Erratum to: On Value Distribution Theory of Second Order Periodic ODEs, Special Functions and Orthogonal Polynomials

Yik-Man Chiang and Mourad E. H. Ismail

The authors noticed the following typing errors in the proof of Theorem 1.6 in [1]. On page 752, below equation (8.8), change "Hence $c \neq 0$ " to "Hence $C \neq 0$ ".
On page 754, the constants in the argument of the Whittaker functions on the fourth and fifth lines in equation (8.22) should be as follows (where the changed lines are labelled with "changed"):

$$
\begin{align*}
f_{+}(z) & =e^{z / 2}\left[A G_{L}\left(\eta_{+}, \alpha_{+} e^{-z}\right)+B F_{L}\left(\eta_{+}, \alpha_{+} e^{-z}\right)\right] \\
& =-i B e^{z / 2}\left[G_{L}\left(\eta_{+}, \alpha_{+} e^{-z}\right)+i F_{L}\left(\eta_{+}, \alpha_{+} e^{-z}\right)\right] \\
& =-i B \cdot e^{z / 2} \psi_{+}\left(L, \eta_{+}, \alpha_{+} e^{-z}\right) \\
& \stackrel{\text { change }}{=} \hat{B} \cdot e^{z / 2} W_{-i \eta_{+}, L+1 / 2}\left(2 \alpha_{+} e^{-z} \cdot e^{-i \pi / 2}\right) \quad \text { (changed) } \\
& \stackrel{\text { change }}{=} \hat{B} \cdot e^{z / 2} W_{1-\frac{a_{+}}{2}, \frac{a_{+}-1}{2}+n_{+}}\left(-2 i \alpha_{+} e^{-z}\right) \quad \text { (changed) } \tag{8.22}\\
& =\hat{B} \cdot e^{z / 2} W_{1-\frac{a_{+}}{2}, \frac{a_{+}-1}{2}+n_{+}}\left(b_{+} e^{-z}\right) \\
& =\hat{B} \cdot e^{z / 2} y_{n_{+}}\left(e^{z} ; a_{+}, b_{+}\right)\left(b_{+} e^{-z}\right)^{1-a_{+} / 2} \exp \left(-b_{+} e^{-z} / 2\right) \\
& =\hat{B} \cdot e^{z / 2} e^{-\left(1-a_{+} / 2\right) z} y_{n_{+}}\left(e^{z} ; a_{+}, b_{+}\right) \exp \left(-b_{+} e^{-z} / 2\right) .
\end{align*}
$$

And finally, an m^{2} factor is missing in equation (3.5). ${ }^{1}$ It should read

$$
\begin{equation*}
f^{\prime \prime}+2 \gamma m f^{\prime}+m^{2}\left(\gamma^{2}+\beta^{2} \sum_{j=-n^{\prime}}^{n} \alpha^{j} k_{j} e^{\beta m j z}\right) f=0 . \tag{3.5}
\end{equation*}
$$

References

[1] Y. M. Chiang and M. E. H. Ismail On value distribution theory of second order periodic ODEs, special functions and orthogonal polynomials. Canad. J. Math. 58(2006), no. 4, 726-767.

Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China.
e-mail: machiang@ust.hk
Department of Mathematics, University of Central Florida, Orlando, Fl 32816, U.S.A e-mail: ismail@math.ucf.edu

Received by the editors December 15, 2009.
Published electronically January 26, 2010.
AMS subject classification: 34M10, 33C15, 33C47.
${ }^{1}$ The authors thank Guofu Yu for pointing this out.

