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OSCILLATION RESULTS ON y"+Ay=0 IN THE COMPLEX
DOMAIN WITH TRANSCENDENTAL ENTIRE COEFFICIENTS

WHICH HAVE EXTREMAL DEFICIENCIES

by Y. M. CHIANG

(Received 17th June 1992; revised 7th March 1994)

Let A(z) be a transcendental entire function and / , , f2 be linearly independent solutions of

y" + Ay = 0.

We prove that if A(z) has Nevanlinna deficiency 5(0, A) = 1, then the exponent of convergence of E: = fJ2 is
infinite. The theorems that we prove here are similar to those in Bank, Laine and Langley [3].

1993 Mathematics Subject Classification: 34A3O, 30C15, 34C10.

1. Introduction

Since 1982 there have been many efforts in order to settle the following conjecture of
Bank and Laine [1]:

Let A(z) be a transcendental entire function of finite order which is not an integer, and
let / j and f2 be two linearly independent solutions of

y" + A(z)y = 0. (1.1)

77ien max {AM), A(/2)} = oo.

Here X(f) is the exponent of convergence of the zero sequence of /
They proved the above conjecture in [1] if the order of A, denoted by p(A), is strictly

less than \. We note that the order of any solution / to (1.1) must be infinite. Around
1984-5, Rossi [14] and Shen [15] proved independently that the conjecture also holds
when p{A)=\.

From (1.1), it is elementary that for any non-zero complex number q, say, we have

T(r,f),
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14 Y. M. CHIANG

as r->oo where AT(r,(l//)) is the counting function which counts how many times that
/(z) = 0 in \z\^r (See Section 2 for more details).

On the other hand, in a series of papers by Bank, Laine and Langley ([3-6]),
in which they considered problems when A(z) has some growth conditions and obtained
the desired conclusion. Noticeably they proved:

Theorem A [3]. Let n^l, and let P1,...,Pn be non-constant polynomials whose
degrees are dl,di,...,dn respectively, and suppose that for i

Let

where, for each j , B,(z) is an entire function, not identically zero, of order p(Bj)<dj. Then
if / j and f2 are two linearly independent solutions of (l.l), we have max {l(fi), A(/2)} = oo.

The same conclusion holds for the equation

where P(z) is a polynomial of degree n such that n + 2<2p(A) = 2maXj(dj).

In fact, the above theorem is a consequence of:

Theorem B [3]. Let A(z) be a transcendental entire function of p(A) < oo with the
following properties: there exists a set HQR of measure zero such that for each 8$H
either

(i) '— N l-»oo, as r-*oo, for each N>0, or

(ii) I ? r\A{rei9)\ dr< oo, or

(iii) there exist positive real numbers K and b, and a non-negative real number n (all
possibly depending on 9) such that

n + 2<2p(A)

and

\A{rew)\-gKr" for all r^b.

Then, if ft and f2 are two linearly independent solutions of (1.1), we have
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OSCILLATION RESULTS ON y" + Ay=0 IN THE COMPLEX DOMAIN 15

With some stronger hypotheses, similar results were also proved for higher order
equations, we refer the readers to [4], [5] and [6].

We note that Theorems A and B are sharp in certain senses, and we shall return to
this problem later. To this end we also mention that if p is a positive integer or oo, then
there exists an entire function A(z) of order p such that (1.1) possesses two linearly
independent solutions each having no zeros (see [2, Theorem A]).

2. Definitions and notation

Let {an} be a sequence of non-zero complex numbers whose moduli tending to
infinity. Then the exponent of convergence of zeros of / is defined as the non-negative
number

Let T(r, f) = m(r, f) + N(r, f) be the Nevanlinna characteristic function of / where

2TE o

is called the proximity function and

is the counting function of / Here n(t) denotes the number of poles of / in \z\ ^ t and
log a = max {0, log a).

The order of a meromorphic function / in C is defined as lim^^logTfo/Vlogr and
the deficient value of / at a e C is defined by

For detailed explanation of the notations and the Nevanlinna theory, we refer the
reader to [10].

Let / = [l,oo) and F s / , then

m(F(f))= J dt and lm (F(r))= J -dt
(6f(r) teF{r) *

where F(r) = f r \ [ l , r ] , are the linear and logarithmic measures respectively.
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16 Y. M. CHIANG

We also define

and LLD(F) = lim

to be respectively the upper and lower logarithmic densities. Note that

ULD(/) = 1=LLD(/) and ULD(F) = 1-LLD(/\F).

3. Main results

We consider the equation (1.1) where A(z) is transcendental entire which has growth
conditions similar to those of eF where P is a polynominal as in Theorems A or B, such
that the same conclusion will hold. Some results of Edrei and Fuchs suggest that for
entire function A(z), if A(z) omits 0 'too often', for example if it has Nevanlinna
deficiency 8(0, A) = I or N(r,0) = o(T(r, A)), then A(z) behaves like ep in certain sections
of large annuli in the complex plane. In fact, they found

for r sufficiently large, where c{r) may diverge. Theorem 1 below is proved precisely
under these hypotheses, whereas Theorem 2 is less obvious.

Theorem 1. Let A(z) be a transcendental entire function with finite order p(A)>0,
satisfying 5(0, A) = 1.

(a) Suppose that / t and f2 are linearly independent solutions of

0. (3.1)

Then max {X(fy),A(/2)} = oo.

(b) Suppose further that P(z)£0 is a polynomial of degree n and

n + 2<2p(A). (3.2)

Then the same conclusion holds for any two linearly independent solutions of

Remark. Note that in the case (b) above n^O, hence p(A)> 1.
Let E: = ez" where n ^ 2 is a positive integer. Then Bank and Laine [1] (see also [2])

show that £ is a product of two linearly independent solutions of
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OSCILLATION RESULTS ON y" + Ay=0 IN THE COMPLEX DOMAIN 17

1 _2zn 2 2n-2 n-2
4

where A(z)= -\e~2zn and P(z)= -i(n2z2n~2 + 2n(2n-l)zn~2). Clearly the degree of P
equals 2n — 2 and p(A) = n. This shows that Theorems A, B and Theorem 1 (b) are sharp.

The case when p(A) = 1 and P(z) = const, in the theorem is somewhat exceptional and
is also a sharp condition in this sense. This is shown by the following theorem. All these
examples show that Theorem 1 is sharp.

Theorem C. (Bank, Laine and Langley [3]). Let K = q2/l6 where q is an odd
positive integer then

y"+(e*-K)y = 0 (3.4)

has two linearly independent solutions / j and f2 such that A(/x)^ 1 and A(/2)^ 1.

Actually they later showed that Hfi)= 1 = A(/2) where q is 3^1 [4]. The converse of
Theorem C is also essentially true [3]. On the other hand Langley proved:

Theorem D. [13]. Let P(z) be a non-constant polynomial, and a e C . Then every
non-trivial solution of

satisfies X(f) = oo.

It is the fundamental theorem of Nevanlinna that asserts any meromorphic function
/(z) must satisfy £uee <5(a, / ) ^ 2, and Xoec <5(a>/) = 1 for entire function where C =
C u {oo}. Again in [8], Edrei and Fuchs proved that an entire function satisfies
Zaec<5(a>/) = 1 possesses certain regularity growth conditions. We have:

Theorem 2. Let A(z) be a transcendental entire function of finite order p(A) and
^,6C(5(a,/4)= 1. Suppose that fv and f2 are linearly independent solutions of

where P{z) is a polynomial with degree n ^ 0 such that

n + 2<2p(A). (3.5)

Then max {^/J, A(/2)} = oo.

Remark. The inequality (3.5) holds whether P(z) is identically zero or not. Hence
p(A)>\.
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18 Y. M. CHIANG

Again Theorem C shows that the Theorem is sharp since £ d(ez — K) = 5(K) = 1 and
p(ez — K) = 1. We also note that Theorem 2 actually includes Theorem 1 if the order of
A(z), p(A) is > 1. But we still give its proof for completeness.

The results of this paper represent some improvements of the author's Ph.D. thesis
written under Professor J. M. Anderson. He would like to thank Dr. J. K. Langley for
many valuable discussions and the referee for his suggestions which improved the
presentation of the original manuscript. This work was supported in part by a Mayer
De Rothschild scholarship from University College London and the ORS Awards.

4. Preliminaries for functions with extremal deficiencies

We first note the following well-known inequality for an entire function A,

'). (4.1)
aeC

Its proof can be found in [10, p. 104]. We now summarise the results of Edrei and
Fuchs in:

Lemma 1 [8]. Let A(z) be an entire function of finite lower order and 8(0, A) = 1. Then
A(z) has the following properties:

(i) The order of A(z), p(A) = p say, is an integer and A(z) can be written as

where E(z,p) is the primary factor and a, are the zero of A(z), and P(z) =
<xoz"+---+ctp.

(ii) Let

then for any 0<£< 1, we have

T(r,A) = (l +>,(£))J^l^ forr>ro,\n\<e. (4.3)
71

(iii) Let a = ell(l+p) and cj = c(ixi) where j is an integer. Then given e>0 as in (ii) and
0<5<(l/e), there exists jo(e) such that for all j^jo(s),

|log|i4(z)|-Re(V')|<4e|cJ|r', zeTj-Ej, (4.4)
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OSCILLATION RESULTS ON y" + Ay=0 IN THE COMPLEX DOMAIN 19

where

and Ej is a collection of a finite number of discs whose sum of radii is at most
4e5<xj+3'2.

(iv) There exists a path <£ extending to infinity along which we have

\A(z)\>el"16mr-A\ r>r0. (4.5)

Let £C(k) be the path which is the rotation of i£ through an angle kn/p about the
origin. Then the inequality (4.5) remains valid for

whereas on

if(1),if(3),..., (4.6)

we have

|<4(z)|«r<1I'16)r(r'/l)> r>r0.

The portion of £f intersecting with the annuli Tj has a rectifiable length not
exceeding a constant multiple of a.'.

Lemma 2. The collection of the exceptional sets Ej defined in Lemma l(iii) has upper
logarithmic density zero.

Proof. Recall that each Ej is a collection of a finite number of discs whose sum of
radii is less than 4e<5/xJ+3/2 where 0<dj<l/e for all j . We let q = [logr/loga] =
[(p + l)logr], where [a] represents the integral part of xeR. Also since, for each £,, 5j
can be chosen arbitrarily small then given i)>0we may assume Sj<n for all j .

Let

G = (J{r = |z|:ze£;} and G(r) = Gn[ l , r ] . (4.7)
j

Consider

J 7 = 0(D+Z J -" (teG(r))
leC(r) * j = l a.' l

<0(\)+t - / f dt (teG(r))
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20 Y. M. CHIANG

eoc
,3/2 V

3/2qn.

Hence

J ^ = O
i t
J O ( r )

l og r , 6 i w t \\ogrj

Since n is arbitrary we may let r->oo to obtain ULD (G)=0.
Let Qi<62<-- <6n<9l + 2n be a finite sequence of angles, and let {r^} and {r2j} be

two unbounded strictly increasing sequences of real numbers such that rlj<rlj+l^r2j,
and rlJ+l — r l j#o(l) as j-*co.

We define, for a fixed a > 0, the following sets:

(4.8)

and

e,., = {0:0,- i+e^0£0,-e} for i= l n. (4.9)

Also

& > ! ; , r2J) = {reie: 6e ft,,, r £(/-,,, r2,)} (4.10)

and

6?.(»-iJ,r2y) = {re'e:rg'»ee,,,(r17,r2J) and r * if n (r1J; r2j)} (4.11)

for i = l,...,n, where H<=I is a set of r with upper logarithmic density strictly less than
1. Similar definitions also hold for P,,E(ru,r2j) and P*e(rij,r2j) with the same H. We
shall assume, for the rest of this paper, that e is chosen so small and |0(—0j|>2e for i#y
so that none of the regions Qt,e{rXj, r2J), i = 1,..., n is empty.

By using the above notation, it is not difficult to deduce from the above that:

Lemma 3. Suppose that an entire function A(z) satisfies the hypotheses of Lemma 1.
Then given e>0, there exist sequences of Q*Jrl},r2j), i= 1,2,3,...,2p and j= 1,2,3,...
which are connected sets for each fixed i, where

such that in QT,e(
ripr2j) either
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OSCILLATION RESULTS ON / ' + Ay = 0 IN THE COMPLEX DOMAIN 21

log \A(z)\ > const. T(r, A) for j ̂ ja(e) and some i (4.12)
or

log \A(z)\ < —const. T(r, A) for j^ja(e) and for the rest ofi. (4.13)

Proof. Let A(z) satisfies the hypotheses of Lemma 1 and let its order be p e N . Let
e > 0 and 0<<5<l/e be given, there exists an £ j>0 such that I C O S ^ S E ^ O for
\6—80\^E where 90 is any zero of cos0. It follows from Lemma 1 that there exists a
sequence {c,} defined by (4.2) such that (4.4) is satisfied with £ replaced by £t with Fy

and E} also as defined there.

L e t Re(cf") = \cj\r
I'cos(pe + coj) w h e r e z = re i e . A l s o let 9l<02< ••• <02p b e the

distinct zeros of cos(pO + <a,). Clearly 6h i=l,...,2p, depend on j . Hence |cos(p0 + (Oj)\
>5£!>0 when | 0 - 0 , | ^ £ , i = l , . . . , 2 p .

Let ru=a>, r2J=<xJ+3/2 and Pu, Q^t, QWij^ijl--- be defined by (4.8)-(4.11) where
the Of are precisely those zeros of cos (p6 + coj) and the exceptional set of r in 2*£(ru,r2 j)
arising from the existence of E}. Then the F, is divided up into Qi,E(rli,r2j) and
Pi,e(rij,r2j), i=l,...,2p. From (4.4) it follows that

|log| A(z)\ - Re (cjz»)\ < 4£ l |Cj|r" < f |cos (P6 + to})\\cj\r>

= | |Re (cjz")\ for j ̂  ja(e) ^ jo(e) say. (4.14)

Without loss of generality, we may assume cos (pO + coj) > 0 for 0eQiE and hence
cos(p0 + cu,)<O for OeQi+Ue for j^ja(e)- Hence it follows from (4.14) that

i Re (Cjz") < log \A(z)\ < § Re {c-z") for z e QTJr^, r2j), j >,fl(e). (4.15)

Now (4.3) yields,

^ ^ | ^ (|»;|<£) (4.16)

for zeQtt(ri},r2j) and ;^ ; o (£) .
It follows from (4.14) that

| | (4.17)

for zeQf+Ut{ru,r2j) and j^ja(e)- So that

i i^^g-^T^/ l ) , j^jM (4-18)

Remark. It follows from the proof above that if (4.12) holds for all odd i (resp. even)
then (4.13) holds for all even i (resp. odd).
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22 Y. M. CHIANG

Finally we state another result of Edrei and Fuchs.

Lemma 4 [8]. Suppose A(z) is an entire function of finite order p. If

oeC

then p ̂  1 is an integer. In addition, there exist s ̂  1 finite asymptotic values

such that

£ 6(a,A)=£d{pt,A)

and each 5(f}t, A) is an integral multiple of l/p.
In particular if A(z) is a real entire function, we can choose the asymptotic paths for

Pi's to be straight lines from the origin.

Remark. The asymptotic paths appearing in (4.6) of Lemma 1 are the same as those
in Lemma 4 (see [8]).

5. Preliminary discussion and lemmas required for the proof of the theorems

The method of proof consists of investigating the growth of the function E: = fxf2

where fx and f2 are two linearly independent solutions of (3.1). It is shown in [2] that
E(z) satisfies both

FV_C^_2F;

Ej E2 E

where c is the Wronskian of fx and f2, and the third order differential equation

We also note that if a function y(z) satisfies the equation ylk) + A(z)y = 0 where k^l and
A(z) is analytic in a domain s/, say. Then integrating by parts gives the following

+ Ck-1(z-z0)
k-1--±—](z-s)k-iA(s)y(s)ds (5.3)

where the path of integration is taken within the domain s/.
We require the following lemmas.
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OSCILLATION RESULTS ON y" + Ay=0 IN THE COMPLEX DOMAIN 23

Lemma 5 (Fuchs [9]). Suppose h{z) is meromorphic in C and of finite order p. Then
given £, > 0 and 0 < 5 < \, there exists a constant K(p, £) and a set of positive real numbers
G of lower logarithmic density at least 1 —<̂ , i.e. LLD(G)^1 — £ > 0 such that if

and reG, then

e2

Lemma 6 (Valiron [16]). Let f(z) be an entire function of finite order, then

, re[0,oo)\e.

Here k is some positive number and e is an R-set.

Remarks, (i) An R-set always has linear measure zero by elementary calculations.

(ii) In the course of the proofs below, it may be necessary to apply Lemma 6
repeatedly. Thus the superscripts ku k2,... and qu q2,... that appear in r*1, r*2,... and
r", r*2,... are not necessarily the same in different occurrences.

We also require:

Lemma 7. Let F{rem) be an entire function of finite order and F(0): = F(re'8), with r
fixed, is a solution of the partial differential equation

2Fffl + C.F'eiO) + C0F{9) = 0 (5.4)

where C2 is a constant, Cy and Co are complex-valued functions ofre'e. The subscript 6 of
F'e(6), F'g(d) and F^3)(0) indicates the differentiation is taken with respect to 6 and r is
being kept fixed. Let n(r) be an increasing function ofr and

(5.5)

(5.6)

(5.7)

2), r ^oo for i = 0,l,

on a subset 8e[a,b) = J^[0,4n). Suppose also that

|F(reia)|<;C(r), forr$G sufficiently large,

where C(r) is an increasing function ofr and m(G) <oo.
Then any solution F(6) — F(rew) of the equation (5.4) satisfies

r$G and for all 6e J.
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24 Y. M. CHIANG

Proof. It follows from Lemma 6 that

and

We have

hence

and

= -(r2e2ieF"(z) + reieF\z)).

' - ( F (

(5.8)

(5.9)

(5.10)

for r$G and for some kx and fe2>0. Alternatively we may prove (5.9) and (5.10) by the
identity |Ffl| = r|F'(z)| and the fact that F'e(z) is also an entire function.

Let fc = max(/c1,/c2). It is easy to check that

y(9) = r^Cir) exp {rj(r)(h + 6)), for some constant h > 4n,

satisfies the third order differential equation

) - a2?ffl - aiy'e(9) - aoy(e) = 0, (5.11)

where a2
 = |^2|> ai —12(r)—(a2 +

r is chosen sufficiently large.
Clearly, we have for r sufficiently large and 0 e J

a n d ao — 12(r) a r e a'^ positive coefficients provided

\C2(r)\ = a2,

|C,(r)| ^ a, = r,2(r) -(a2 + l)if(r) < r,2(r)

(5.12)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0013091500006179
Downloaded from https://www.cambridge.org/core. HKUST Library, on 21 Sep 2017 at 03:59:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0013091500006179
https://www.cambridge.org/core


OSCILLATION RESULTS ON / ' + Ay=0 IN THE COMPLEX DOMAIN 25

Here (5.12) is valid and we may multiply r](r) by a suitable constant when necessary in
the definition of y(6). It follows from (5.8H510) that

y{a) = i*C(r) exp (r,(r)(h + a)),

\FAre»)\ < y'e(a) = r*C(r)i,(r) exp (r,(r)(h + a)),

\F'e(reia)\ < y'&a) = r*C{r)ri2(r) exp (t,(r)(h + a))

for r $ G sufficiently large.
We apply Herold's comparison theorem ([11], Theorem 1]) to equations (5.4) and

(5.11). Thus

\F'e(reie)\ g r*C(r)r,(r) exp (r,(r)(h + 6)),

\F'i(reie)\ ̂  r*C(r)ij2(r) exp (t,(r)(h + 6))

for OeJ and r$G sufficiently large. Hence

log \F(rew)\ = O(log C(r) + t]{r) + log r)

for 8B J and r$G. This proves the lemma.

Remark. Although the lemma has a fixed interval [a, b) for 9, the conclusion still
holds if we consider a sequence [a,, bj) instead, defined on a sequence of arcs with radii
{r,}, provided the modified (5.5) and (5.6) still hold.

6. Proof of Theorem 1

We shall sketch the proof first. We assume on the contrary that E: = ftf2 with
A(£)<oo where fl and f2 are linearly independent solutions of (3.1). It is well-known
[1] that

T(r,E) = O(N [r,^)+T(r, A) + log r

as r-*co except possibly for a set r of finite linear measure. But N(r, (l/E)) = O(r*) for
some q>0, hence p(£)<oo. From (5.1), we also deduce p(E)^p(A). Then we estimate
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26 Y. M. CHIANG

T(r,£)=^-f* \$g\E(reie)\d9

to yield a contradiction.
In view of the results of Rossi and Shen, we may assume that p(A) > 1/2. From Lemma

3 it follows that given e>0, there exist sequences of 6*£(rlj-,r2j) and hence P*t{rlj,r2])
for each i= 1,2,...,2p such that A(z) satisfies either (4.12) or (4.13).

We divide the proof into two parts.

Part (a). We assume P(z) = 0. Now,

/ \6g \E(rew)\ d0=t f log \E(reie)\ dd + £ J log \E(rew)\ dd,
0 i = l Ql t , i=l Pi,t

for a fixed re(ru ,r2 j ) \G where j^ji(e), say.
Since all the estimates for A(z) in the Lemma 3 are asymptotically the same, it is

sufficient to consider the following integrals only,

J \6g\E(rew)\d9+ J log\E(rew)\ d6 + J log
Ql.t Pl.t C f + I . e

(6.1)

where re">eQTtt(rlJ,r2J), Ptc(r1J,r2i), QT+l,c(riJ,r2j) respectively when j is large and
i = l 2 p - l .

We assume that A(z) satisfies estimate (4.12) in Q*,,,(rlj,r2]) and (4.13) in
fii*+i..(»-u,ry). Let re'OeQTJr^rzj). By Lemma 6 both

and

are of order r" for some <Zi>0 and outside a set of r of finite linear measure. We can
incorporate the exceptional set into that of Q*t(rljtr2j) for each j . But \A(reie)\ = O(rm)
for each m>0 and rei9eQft(rlj,r2J) as j-»oo. It follows from formula (5.1) that
|£(re'e)| < <5 for any given 5 > 0 provided j ^ j2(

£)- Hence

l6"g|£(re'e)| = 0, reieeQ*e(
rij>r2j)> (6-2)

and /1 =0 for all j^j2(e).
From Lemma 2 the exceptional set G (see (4.7)) of r arising from UJ6*e(''ii,'"2j) n a s

upper logarithmic density 0. We may choose an exceptional set arising from Lemma 5
with upper logarithmic density £, such that £<1. Also the R-set of r with finite linear
measure such that (6.2) holds has upper logarithmic density zero. We may, therefore, be
able to find a set of r of lower logarithmic density 1 — £>0 so that both (6.2) and
Lemma 6 (and hence (6.3) and (6.4) below) hold simultaneously. In the rest of this proof,
it may again be necessary to consider some estimates which are valid outside sets of r of
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OSCILLATION RESULTS ON y" + Ay=0 IN THE COMPLEX DOMAIN 27

finite linear measures, so that the integration (6.1) can go through. As they all have
upper logarithmic densities zero, we can incorporate them into the existing exceptional
set without affecting those parts of the proof. We shall not mention this fact again.

Now it follows from Lemma 5 that

'•<"<-£>)|+ j r

£' (re") dt

^ log|£(rC
i(9'-£»)| + K(p(E), flelog- T(r, E), (6.3)

provided |01 + e-(0,-e) | = 2e<5 or £<£ and 6ePu. Thus

I2 = o(elog -T(r,e)
\ e

(6.4)

for re'eePle(r1j,r2J) and for all j^j3(e) say.
We now consider 73. It follows from (5.2), that E(z) satisfies the equation

where

(6.5)

Also by (5.3), any solutions of (3.1) can be expressed as

2(z-zo)
2-±-](z-t)2A(t)E(t)dt (6.6)

where the path of integration is taken within Q(+l e(ru,r2j). We may choose zo =
rem+t\ and hence

fco = £(zo), b,=£'(zo)=|(zo)£(zo)

and
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28 Y. M. CHIANG

Clearly z0 depends on _/. We apply Lemma 6 and the fact that \z—z0| = O(r) and
Gronwall's Lemma (see [12]) respectively to obtain

J
9,+e

| ( o ) | ( ( ) ) p { ( | 0 ( r e ' ' ) | ) } for

Now both

£' . A'
£ 3nd 7

are of order r*4 outside a set of r of finite linear measure, and |/l(reie)| = o(r"m) for each
m>0, reieeQ?+Ue(r1j,r2j) and for j^js(e) say. Hence

log |£(reie)| = tfg |£(zo)| + O(log r) = o(e log - T(r, £)) + O(log r) (6.7)

from (6.3), and for reieeQ?+Uc(rij,r2j) and j^j5(e).
Thus, we have the same estimate for

re'" G QTJru, r2J) u Pf.fru, r2;) u

for i = 1,..., 2p - 1 provided _/ ̂  76(e). Hence
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OSCILLATION RESULTS ON / ' + Ay = 0 IN THE COMPLEX DOMAIN 29

T(r, £) = 0 (e log - T(r, E)) + O(log r)
\ e /

for r$(ri},r2j)r\G and j^.j6(e). Since E > 0 is arbitrary, we may choose it small enough
to obtain

T(r,£) = O(logr)

for r$(rlJ,r2j)nG, j^j-j(e). Hence £(z) is a polynomial, and it follows from (5.1) that
A(z) is rational. This is a contradiction. This completes the proof of Part (a).

Part (b). We assume P^O and deg P = n, w^O. Given the same e>0 and with the
same notation and arguments, we arrive at (4.15) and (4.16) for zeQJ,(r1J-,r2j-). Also we
obtain (4.17) and (4.18) for zeQ,T+ltt{rlj,r2j). From (4.1), we have 5(0,A') = 1. Thus we
may assume, by Lemma 1 again, that Icosfl^Se^O and there exists a corresponding
sequence {c,} (defined by (4.2) with the zeros of A'(z)) such that

|log \A'(z)\ - Re (cjz")\ < 4e, \cj\r", zeTj- EJt for all ; ^ jb(e) say.

Here {Ej} are the exceptional sets corresponding to A\z). By Lemma 2 again, ULD
(G) = 0 where G: = (JJ{r = |z|:ze£J}. Let Re(cJz

p) = |cJ|r'
>cos(p0 + /SJ) say for zeFj-Ej.

Suppose cos(p6 + Pj)>0 for OeQkt and hence cos (pd + fa) < 0, for fleQfc+i,,,. Thus

iRe(c/")<log|/l '(z)|<fRe(c>a zeQte(rij,r2j) lor j^jb(e). (6.8)

We may write (5.2) in the form

f(3) f
^ ^=-2A'. (6.9)

Since we have assumed A(£)<oo and hence p(£)<oo. It follows from Lemma 6, (4.15),
(6.8) and (6.9) that for each j ^ jc(e) say, there exists k and i such that

and hence for each k, Qk,e{rij,r2j) = Qi,e(
rij,r2j) f°r s o m e ' a r |d f°r j^jc(

£)-
We may renumber fc so that for j^.jc(e), k = i for all k and i. Now define

QVArij, r2J): = QW ij> ru) n S f ^ u , r2J)

for all i and j^jde). We deduce

log|/l(z)|^c-(>t/20)r(r-4) and logl/l^lge-""20'7""^'* (6.10)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0013091500006179
Downloaded from https://www.cambridge.org/core. HKUST Library, on 21 Sep 2017 at 03:59:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0013091500006179
https://www.cambridge.org/core


30 Y. M. CHIANG

for zeQf*(r1J,r2j) for all j^.j£e). This is because the exceptional sets \JEj and [j Ej
both have upper logarithmic densities zero, and the previous estimates in (4.15), (4.18),
(6.8) and (6.10) are still valid.

Recall that E(z) satisfies equation (5.2), and let

) = E(reu),

with r fixed. It is routine to check that it satisfies the equation,

V?\e) - C2(r) V'ffl -C^r) V'0(6) - Co(r) V{6) =0 (6.1

with r being fixed, where

C2(r) = 3i,

and

) = 2+4(reie)2(A + P)(rew),

are complex-valued coefficients and functions of r.
Suppose A(z) satisfies (4.13) in Q**i,c(f1j,r2j), and hence we may assume that it

satisfies (4.12) in Q*$r1j,r2j). It follows from Part (a) that both ^ and I2 are just (6.2)
and (6.4) respectively for j ^ J7(E).

Let n^O be the degree of the polynomial P(z). It follows from (4.13) that

and

{|cjr!ho°(a l tlZo; (6'12^
for rc'eeQ**t e(r1j,r2j) and j^.j-/(e).

We apply Lemma 7 to equation (6.11) and take into account the remark made after
Lemma 7, with 0,— 0, + e and bj=9i+1 — e (clearly, i depends on j). By (6.4),

or

| V(aj)\ = O (exp (e log - T(r, E)X) for ; ^ ;8(e) say.
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OSCILLATION RESULTS ON y" + Ay=0 IN THE COMPLEX DOMAIN 31

As in (5.9) and (5.10), we have

= 0 ' exp (e log - T(r, E))\ j ^ j9(e),
\ £ 11

and

ire™1 — (re*') + reia> — (re"')

= O[r» exp U log 1 T(r, E ) ) ) , j ^ jg(e).

\E(reia')\

We may choose

C(r) = 0 h*> exp (e log^ T(r, E)\\ jZjl0(e),

for some <j3>0, and (5.6) is satisfied. Now although the coefficients Ct and Co in (6.12)
of the equation (6.11) have bounds depending on the polynomial P(z), in any case it is
true that they both are bounded by a constant multiple of r" + 2 for r (and hence j)
sufficiently large and for n ̂  0. So we let

r,(r)
2=rn + 2, n ^ 0 .

Then (5.4) and (5.5) are satisfied. Hence it follows from Lemma 7 that

log \E(re">)\ = O(log C{r) + i,(r) + log r) = O[e log - T(r, E) + ij(r) + log r )

\ e 1
for0e@i + 1 , eand 7^;1 0(e).

Again e > 0 is arbitrary; letting e-»0, we obtain

for reieeQi+Uc{rl},r2]), j^j^e) say.

Combining (6.2) and (6.4), it follows from (6.1) that

T(r, £) = 0(r(n + 2)/2 +log r), n^O,
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32 Y. M. CHIANG

for r e ' ^ U j g ^ ^ j , ^ ) , J^Jn(e)- Hence p(E)<p(A), and this a contradiction, since
p(.4)>l, n + 2<2p(A), and p(/l)gp(£). This completes the proof of Part (b) and also
the proof of Theorem 1.

7. Proof of Theorem 2

We only give a sketch of the proof as it is similar to that of Theorem 1. Let A(z)
satisfy the hypothesis of Theorem 2. From (4.1), we have d(0,A') = l. Given e>0, with a
similar argument and notation as in the proof of Theorem 1, we have (6.8) for
zeQT,e(rij>r2j) f° r some i and for j^jd(

£)- Again, it is clear from equation (6.9) that A(z)
must also have a similar growth rate as (4.15), and It=0 where / t was defined in the
proof of Theorem 1.

By Lemma l(iv), there exist paths J2?(m), m = l , 3 , . . . , 2 p - l , such that

|/l '(z)|<e"("/20 )T( r"4) zeif(m) and r sufficiently large.

Fix m = 1 say, and since e is arbitrary, we have for j ^ je(e) that A'(z) satisfies

- f |Re(djz")\ <log\A'(z)\ < - | |Re(c>>) | < 0

for z£6*e(rlj-,r2j), and that ^C(1) r\Qfc(rlj,r2j) is not empty. In fact, after a suitable
renumbering we may write

and the length of it is 0(<xJ) at most. On the other hand, by Lemma 4, A(z) has finite
asymptotic values /?„ i= 1,3,...,2p— 1, not necessary distinct, such that the correspond-
ing asymptotic paths are just J§?(>) by the remark after Lemma 4. By choosing j^jf(s)
and Zijejij we may assume |v4(zfj-)| is bounded by 2|/?,|, say, where /?, is the
corresponding asymptotic value. So for each zeQfc{rlj>r2}), i= l,3,...,2p— 1 and
j^jf(e), we have

where the path of integration is taken within Qi,E(rlj,r2j) avoiding £,.
But

(7.1)

as ./->oo (see [8, p. 287]).
Thus
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OSCILLATION RESULTS ON y" + Ay = 0 IN THE COMPLEX DOMAIN 33

\A(z)\ = O(l) for zeQUrij,r2J), J^JA*), i = l , 3 , . . . , 2 p - l .

The above arguments can be repeated for each of Q*e(rlj,r2j), i=l,...,2p.
Hence by equations (6.11) and (6.12) the estimations on / 3 are the same as those in

part (b) of Theorem 1. Whereas I2 is exactly the same. Hence we obtain, for

T(r, E) = 0(r(n+ 2)l2 + log r), for j-oo and n ̂  0.

And the conclusion follows as in the case of Theorem 1.

8. Concluding remarks

We note that when P=const., p(A)=l and £<5(a) = l, the method of proof of
Theorem 2 just fails. However as shown by Theorems C and D that the proof cannot be
extended to cover this case.

In view of Theorem D, we may ask whether the conclusions of Theorems 1 and 2 still
hold when the restriction on the degree of the polynomial P(z) is removed. The next
obvious question is to prove a stronger conclusion that A(/) = oo where / is any
solution of the differential equations. Finally, the same questions can be asked for the
higher order differential equations, see for example [6].

REFERENCES

1. S. BANK and I. LAINE, On the oscillation theory of f" + Af = 0 where A is entire, Trans.
Amer. Math. Soc. 273 (1982), 351-363.

2. S. BANK and I. LAINE, On the zeros of meromorphic solutions of second order linear
differential equations, Comment. Math. Helv. 58 (1983), 656-677.

3. S. BANK, I. LAINE and J. K. LANGLEY, On the frequency of zeros of solutions of second order
linear differential equations, Resultate Math. 10 (1986), 8-24.

4. S. BANK, I. LAINE and J. K. LANGLEY, Oscillation results for solutions of linear differential
equations in the complex domain, Resultate Math. 16 (1989), 3-13.

5. S. BANK and J. K. LANGLEY, On the oscillation of solutions of certain linear differential
equations in the complex domain, Proc. Edinburgh Math. Soc. 30 (1987), 455-469.

6. S. BANK and J. K. LANGLEY, Oscillation theory for higher order linear differential equations
with entire coefficients, Complex Variables 16 (1991), 163-175.

7. Y. M. CHIANG, Schwarzian derivative and second order differential equations (Ph.D. thesis,
Univ. of London, 1991).

8. A. EDREI and W. H. J. FUCHS, Valeurs deficientes et valeurs asymptotiques des fonctions
meromorphes, Comment. Math. Helv. 33 (1959), 258-295.

9. W. H. J. FUCHS Proof of a conjecture of G. Polya concerning gap series, Illinois J. Math. 1
(1963), 661-667.

10. W. K. HAYMAN, Meromorphic functions (Clarendon Press, Oxford, 1964).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0013091500006179
Downloaded from https://www.cambridge.org/core. HKUST Library, on 21 Sep 2017 at 03:59:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0013091500006179
https://www.cambridge.org/core


34 Y. M. CHIANG

11. H. HEROLD, Ein vergleichssatz fur komplexe lineare Differentialgleichungen, Math. Z. 126
(1972), 91-94.

12. E. HILLE, Ordinary differential equations in the complex plane (Wiley-Interscience, New
York, 1976).

13. J. K. LANGLEY, On complex oscillation and a problem of Ozawa, Kodai Math. J. 9 (1986),
430-439.

14. J. Rossi, Second order differential equations with transcendental coefficients, Proc. Amer.
Math. Soc. 97 (1986), 61-66.

15. L. C. SHEN, Solution to a problem of S. Bank regarding the exponent of convergence of the
solutions of a differential equation f" + Af=0, Kexue Tongbao 30 (1985), 1581-1585.

16. G. VALIRON, Lectures on the general theory of integral functions, Chelsea, New York, 1949.

DIVISION OF MATHEMATICS
BOLTON INSTITUTE OF HIGHER EDUCATION
DEANE ROAD
BOLTON BL3 5AB
ENGLAND

Current address:
DEPARTMENT OF MATHEMATICS
THE HONG KONG UNIVERSITY OF SCIENCE
AND TECHNOLOGY
CLEAR WATER BAY
KOWLOON
HONG KONG

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0013091500006179
Downloaded from https://www.cambridge.org/core. HKUST Library, on 21 Sep 2017 at 03:59:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0013091500006179
https://www.cambridge.org/core

