Ramanujan J
DOI 10.1007/s11139-007-9101-1

On the Nevanlinna characteristic of f(z + n)
and difference equations in the complex plane

Yik-Man Chiang - Shao-Ji Feng

Received: 6 May 2005 / Accepted: 26 October 2005
© Springer Science+Business Media, LLC 2008

Abstract We investigate the growth of the Nevanlinna characteristic of f(z + n) for
a fixed n € C in this paper. In particular, we obtain a precise asymptotic relation be-
tween T'(r, f(z + 1)) and T (r, f), which is only true for finite order meromorphic
functions. We have also obtained the proximity function and pointwise estimates of
f(z+n)/f (z) which is a discrete version of the classical logarithmic derivative esti-
mates of f(z). We apply these results to give new growth estimates of meromorphic
solutions to higher order linear difference equations. This also allows us to solve
an old problem of Whittaker (Interpolatory Function Theory, Cambridge University
Press, Cambridge, 1935) concerning a first order difference equation. We show by
giving a number of examples that all of our results are best possible in certain senses.
Finally, we give a direct proof of a result in Ablowitz, Halburd and Herbst (Nonlin-
earity 13:889-905, 2000) concerning integrable difference equations.
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1 Introduction

A function f(z) is called meromorphic if it is analytic in the complex plane C except
at isolated poles. In what follows, we assume the reader is familiar with the basic
notion of Nevanlinna’s value distribution theory (see e.g. [18, 32]).

Recently, there has been renewed interests in difference (discrete) equations in the
complex plane C [1, 6, 8, 20, 22, 26, 36]. In particular, and most noticeably, is the
proposal by Ablowitz, Halburd and Herbst [1] to use the notion of order of growth of
meromorphic functions in the sense of classical Nevanlinna theory [18] as a detector
of integrability (i.e., solvability) of second order non-linear difference equations in C.
In particular, they showed in [1] that if the difference equation

ap(z) +a1(2) f(2) +---+ap) f(2)P
bo(z) +b1(2) f(2) + - -+ by (2) f(2)7

f@+D+fz=1)=R(, f(2) = (1.1)

admits a finite order meromorphic solution, then max(p, g) < 2. It is proposed in
[1] that a difference equation admits a finite order meromorphic solution is a strong
indication of integrability of the equation. It is known that when max(p, q) < 2,
(1.1) includes the well-known discrete Painlevé equations which are prime exam-
ples of integrable second order difference equations [1, 12]. More discussion about
the integrability of difference equations will be relegated to Sect. 10.

In contrast to differential equations, non-linear difference equations often admit
global meromorphic solutions [37, 40] and hence Nevanlinna’s value distribution the-
ory is applicable. The classical growth comparisons between f(z) and f’(z) have im-
portant applications to differential equations (see e.g. [14, 19]). In the case of apply-
ing Nevanlinna theory to difference equations, one of the most basic questions is the
growth comparison between 7' (r, f(z+ 1)) and T (, f(z)). Itis shown in [10, p. 66],
that for an arbitrary b # 0, the following inequalities'

(A +o(INT(r —|bl, f2) =T, f(z+Db) <(A+o(INT(r +|b|, f(z)) (1.2)

hold as » — oo for a general meromorphic function. Let 1 be a non-zero complex
number, we shall prove the following precise asymptotic relation

I'(r, f@)~T(, f(z+n), (1.3)

holds for finite order meromorphic functions.

In this paper, instead of considering non-linear difference equations, we shall,
however, concentrate ourselves on the value distribution properties of f(z + 1) and
related expressions and their applications to linear difference equations. It turns out
that the results we obtained not only allow us to give new results on linear differ-
ence equations, but they also allow us to give a direct proof of the Nevanlinna-type
theorems in [1], including that for (1.1).

IThe inequalities (1.2) can be easily derived from corresponding inequalities for the Ahlfors—Shimizu
characteristic function [10].
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On the Nevanlinna characteristic of f(z + n)

Although there has been considerable progress of the knowledge on the growth of
meromorphic solutions to g-difference equations (e.g. [3-5, 23, 35]), relatively little
is known for the growth of meromorphic solutions to even the first order difference
equation

Fz+1)=V()F(2), (1.4)

where W (z) is a meromorphic coefficient. If W (z) is a rational function, then a solu-
tion is given by

]_[';lzl I'(z—bj)
[Tiei T —c)

for some suitable choices of constants a, b, cx € C. Thus the solution has order 1.

Given a finite order meromorphic coefficient W (z), Whittaker [39, Sect. 6] explic-
itly constructed a meromorphic solution F(z) of order <o (V) + 1 to (1.4). On the
other hand, let T1(z) be a periodic meromorphic function of period 1, then the product
I1(z) F (z) again satisfies (1.4). Thus, we can get at most a lower bound order estimate
for a general meromorphic solution to (1.4). In this paper, we shall settle the lower
bound order estimate for the Whittaker problem and, moreover, for the higher order
linear difference equations

F(2) =% (1.5)

Av@f+n)+-+ A+ D+ A f(2)=0 (1.6)

with certain entire coefficients A;(z). It will be shown that the order of growth
of a meromorphic solution is one larger than the order of the dominant coefficient
amongst the A ;(z). Examples are given to demonstrate that the lower bound we ob-
tain is the best possible.

It turns out that the fundamental estimate (1.3) needs both the

NG, fz4+m) ~ N, f) 1.7

for finite order meromorphic functions, as well as a version of discrete analogue of
the classical logarithmic derivative to be discussed below.
It is well-known that the following logarithmic derivative estimate

m(r, f’(z)) =0(ogT(r, f))=S(r, ), (1.8)
f(@

holds outside a possible set of finite linear measure, where the notation S(r, f) means
that the expression is of o(T (r, f)). It shows that the proximity function of the log-
arithmic derivative of f(z) grows much slower than the Nevanlinna characteristic
function of f(z). The logarithm derivative lemma, as it is often called, has numerous
applications in complex differential equations [28] and it also plays a crucial role in
proving the celebrated Nevanlinna Second Fundamental theorem [18, 28]. It is gen-
erally recognized that the estimate (1.8) is amongst the deepest results in the value
distribution theory. One can also find other applications of it in [25, 29].
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Let n be a fixed complex number and f(z) a meromorphic function, we ask under
what assumption on f(z) do we have the following difference analogue of (1.8)

(r fz+mn)
T f@®

Here the notation S*(r, ) means that the left hand side of (1.9) is of slower growth
than T (7, f) in some sense.

We shall give an answer to the question (1.9). More specifically, we show that if
f(2) is a meromorphic function of finite order o, then we have

f @) S@+mMY o o—ite
m(r, 7f(z n 77)> +m(r, —f(Z) ) = O(r ) (1.10)

for an arbitrary ¢ > 0. This estimate holds without any exceptional set. Hence we
obtain (1.9) when we choose ¢ in (1.10) to be sufficiently small. It is not difficult
to see that it is impossible for (1.9) to hold for an arbitrary meromorphic function.
In fact, (1.9) fails to hold even for the simple entire function f(z) = e and n #
2mik (k=1,2,3,...). After this paper is completed we learnt” that R.G. Halburd and
R.J. Korhonen [15] have also obtained an essentially same estimate (1.10) (however,
their estimate is valid outside an exceptional set of finite logarithmic measure), and
its interesting applications in [16] and [17].

Although our problem regarding (1.9) is somewhat weaker than (1.8), we show
that it is already sufficient for our applications.

The idea of the proof of (1.10) relies on an application of the Poisson—
Jensen formula [18]. The formula also allows us to obtain pointwise estimates for
|f@+m)/f@I

We recall that Gundersen [13, Corollary 1] has given a precise pointwise estimate
for the logarithmic derivative for a meromorphic function f(z) of order o to be

f'(@
f@

for all |z| sufficiently large and outside some small exceptional sets. Our estimates
allow us to show, amongst others, the new upper bound

) =S*(r, f)? (1.9)

<o 1He (1.11)

‘M <exp{ro !4}, (1.12)

f(@

where |z| = r is sufficiently large and |z| is also outside some small exceptional sets.
We shall apply these estimates to obtain new growth estimates of entire solutions to
(1.6) with polynomial coefficients.

This paper is organized as follows. The main results concerning the growth of
the Nevanlinna characteristic of f(z + 1) will be stated in Sect. 2; some preliminary
lemmas are stated and proved in Sect. 3. The proof of the main theorems are given

ZMid-April 2005.
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On the Nevanlinna characteristic of f(z + n)

in Sects. 4 to 7. We will consider pointwise estimates such as (1.12) in Sect. 8. The
applications of the main results to difference equations are given in Sect. 9, followed
by a discussion of the relation of our results to integrable difference equations in
Sect. 10.

2 Main results on Nevanlinna characteristics

When f(z) has a finite order of growth, we shall improve the inequalities (1.2) to the
following theorem.

Theorem 2.1 Let f(z) be a meromorphic function with order o = o (f), 0 < +00,
and let n be a fixed non zero complex number, then for each € > 0, we have

T, fG+n) =T, )+ 0" )+ 0ogr). 2.1)

It is interesting to compare the inequalities (1.2) and (2.1) with the following esti-
mate given by Ablowitz, Halburd and Herbst [1, Lemma 1] that given any ¢ > 0, then
forall » > 1 /¢, we have

T(r,f£D) =1 +a)TFr+1, f(2) +x, (2.2

where « is a constant. Thus our (2.1) shows that we have “equality” in (2.2) and that
we can choose ¢ = 0 there, although we have a larger remainder term in (2.1). Al-
though the technique used in [1] to obtain (2.2) is different from that of (1.2) in [10],
the latter has already contained (2.2).

The above main theorem on Nevanlinna characteristic depends on the following
results.

Theorem 2.2 Let f be a meromorphic function with exponent of convergence of
poles A(%) = A < 400, n # 0 be fixed, then for each ¢ > 0,

N(r, f(z+n)=N(, )+ O(r)‘_H's) + O(logr). 2.3)

The following example shows that the above theorem is sharp in the sense that
(2.3) no longer hold for infinite order meromorphic functions.

Theorem 2.3 There exists a meromorphic function f(z) of infinite order such that

N(V»f(z+1))—N(r’f(Z))>
N(r, f(2) -

1 2.4)
asr — oo.

Theorem 2.4 Let «, R, R’ be real numbers such that 0 < a < 1,0 < R, and let
n be a non-zero complex number. Then there is a positive constant Cy depending

only on o such that for a given meromorphic function f(z) we have, when |z| =r,
max{l,r + |n|} < R < R/, the estimate
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( f(Z+n)> ( f@ )
m\r,—— | +m\|\r, ——
f@ fz+n
< 2mR <m(R f)+m<R l))
T (R—r—n)? ’ o f
2R’ ] Cylnl®
+<R’—R> (R—r—|n|+<1—a)ra)
x <N(R/,f)+N<R’, %)) (2.5)

We immediately deduce from (2.5) the following corollary for finite order mero-
morphic functions.

Corollary 2.5 Let f(z) be a meromorphic function of finite order o and let n be a
non-zero complex number. Then for each ¢ > 0, we have

fz+n) @\ o o—ite
m(r, 7f(z) ) +m<r, 7f(z n 77)> =0(r ). (2.6)

Proof Since f(z) has finite order o (f) =0 < 400, so given ¢,0 < ¢ < 2, we have
T(r, f)=0@r°"7)

for all r. We obtain (2.6) by choosing o = 1 — %, R =2r,R' = 3r and

r > max{|n|, 1/2} in Theorem 2.4. This completes the proof. O
We also deduce from (2.5) the following result.

Corollary 2.6 Let n1, n2 be two complex numbers such that n1 # ny and let f(z) be
a finite order meromorphic function. Let o be the order of f(z), then for each ¢ > 0,

we have
f@Hn)\ _ o ooite
m(r, 7}”(1 n 772)) =0(r ). 2.7

We note that the estimate (2.6) satisfies (1.9) which is a discrete analogue of (1.8).
This answers our question raised in (1.9) in the introduction. We note the above es-
timates do not hold when the order of f(z) is infinite as indicated in the following
example. Hence they are the best possible.

Example 2.7 Let g(z) = ¢,z = re!?. We choose 1 to be real. It follows from
[18, p. 7] that

( gz+mn)
m\r, ——
g(2)

asr — +4o00.

er

) =("—Dm(r,g) = ("= DT (r,g) ~ ("= 1)
273r
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On the Nevanlinna characteristic of f(z + n)

The Example 2.7 demonstrates that m(r, f(z + 1)/f(z)) can grow as fast as the
m(r, f(z)) itself for an infinite order function, thus showing that the finite order re-
striction in Corollaries 2.5 and 2.6 cannot be removed. The following example shows
that the exponent “o — 1 + &” that appears in (2.6) cannot be replaced by “o — 1”.

Example 2.8 Since the order of I'(z) is 1, and that

( F(z+1))
m|r, ————— | =logr,

we thus see immediately that we cannot drop the ¢ > 0 from (2.6). More generally, let
o > 0, then according to [39, Sect. 6, Theorem 5] for any given meromorphic function
W (z) of order o there is a meromorphic solution F(z) to (1.4) witho (F) <o +1.1In
particular, we may choose W (z) so that

m(r,¥)=T(r,¥)~r’logr. (2.8)
Thus we see that
F 1
(r, Fe+l) )) =m(r, ¥) ~r°logr > Cro®-1,
F(2)

for each positive constant C when we choose r to be sufficiently large, since o (F) <
o + 1 holds. We conclude that we cannot drop the ¢ > 0 from (2.6), and hence (2.6)
and (2.7) are the best possible in this sense.

Remark 2.9 Let f(z) be meromorphic of finite order o. Let ¢ > 0 be given. Then
T(r, f) < O@(r°*®). If we choose R = 3r, R’ =4r in (2.5), then we obtain

fz+n) F@ O\ ote
" (r’ 7@ ) o <r’ F+ n)) =00, @9

holds uniformly for |n| <r.

Remark 2.10 Let f(z) be a meromorphic function. We choose R = 3r, R’ = 4r
in (2.5). Then, we have

fz+mn)

m(r, f(z+n) <m(r, f)+m (r, o

> = O0(T@r, f)) (2.10)
for |n| < r to hold uniformly.

It is instructive to compare (2.10) and the stronger estimate
m(r, f(z+n) < 10T (4, f)

holds uniformly for |n| < r for all r sufficiently large. It is obtained by one of the
authors and Ruijsenaars in [8, Lemma 3.2], by computing directly on the Poisson—
Jensen formula [18].
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3 Some preliminary results

Lemma 3.1 Let o be a given constant with O < o < 1. Then there exists a constant
Cy > 0 depending only on o such that

log(1 + x) < Cyx?, 3.

holds for x > 0. In particular, C1 = 1.

Proof The case when o = 1 is well-known. For o with 0 < o < 1, we define the
function

log(1 4+ x)

ga(x) = o
X

It is clear that g, (x) is continuous on (0, +00). Since
lim g, (x) =0, lim gy (x)=0
x—0 x——+00

hold. We deduce that g, is bounded on (0, +00). So there exists a constant Cy,

Cy= max gu(x) 3.2)
O<x <400
depending only on « such that (3.1) holds. U

Lemma 3.2 Let «,0 < a <1 be given and Cy as given in (3.2). Then for any two
complex numbers z1 and 73, we have the inequality

o

o
log |4 §Ca<Zl e I e ) (3.3)
22 22 <1
Proof We deduce from (3.1) that
o
log Z—l‘zlogl—i—u §log(l—i—u>§Cau , 3.4
22 22 22
and similarly
22 21 21 <1
o
<C, 22— (3.5)
21
Combining the above two inequalities, we deduce
21 21 -zl |a-—al
log |— =max{log — ,—log—}fCa( )
22 22 22 22 21
as required. U

We need the following result which can be found in [21, p. 62] and [27, p. 66].
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On the Nevanlinna characteristic of f(z + n)

Lemma 3.3 Let o, 0 < a < 1 be given, then for every given complex number w, we
have

1 [ 1

— . do < .
2 Jo  Jret? —wl* T T (1 —a)r®

(3.6)

Lemma 3.4 ([7]; see also [30]) Let z1, z2, ..., 2, be any finite collection of complex
numbers, and let B > 0 be any given positive number. Then there exists a finite col-
lection of closed disks D1, D2, ..., Dy with corresponding radii r1,r2, ... 1y that
satisfy

ri+ry+--+ry=28B,

such that if z ¢ Dj for j =1,2,...,q, then there is a permutation of the points
215225 -1 Zps SAY, 21, 22, - . ., L p, that satisfies

. !
lz—=zl>B—, 1=12,...,p,
p

where the permutation may depend on z.

Lemma 3.5 (A.Z. Mohon’ko [31]; see also Laine [28]) Let f(z) be a meromorphic
function. Then for all irreducible rational functions in f,

P f) Yl gai@f

Rz, /)= = -, 3.7
G =06 D TS b G7)
such that the meromorphic coefficients a;(z), bj(z) satisfy
T(r,a;)=S@, f), i=0,1,...,p,
{T(r,bj)ZS(r, . j=0,1,....q, (3.8)
then we have
T(r,R(z, /) =max{p,q}-T(r, f)+ S, f). (3.9

4 Proof of Theorem 2.1

Proof Since f(z) has finite order o so that A(1/f) < o < +00. We deduce from
Theorem 2.2 that

N@, f(z+n) =N, f)+ 00 ) + 0(logr)
holds for the function f(z). This relation and (2.6) together yield

T(r, fz+m)=m(r, f(z+n)+ N, fz+n)

fz+mn)
f@)

=T, f)+ 0@’ %) + 0(ogr).

< m(r, f)+m(r, )+N(r, N +00) + 0(logr)
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Similarly, we deduce

T(r, f)=m(r, f)+ N, [f)

=m(r, f(z+m)+ N, f) +m<r, %) + O(logr)
=T(, fz+n) + 07~ **) + 0logr).
This completes the proof. (]

5 Proof of Theorem 2.2

Proof Let (b,)en be the sequence of poles of f, with due count of multiplicity.
Then (b, — n)uen is the sequence of poles of f(z + n). Thus by appealing to the
definition of N (r, f), we deduce

IN(r, f(z+m) = N(r, f)

3 log—— +n(0, f(z+n)logr
by —nl

0<|b,—n|<r

- Z logL—n(O,f)logr

0<l|by|<r |b”’|
< Z <logb;—logbL) +( Z log b r )
0<|by—n|<r, I M_m | M' 0<|b,—n|<r, | ,u_77|
O<lbyl<r [by|>r or b, =0
r
+ ( Z log b_) + O(logr)
0<|by|<r, | “'

\bu—ﬂlzr or b}L_r,:O

b r
< Z log K H) + ( Z log )
( 0<lby—n|<r, bp’ -n 0<|by—nl|<r, |bp“ a 77|
0<|bM|<r |b/1.|2r
r

+ ( > log b_> + O(logr). .1

0<|by|<r, 1Dl

|bu.*r/|ZV

Applying Lemma 3.2 with @ = 1 to an individual term in the first summand of the
last inequality (5.1), we deduce

b b, — (b, — b,—n)—0>b
log n HS w (u n) +’(u ) n
by —n bu—n by
n n
= +[—| 5.2)
bu_n' by
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On the Nevanlinna characteristic of f(z + n)

We now consider the second summand in the last line of (5.1). More specifically,
we apply the Lemma 3.1 and inequalities 0 < |b, — n| <r, |b,| > r that restrict the
summation to obtain the inequalities

r r— by —n| r— by —n|
log =log<7+l> <Pl
|bu_7l| |bu_77| |bu_77|
=il 53
|bu_77| |bu_77|

Let us consider the third summand in the last line of (5.1). We similarly consider
the inequalities |b,, — n| > r, |b,| < r that restrict the summation. This gives |n| >
r —|b,| > 0. We conclude from Lemma 3.1 the inequalities

—1|b —1|b
log 4 =log<r7|”|+1>§r |“|§
1Dy ] D] 1Dy

. (5.4)

l
by
Combining the above inequalities (5.1)—(5.3) and (5.4), we deduce

IN(r, f(z+m) = N(r, /)l

o 2 () T ate s )

0<lby,—nl<r, 0<|by—n|<r, by =l 0<lb,|<r,
0<|byl<r |byul=r |b—nl=r
+ O(logr)
1 1
=y > Tt > B[+ Ologn). (5.5)
0<l|by—nl<r p 0<|by|<r H

We turn to estimate the first summand in the last line of (5.5). In particular, we divide
the summation range 0 < |b,, — n| < r into two ranges, namely the 0 < |[b, —n| < [7|
and |n| < |b, — n| < r. We notice that when |b,, —n| > |n|, then

n 2
+ <= (5.6)
by —WD by

Thus when r > || the first summand on the last line of (5.5) becomes

D D D D

b b b, —
oL T R L Tt | B rom L Tt

52.< > bi)+0(1)

|n|<\hu—n|<r| a

52-( Z %)JFO(])‘ (5.7)

0<|by|<r+|n| LA

1 1 ‘ n ‘ 1 (
=—"|14+ < —-
|bu -l |bu| bu -n |bu|
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Combining (5.5) and (5.7), we get
1
IN(r, f(z+m)— N, /) <3nl Z —>+0(10gr)- (5.8)
O<lbyl<r+lnl e

We distinguish two cases:
(1) Case 1: A > 1. By the Holder inequality, we have for any & > 0,

Ate—1

1
1 1 TFe e\ e
Y oais( X ) (X

O0<lbyl<r+n| O<lbul<r+nl O<lbul<r+inl
<O -nr+1nl, ) (5.9)
But
n(r+Inl, f) = 0((r + InD***) = 0(*). (5.10)
Therefore, inequalities (5.9) and (5.10) give
> % =0 1), (5.11)

0<lbyl<r+nl 1bul
(2) Case 2: A < 1. We have, by the definition of exponent of convergence,
1
Y —=o0®. (5.12)
0<|by|<r+|n| 1wl
We finally obtain from (5.8), (5.11) and (5.12) the desired result

IN(r, f(z+m) = N, f)l = 0™ + O(logr). 0
6 Proof of Theorem 2.3

Proof Let a,0 < o < 1, and let a sequence of numbers located at positive inte-
gers k, k =2,3,4,..., each with multiplicity y;. Then according to Weierstrass’
theorem [38, Sect. 8.1], there is an entire function g(z) that has zeros precisely at the
sequence defined above. We now take f(z) = 1/g(z) to be the meromorphic function
that we consider below. We then write

NG, f)= ) wlog

2<k<r

r

p 6.1)

Since the poles of f(z + 1) are those of f(z) but shifted to the left by one unit, so let
us write

NG fa+D)= Y Pilog.

1<k<r
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On the Nevanlinna characteristic of f(z + n)

where By = yi+1 fork =1,2,3,4,.... We deduce

NG fG+1D) =N f)= Y Alogr— Y wilog

1<k<r 2<k<r
r r
Z Vi+1 ng Z Yk ng
1<k<r 2<k<r
;
=plogr+ 3 (pi—wologz.  (62)
2<k<r
‘We now choose
Yirl =2, k=2,3,4,... (6.3)

then

N@ fe+m) =N f@) _ v2logr+ 3o, (vl — v logg
N, f(2)) - > o<ker Vilog g

1
12T oy (6.4)

22§k<r Vi 10g % -

for all » > 3. On the other hand, it is easy to see from the meromorphic function g(z)
constructed above that it has an infinite order of growth. ]

7 Proof of Theorem 2.4

Proof Let z = re'? such that |z| < R — |n|. The Poisson—Jensen formula yields

1 2 ) Re 120]
log| £ ()] = Z/o log| f (Re'?) (RT) d

R —a,z R —b,z
DI R
lav] <R (z—ay) b l<R (z— M)

(7.1)

where (a,)ven and (by) ,en, denote respectively, and with due count of multiplicity,
the zeros and poles of f in {|z| < R}. Since |z + n| < R, so (7.1) also yields

1 [% - Rel? +z+1
log|f(z+n|= —f log| f (Re'?)[% <¢7> d¢
27 Jo Re'? —z—n

‘Rz—&v(z+n)
_ Z log |~ “ve v 7

lav|<R R(z+n—ay)
R*—b
+ Z log‘ﬂ_ (7.2)
b, |<R R(z+n—by)
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Subtracting (7.1) from (7.2) yields

27 i i
log‘w - L/ 1og|f(Re'¢)|m( _ZIReT )d¢
0

f(@) 2w (Re!® — 7 — n)(Re'? — 7)
R —a,(z+ R2—b,(z+
_ Z log = v(_ ) + Z log - p,(_ )
lay| <R Bt by <R R® —byz
R(iz+n—ay)
+ log| ———=
2 g‘ R —ay)
lay|<R
R -b
-y log‘(;Lbu). (1.3)
by <R (@ —by)

We deduce from (7.3) that

f(Z+77)H ( 2|}'}|R ) 1 /271 0
: - 1 R d
'og’ (2 R—1zZ— DR —1z2)) 27 Jo |log|f(Re'?)||do

R> —a,(z+ b +
N Z log - a,(z 77)HJr Z log (z n)H
lav|<R ~ vz byl <R
—b
+ Z log 7Z+n + Z log 7Z+flb K
lay| <R LTy b <R LT P
2|n|R
_m(m(Raf)“‘m(R,l/f))
R?>—a,(z+ b z+
n Z ‘ v(z 17)H+ Z log 1 ( ?7)H
lay|<R —avz lbu|<R buz
+ 3 |io ’ ED> log””% (7.4)
lay| <R LTy lby|<R LT P

We apply (3.3) with « = 1 in Lemma 3.2 to the second and third summands
in (7.4). This yields, for |a,| < R,

Rz—av(z—i-n) apn ayn
log| ———m|| < 5 >
_avZ R-—ayz R*—a,(z+n)
2
< Inl n n] < n| (s
=zl R—lzl=Inl — R—1z[ —Inl
Similarly, we have for |b,| < R,
R? —b + 2
log (Z ”)H /I (1.6)
R —1z| —Inl
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We then choose 0 < @ < 1 in (3.3) and this yields

z+n—ay 1 1 )
log | =——— || < Cy|n|* + , 7.7
‘ £ i—ay < Calnl (|Z_av|a |z +n—ayl* @7
and
z+n—>b, ( 1 1 )
log | —————=|| < Cy|n|* + . 7.8
‘ g —b, o[l PR TN PE— (7.8)

Combining the inequalities (7.4)—(7.8), we get
f(z+n)H 2|n|R ( < 1>>
1 R, f)+m{R, —
'(’g‘ F@ 1= R = "R DR

+L<n(R, f)+n<R,l>>
Rzl — i \" f

+Colnl® Y (| : 1 )

+
— o _ o
S\ =l "+ —al

1 1
+Calnl* ) ( ) (7.9)

+
aeg T bul® et — byl

Integrating (7.9) on |z| =r, and applying Lemma 3.3 gives

< f(Z+71)> < f@ )
m(r ) fm (o,
f@ fz+mn)
2[n|R 1 2n|
Sm(m(R,f)'l'm(R,?))+m(n(R,f)+n(R,l/f))

N 1 2 1 1 2 1
C — ——dO0+ — ——df
+ Calnl Z 2 /0 |rei® —a,|® + 2 Jo  |ret? +n—ayl®

lay|<R
1 2 1 1 2 1
+ Cylnl® —/ — 40+ — - df
“ bHZ;R 2 Jo  |ret? —by|e 2 Jo  |ret® +n—by,|”
2|n|R 1
< 28 (i em(22))
(R—r—1nl b
2|n| 2Cq|nl® 1
R, R,— ). 7.10
+(R—r—|n|+(l—a)r°‘ R AR 710

Since R’ > R > 1, we deduce

R’ _
N(R/,f) 2/ wdl-i‘n(o, f)lOgR/
R

R’ R’
Zn(R,f>/ ﬂ—n(o,f>/ U n. f)logR'
R 1 R I

R' — R
R

>n(R, f)
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Hence
/
n(R, f) < R N(R/,f). (7.11)
Similarly, we have
1 R , 1
n|R,— | < N| R, —). (7.12)
f) 7 R —-R f
We deduce (2.5) after combining (7.10), (7.11) and (7.12). [l

8 Pointwise estimates

It is well-known that pointwise logarithmic derivative estimates of finite order mero-
morphic functions play an important role in complex differential equations (see
e.g. [14]). In particular, the following estimate of Gundersen [13, Corollary 2] gives
a sharp upper bound of logarithm derivatives.

Theorem 8.1 Let f(z) be a meromorphic function, and let k > 1 be an integer,
o > 1, and € > 0 be given real constants, then there exists a set E C (1, 00) of fi-
nite logarithmic measure,

(a) and a constant A > 0 depending only on «, such that for all |z| ¢ E U [0, 1], we
have

'@
f@ 1~
where n(t) =n(t, f)+n(, 1/f);
(b) and if in addition that f(z) has finite order o, and such that for all |z| ¢ E U
[0, 1], we have

A<T(ar, ) n(ar)

p log® r log™ n(otr)) 8.1)

f'(@)

o-lte 8.2
7 <zl (8.2)

We first give pointwise estimates for our difference quotient which are counter-
parts to Gundersen’s logarithmic derivative estimates.

Theorem 8.2 Let f(z) be a meromorphic function, n a non-zero complex number,
and let y > 1, and ¢ > 0 be given real constants, then there exists a subset E C
(1, 00) of finite logarithmic measure,

(a) and a constant A depending only on y and n, such that for all |z| € E U [0, 1],
we have

' ‘f(ern)H <T(VV 2] n(y )
f@

log” rlog n(yr)) (8.3)
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(b) and if in addition that f(z) has finite order o, and such that for all |z| =
r ¢ EUI0, 1], we have

eXp(—rJ_H_S) <

fet+m (Jf;“)”) ‘ <exp (r7 7). (8.4)

We remark that the example f(z) = ¢<" shows that the ¢ > 0 in (8.4) cannot be
dropped, and so (8.4) is the best possible.

The forms of logarithmic derivative estimates almost always depend on how we
remove the “exceptional set” consisting of the zeros and poles of the function in the
complex plane, such as the proof given by Hille [24, Theorem 4.5.1]. More precise
estimates usually depend on application of the Cartan lemma [7] (see also [30]) such
as [28, Proposition 5.12] and Theorem 8.1 above. We shall make use of the same
lemma to prove our theorem.

Proof Let z be such that |z] =7 < R —|n|. We deduce from (7.3), (7.4) the inequality
(7.9).

Let 8 > 1 and R = Br + |n|. We choose r{ so that 2|n| < B(8 — 1)r for r > ry.
We apply Lemma 3.2 with @ = 1 (note that C; = 1) to (7.9) and this yields

4
'log'f(ern)H Inl(ﬁr;lzl)T(ﬁ )

f @)
+hle Y < 1 n 1 )
e o Mz —ed lz e
41n|B% T (B, f) ( 1 1 )
G-, Tt lq{;ﬁ;ﬂ P B er—
B\’ T f) !
- ' a0 8.5
|nl<ﬂ—1> —— + 1l dk|2<,:32,|z_dk| 55)

where (ci)ken = (@v)ven U (by)pen and (didken = (ckdken YU (ck — Mken, Where
the sequence dy, is listed according to multiplicity and ordered by increasing modu-
lus.

We now let y = 82 and apply Lemma 3.4 to the second summand of (8.5) with
|dx| < R = yr, where r > max{ry, |d1|}. The argument then follows the same argu-
ment as [13, (7.6)—(7.9)] (with their o replaced by our y) so that we deduce for all
|z| € E U [0, 1], where the E has finite logarithmic measure,

1 2
> <227 1007 rlogn(y?n). (8.6)
=y 127 U '

Combining (8.5) and (8.6) we obtain

+ 2T (yr,
S I S SRS —.
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2 2
<nifa () T
p—1 r

,n(y?r)
r

+y log”’ rlogn(yzr):| (8.7)

which gives (8.3) with y? replaced by y.
If f(z) has finite order o, then given & > 0, it is now easy to deduce (8.4) holds
from the estimate (8.3). [l

We easily obtain the following result.
Corollary 8.3 Let n1, n2 be two arbitrary complex numbers, and let f(z) be a mero-

morphic function of finite order o. Let € > 0 be given, then there exists a subset
E C (0, 00) with finite logarithmic measure such that for all r ¢ E U [0, 1], we have

o—l—i—s) <

o—l+e
= T m <exp(r )- (8.8)

exp(—r

We can replace the linear exceptional set by “radial exceptional” set (see also [13,
Lemma 2 and Corollary 4] and [13, Theorem 2 and Corollary 1]).

Theorem 8.4 Let f(z) be a meromorphic function, n a non-zero complex number,
and let y > 1, and ¢ > 0 be given real constants, then there exists a set E C [0, 2m)
that has linear measure zero, such that if z = re¥° satisfying W & E, then there is a
constant Ry = Ro (Vo) > 1 such that for z satisfying arg z = Yo and |z| > Ry,

(a) we have

‘ ‘f(z+n)H (T(V’” D) n(yr)
f@ r

and the constant B depending only on y and 7,
(b) and if in addition that f(z) has finite order o, we have

log” rlog™ n(yr)) ,

exp(—r"_HS) <

f(;(':)n)‘ <exp (ra—l-ﬁ—s).

We shall omit the proof. Similarly we have

Corollary 8.5 Let n1, n2 be two arbitrary complex numbers, and let f(z) be a mero-
morphic function of finite order o. Let ¢ > 0 be given, then there exists a subset
E C [0, 27) of linear measure zero such that if z = re¥° satisfying Yo & E, then there
is a constant Ry = Ro(Yo) > 1 such that for z satisfying arg z = ¥y and |z| > Ry, we
have

fz+n) -

a—1+a) < <exp (}”

exp(—r G_H'E).
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On the Nevanlinna characteristic of f(z + n)

9 Applications to difference equations
We first apply the Theorem 2.1 to give a direct proof of the following theorem.

Theorem 9.1 ([1, 22]) Letcy, ..., ¢, be non-zero complex numbers. If the difference
equation

ao(z) +a1(Q)y (@) +--- +ap@y@)?
bo(2) +b1()y(@) + -+ by (2)y(2)?

Y y@+e) =Rz y(@) = ©.1)

i=j

with polynomial coefficients a;, b, admits a finite order meromorphic solution f(z),
then we have max{p, q} <n.

This theorem was first given in [1, Theorem 3] with n = 2 and was written in the
above generalized form in [22, Proposition 2.1].

Proof Without loss of generality, we assume f(z) to be a finite order transcendental
meromorphic solution to (9.1). The estimate on the right side of (9.1) is easily handled
by applying Lemma 3.5, as in the proofs in [1] and [22], to give (3.9). Then (2.1) of
our Theorem 2.1 and (9.1) yield

max{p, q}T(r, f) =T (r, R(z, f)) + S(r, f)
< T(r,Zf(z—i—cj)) + 50, f)
j=1
<nT@r, f)+ 0" ) + 0dogr) +S(r, f)  (9.2)

since (2.1) is independent of c¢;. This yields the asserted result. (]

We remark that the above argument also allows us to handle the case when we
replace the left side of (9.1) by []7_, y(z + ¢;), which gives the same conclusion that
max{p, g} <n. This case was also considered in [1] and [22].

We now consider the growth of meromorphic solutions to general linear difference
equation (1.6).

Theorem 9.2 Let Ay(z), ..., A, (2) be entire functions such that there exists an inte-
ger £,0 < ¢ <n, such that

o(Ayp) > Omzax {o(Aj)}. 9.3)
A

If f(2) is a meromorphic solution to
An(@)y@+n) 4+ A1)y + 1)+ Aoy(z) =0, 9.4

then we have o (f) > o (Ag) + 1.
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Proof Let us choose ¢ in relation to (9.3) so that
max {o(A;)} <o <o (Ay) 9.5)
0<l<n
L£j
holds. Let us suppose that f(z) is a finite order meromorphic solution to (9.4) such
that

o(f)<o(Ap) + 1. 9.6)
We divide through the equation (9.4) by f(z 4 £) to get
f(Z +n ) f@)
A e+ A+ -+ Ao(r) ———— =0. 9.7
n(2) T+ 0 + +A@D)+-+ O(Z)f(erﬁ) 0.7

Since (9.5) and (9.6) hold, so we may choose ¢ > 0 such that the inequalities
o(f)+2e<0(Ap)+1 and o +2e<o(Ayp), 9.8)

hold simultaneously. With the ¢ > 0 as given in (9.8), then (2.7) gives, when 0 <

j<ftorl<j<n,
fe+)) o(f)=1+e
m( f(Z—i-ﬁ)) O(r ) 9.9)

Then we deduce from (2.6), (9.9) and (9.8) that

fz+))
mr, Ay <Y m( e +£))+Z (r,Aj)

0<jzn,
J#t
< O(FU(f)—l'i‘é‘) + 0(r0+£)
<o(rotA0=e). (9.10)
A contradiction. (]

We next show how to use the Theorem 9.2 to settle a problem of Whittaker [39]
concerning linear difference equations.

Corollary 9.3 Let o be a real number, and let WV (z) be a given entire function with
order 0 (W) = 0. Then the equation

F(z+n)=V()F(2), 9.11)
admits a meromorphic solution of order o (F) =0 + 1.

Proof Whittaker [39, Sect. 6] constructed a meromorphic solution F(z) to (9.11) and
the solution has order o (F) < o (V) + 1. Since WV is entire, and it certainly satisfies
the assumption (9.3) and this leads to the conclusion that o (F) > o (V) + 1. This
completes the proof. U
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Theorem 9.4 Let Py(z), ..., P,(z) be polynomials such that there exists an inte-
ger £, 0 <{ <n so that
deg(Py) > max {deg(P;)} 9.12)
0<t<n
j#L
holds. Suppose f(z) is a meromorphic solution to

Py(2)y(z+n)+ -+ Pi(z)yz+ 1) + Poy(z) =0, 9.13)

then we have o (f) > 1.

Proof We assume that (9.13) admits a meromorphic solution f(z) with o(f) < 1.
We now divide through the difference equation (9.13) by f(z + £) to obtain

fz+n) f @)
P, -+ P -+ P =0. 9.14
()f( +€)+ + P(z)+---+ o(z)f( D 9.14)

We note that since o (f) < 1, so let us choose an ¢ > 0 so that ¢ < 1 — o (f), and
Corollary 8.3 implies that both when 0 < j < £ or £ < j < n hold, then

f(Z+J)

Fern| SeRrTTT) =expe) 9.15)

also holds outside a possible set of r of finite logarithmic measure. We deduce that
(9.15) is bounded outside a possible set of r of finite logarithmic measure.
We now apply (9.15) to (9.14) and this gives

ol fe+ D) _
|Pz(z)|so<jz<n Pi@I T g | = 0M 0<,Z<n 1P;(2)], 9.16)
A T

as |z| — oo, outside a possible set of r of finite logarithmic measure. A contradiction
to the assumption (9.12). O

We consider the following examples showing the sharpness of the above theorems.

Example 9.5 Ruijsenaars [36] considers the equation
F(z+4+ia/2)=D(2)F(z—ia/2), 9.17)
where a > 0, ®(z) =2coshmz/b and b > 0. The solution

Ghyp(a, b;z)=expli f ' sin( yZ) a dy 7
o 2sinh(ay) sinh(by) aby

13z] < (a + b)/2, (9.18)
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which has no zeros and poles in |Jz| < (a + b)/2, can be continued meromorphi-
cally to the whole complex plane via (9.17). The poles and zeros of (9.18) are given,
respectively, by
z=—itk+1/2)a—i(£+1/2)b,
z=—itk+1/2)a+i(£+1/2)b, k,£eN.

9.19)

The function (9.18) is called the hyperbolic gamma function. It follows from (9.19)
that the order of Gy (7, a; z) is 2. Thus we have o (Gpyp) = o (P) + 1. We would
like to mention that Ruijsenaars [36] also considers (9.17) where & is the trigono-
metric gamma function and the elliptic gamma function respectively. We again have
0(Gen) =0 (®) + 1, and 0 (Gyig) = o (P) + 1 to hold. We also remark that all the
three types of generalized gamma functions mentioned above converge to the Euler
Gamma function while taking suitable limits of the parameters.

Example 9.6 The following equation was considered in Hayman and Thatcher [20],
which has a different form from (9.17). Let H > 0, then the equation

F(@)=(0+H)F(z+1) (9.20)

admits a meromorphic solution of the form

o0
F@=]0+#a")" 9.21)
n=1
with simple poles at
2k + )i
Zkn=n+ # (9.22)

log H

where n = 1,2,3,... and k is an integer [20, Theorem 1]. It follows from (9.22)
that F has order 2, giving o (F1) =0 (1 + H*) 4+ 1 so that the “equality” holds in
Theorem 9.2 again.

The next example shows that the assumption (9.12) where only one coefficient is
allowed to have the highest degree is the best possible.

Example 9.7 ([26]) Let

n

AfR)=) (3)(—1%‘!’ f@+)) 9.23)
Jj=0
and hence
fetm=)" (']’) A f(2). (9.24)
j=0
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Then the equation

22— DE=2A f(z=3)+z2(z— DA f(z =2 +zAfz =D+ + 1) f(z) =0
(9.25)
admits an entire solution of order 1/3. In fact, it is shown in [26] that

log M (r, f) = Lr'3((1 + o(1)).

By making use the relation (9.24), we can rewrite (9.23) to an equation of the form
(9.13) with

deg Py = deg P, =deg Py = deg Py = 3.

Thus, there are more than one polynomial coefficients having the same degree (>0)
and the equation admits an entire solution of order <1. The above example shows
that we cannot drop the assumption (9.12) in Theorem 9.4.

We finally remark that (1.4) and its solution (1.5) show that the lower order one
estimate in the Theorem 9.4 is again the best possible.

10 Discussion

In this paper, we have discussed in detail some basic properties of T (r, f(z+ 1)), for
a fixed n. In particular, we have shown in Theorem 2.1 that the relation (1.3) holds
for finite order meromorphic functions and that the Theorem 2.3 shows that no such
relation (1.3) can hold for infinite order meromorphic functions. The proof of (1.3)
depends on Theorem 2.4 which can be viewed as a discrete analogue of the classical
logarithmic derivative estimate given by Nevanlinna [18, 32] and the relation (2.3)
in Theorem 2.2 on the counting function. These special properties of finite order
meromorphic functions distinguish themselves from general meromorphic functions.
They are in strong agreement with the integrability detector of difference equations
proposed in [1].

It is worthwhile to note that the integrability test by Nevanlinna theory proposed in
[1] is being complex analytic in nature, which is in stark contrast when compared to
several other major integrability tests for difference equations [9, 11, 33, 34] proposed
in the last decade. In fact, the Nevanlinna test seems more natural when compared to
the well-known complex analytic Painlevé test as an integrability test for second order
ordinary differential equations; see [2, p. 362]. We mention that the prime integrable
difference equations are the discrete Painlevé equations which can be obtained from
the classical Painlevé differential equations [12] via suitable discretizations.

Although the investigation in [1] is for non-linear second order difference equa-
tions, we have found that it natural to consider linear difference equations. This is
based on the following facts. First our investigation leads us to give an answer of a
Whittaker’s problem (Corollary 9.3), which is amongst the most basic results of first
order difference equations from the viewpoint of Nevanlinna theory. Second, we use
our main result (Theorem 2.1) to give a simple proof of the main result (Theorem 9.1)
in [1].

@ Springer



Y.-M. Chiang, S.-J. Feng

Linear difference equations are generally accepted as integrable. From the view-
point in [1], it is therefore natural to demand that meromorphic solutions to linear
equations should also be of finite order of growth. However, the discussion in Sect. 1
and Theorem 9.2 indicate that meromorphic solutions to (1.4) could have an arbitrar-
ily fast growth. We give a lower bound order estimate of a finite order meromorphic
solution, if any, of a linear equation (Theorem 9.2; see also Theorem 9.4). Thus one
must impose certain minimal growth condition to single out the minimal solution (and
finite order, if any). The question here is that what determines a minimal solution. The
Whittaker theorem (Corollary 9.3) shows that minimal solution always exist for first
order equation with an arbitrary entire coefficient in terms of order of growth. The
problem of minimal solution is investigated in [8] for certain first order difference
equations where the meromorphic solutions has prior growth restriction in an infinite
strip. The distinction of different minimal solutions is also discussed in [20].

Acknowledgements The authors would like to thank Dr. Patrick Ng of the University of Hong Kong
who brought to the attention of the authors of the preprint by R.G. Halburd and R.J. Korhonen [15]. The
authors would also like to thank Dr. Mourad Ismail and the referee for useful comments to our paper.

References

1. Ablowitz, M.J., Halburd, R., Herbst, B.: On the extension of the Painlevé property to difference equa-
tions. Nonlinearity 13, 889-905 (2000)

2. Ablowitz, M.J., Clarkson, P.A.: Soliton, Nonlinear Evolution Equations and Inverse Scattering. Lon-
don Mathematical Society Lecture Note Series, vol. 149. Cambridge University Press, Cambridge
(1991)

3. Bergweiler, W., Hayman, W.K.: Zeros of solutions of a functional equation. Comput. Methods Funct.
Theory 3(1-2), 55-78 (2003)

4. Bergweiler, W., Ishizaki, K., Yanagihara, N.: Meromorphic solutions of some functional equations.
Methods Appl. Anal. 5(3), 248-258 (1998)

5. Bergweiler, W., Ishizaki, K., Yanagihara, N.: Growth of meromorphic solutions of some functional
equations, I. Aequ. Math. 63, 140-151 (2002)

6. Bergweiler, W., Langley, J.K.: Zeros of differences of meromorphic functions. Math. Proc. Camb.
Philos. Soc. 142(1), 133-147 (2007)

7. Cartan, H.: Sur les systémes de fonctions holomorphes 4 variétérs linéaires lacunaires et leurs appli-
cations. Ann. Sci. Ec. Norm. Super. 45(3), 255-346 (1928)

8. Chiang, Y.M., Ruijsenaars, S.N.M.: On the Nevanlinna order of meromorphic solutions to linear ana-
lytic difference equations. Stud. Appl. Math. 116, 257-287 (2006)

9. Conte, R., Mussette, M.: A new method to test discrete Painlevé equations. Phys. Lett. A 223, 439-448
(1996)

10. Gol’dberg, A.A., Ostrovskii, I.V.: The Distribution of Values of Meromorphic Functions. Nauka,
Moscow (1970) (in Russian)

11. Grammaticos, B., Ramani, A., Papageorgiou, V.: Do integrable mappings have the Painlevé property?
Phys. Rev. Lett. 67, 1825-1828 (1991)

12. Gromak, V.I., Laine, I., Shimomura, S.: Painlevé Differential Equations in the Complex Plane.
de Gruyter Studies in Mathematics, vol. 28. de Gruyter, Berlin (2002)

13. Gundersen, G.G.: Estimates for the logarithmic derivative of meromorphic functions, plus similar
estimates. J. Lond. Math. Soc. 37, 88-104 (1988)

14. Gundersen, G.G.: Finite order solutions of second order linear differential equations. Trans. Am.
Math. Soc. 305(1), 415-429 (1988)

15. Halburd, R.G., Korhonen, R.J.: Difference analogue of the lemma on the logarithmic derivative with
applications to difference equations. J. Math. Anal. Appl. 314, 477—487 (2006)

16. Halburd, R.G., Korhonen, R.J.: Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn.
Math. 31(2), 463-478 (2006)

@ Springer



On the Nevanlinna characteristic of f(z + n)

17.

18.
19.

20.

21.

22.

23.

24.
25.

26.
27.
28.
29.
30.
31.

32.
33.

34.

35.

36.

37.

38.

40.

Halburd, R.G., Korhonen, R.J.: Finite-order meromorphic solutions and the discrete Painlevé equa-
tions. Proc. Lond. Math. Soc. 94(3), 443-474 (2007)

Hayman, W.K.: Meromorphic Functions. Clarendon, Oxford (1964) (reprinted with Appendix, 1975)
Hayman, W.K.: The growth of solutions of algebraic differential equations. Rend. Mat. Acc. Lincei
9(2), 67-73 (1996)

Hayman, W.K., Thatcher, A.R.: A functional equation arising from the mortality tables. In: Baker, A.,
Bollobas, B., Hajnal, A. (eds.) A Tribute to Paul Erdos, pp. 259-275. Cambridge University Press,
Cambridge (1990)

He, Y., Xiao, X.: Algebroid Functions and Ordinary Differential Equations. Science Press, Beijing
(1988) (in Chinese)

Heittokangas, J., Korhonen, R., Laine, I., Rieppo, J., Tohge, K.: Complex difference equations of
Malmquist type. Comput. Methods Funct. Theory 1, 27-39 (2001)

Heittokangas, J., Laine, I., Rieppo, J., Yang, D.: Meromorphic solutions of some linear functional
equations. Aequ. Math. 60, 148-166 (2000)

Hille, E.: Ordinary Differential Equations in the Complex Domain. Wiley, New York (1976)
Hinkkanen, A.: A sharp form of Nevanlinna’s second fundamental theorem. Invent. Math. 108, 549—
574 (1992)

Ishizaki, K., Yanagihara, N.: Wiman—Valiron method for difference equations. Nagoya Math. J. 175,
75-102 (2004)

Jank, G., Volkmann, L.: Einfiihrung in die Theorie der ganzen und meromorphen Funcktionen mit
Anwendungen auf Differentialgleichungen. Birkhduser, Basel (1985)

Laine, I.: Nevanlinna Theory and Complex Differential Equations. de Gruyter, Berlin (1993)

Lang, S.: The error term in Nevanlinna theory. Duke Math. J. 56, 193-218 (1988)

Levin, B.J.: Distribution of Zeros of Entire Functions. Translation of Mathematical Monographs,
vol. 5. American Mathematical Society, Providence (1980)

Mohon’ko, A.Z.: The Nevanlinna characteristics of certain meromorphic functions. Teor. Funkc.
Funkc. Anal. ih Priloz. 14, 83-87 (1971) (in Russian)

Nevanlinna, R.: Analytic Functions. Springer, Berlin (1970)

Ramani, A., Grammaticos, B., Hietarinta, J.: Discrete versions of the Painlevé equations. Phys Rev.
Lett. 67, 1829-1832 (1991)

Ramani, A., Grammaticos, B., Tamizhmani, T., Tamizhmani, K.M.: The road to the discrete analogue
of the Painlevé property: Nevanlinna meets Singularity confinement. Comput. Math. Appl. 45, 1001-
1012 (2003)

Ramis, J.-P.: About the growth of entire function solutions of linear algebraic g-difference equations.
Ann. Fac. Sci. Toulouse Math. (6) 1(1), 53-94 (1992)

Ruijsenaars, S.N.M.: First order analytic difference equations and integrable quantum systems.
J. Math. Phys. 40, 1069-1146 (1997)

Shimomura, S.: Entire solutions of a polynomial difference equation. J. Fac. Sci. Univ. Tokyo Sect.
1A Math. 28, 253-266 (1981)

Titchmarsh, E.C.: The Theory of Functions, 2nd edn. Oxford University Press, London (1991)
Whittaker, J.M.: Interpolatory Function Theory. Cambridge University Press, Cambridge (1935)
Yanagihara, N.: Meromorphic solutions of some difference equations. Funkc. Ekvacioj. 23, 309-326
(1980)

@ Springer



	On the Nevanlinna characteristic of f(z+eta) and difference equations in the complex plane
	Abstract
	Introduction
	Main results on Nevanlinna characteristics
	Some preliminary results
	Proof of Theorem 2.1
	Proof of Theorem 2.2
	Proof of Theorem 2.3
	Proof of Theorem 2.4
	Pointwise estimates
	Applications to difference equations
	Discussion
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


