
of degree n. The coefficient Ky is determined by £ and n.

We note that the Heine theorem is a fundamental result in electrostatic models
[16] and it also has applications in quantized physical models (see e.g. [17]).
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