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Abstract The paper considers the solutions of linear periodic differential equations introduced

by Bank and Laine [6]. In [3] Bank proposed a method to solve certain periodic differential

equations with few zeros. The current paper offers alternative methods to deal with zero-free

solutions and we obtain more precise results. Our results complement Bank’s method. We also

make precise a related result of Bank in [4].

1. Introduction
In [6], Bank and Laine considered the oscillation problem of

y′′ +Ay = 0 (1.1)

when the coefficient A(z) has the form A(z) = B(ez), where

B(ζ) =
Kk

ζk
+ · · ·+K0 + · · ·+K`ζ

`, (1.2)

and K`Kk 6= 0. They found that any non-trivial solution f of (1.1) with a finite exponent of convergence of

zeros, denoted by λ(f) < +∞, must take the form

f(z) = ψ(ez/q) exp
( m∑

j=m′

dje
jz/q + dz

)
, (1.3)

where q = 1 or 2, d is a constant and ψ(ζ) is a polynomial:

ψ(ζ) = csζ
s + · · ·+ c0 (1.4)

with simple zeros only. In the case when q = 2, dj = 0 for all even j in (1.3).

We remark that any non-trivial solution of (1.1) must have an infinite order of growth [5]. We assume

the reader is familiar with the Nevanlinna theory and its notations [11, 12, 13].
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The question then is to determine for which B(ζ) given by (1.2) equation (1.1) with A(z) = B(ez) would

admit a solution f with λ(f) < +∞, and to write down such a solution explicitly. It is evident that the

method used to obtain the representation (1.3) does not yield a solution to this problem (see page 102 of

[3]). At present, the understanding of this problem is restricted to only a few cases.

Theorem A [7]. Let K be a non-zero complex number. Suppose the equation

f ′′ + (ez −K)f = 0 (1.5)

admits a non-trivial solution f with λ(f) < +∞, then

f(z) = ψ(ez/2) exp
(
dez/2 − 2s+ 1

4
z

)
(1.6)

where ψ(ζ) =
∑s

j=0 cjζ
j , d2 + 4 = 0 and

K =
(2s+ 1)2

16
. (1.7)

Conversely, given K has the form (1.7), then f defined by (1.6) is a solution to (1.5) with λ(f) < +∞.

We remark that if f1 has the form (1.6) then the other linearly independent solution to (1.5) with finite

exponent of convergence is given by

f2(z) = φ(ez/2) exp
(
dez/2 − 2s+ 1

4
z

)
, (1.8)

where φ(ζ) =
∑s

j=0 c
′
jζ

j , d2 + 4 = 0.

Theorem B [6]. Let K be a non-zero complex number. Suppose the equation

f ′′ +
(
− 1

4
e−2z +

1
2
e−z +K

)
f = 0 (1.9)

admits a non-trivial solution f with λ(f) < +∞, then there exists a positive integer s with K = −s2 and f

must be one of

f1(z) =
(−(s−1)∑

j=0

Bje
jz

)
exp

(
1
2
e−z + sz

)
or (1.10)

f2(z) =
( −s∑

j=0

bje
jz

)
exp

(
− 1

2
e−z + sz

)
.

Conversely, for each positive integer s, the equation (1.9) with K = −s2 possesses two linearly independent

solutions of forms (1.10).

To solve the general (1.1), Bank proposed a new method in [3] that could be applied to (1.1) with any

given (1.2). As his theorems are too long to be quoted in full here, we refer the reader to his original paper

for the results. Although Bank’s method can be applied to the most general (1.1), the requirement that the

majority of the coefficients Ki in (1.2) must be given explicitly means that it is difficult to apply the method
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to obtain comprehensive results comparable to those of Theorems A and B. We note that Baesch [1] has

generalized Bank’s results to higher-order equations.

The purpose of this paper is to offer alternative methods to (1.1) that admit a zero-free solution. The

methods allow us to determine fairly completely the equation (1.1) when it admits a zero-free solution. In

addition, there is a distinction between the cases when ` in (1.2) is odd or even. In the case when ` is odd,

we show that all Ki except K` and K0 must vanish (Theorem 1). When ` is even, we exhibit algorithms

to find the constants in (1.3). In particular, we show that K0, · · · ,K`/2−1 are completely determined by

K`, · · · ,K`/2 (Theorem 2). We next turn to solutions f of (1.1) with 0 < λ(f) < +∞. With the techniques

developed in this paper we are able to sharpen a related result considered by Bank [4]. There Bank assumed

(1.1) already admits a solution with λ(f1) < +∞, and he focuses on second linearly independent solution f2
with λ(f2) < +∞. He obtains an arithmetical relation when the integer ` in (1.2) is even. We give a more

precise result when ` is odd (Theorem 4). It does not seem to follow from the method used in [4].

This paper is organized so that the main results (Theorems 1-2) are stated and proved in Section 2.

Examples that illustrate the main theorems are given in Section 3. Section 4 will discuss the method of

comparing coefficients.

2. Main Results
Proposition 1. Let f be a non-trivial solution of (1.1) with λ(f) < +∞. If ` in (1.2) is an odd positive

integer, then k = 0, and

f(z) = ψ(ez/2) exp
( ∑̀

j=0

dje
jz/2 + dz

)
, (2.1)

where dj = 0 whenever j is even. While if ` in (1.2) is an even positive integer, then k is also even, and

f(z) = ψ(ez) exp
( `/2∑

j=−k/2

dje
jz + dz

)
. (2.2)

Proof It follows from (1.3) that there exist two polynomials S(ζ) and R(ζ) such that

f ′

f
(z) = S(e−z/q) +R(ez/q). (2.3)

Thus

−B(ez) =
f ′′

f
(z) =

1
q

(
− e−z/qS′(e−z/q) + ez/qR′(ez/q)

)
+

(
S(e−z/q) +R(ez/q)

)2

. (2.4)

Suppose ` is an odd positive integer, then either [2, Theorem 2] or [10, Theorem 1] implies that k = 0.

Thus B(ζ) is a polynomial. Let z → −∞ through real values in (2.4) shows that S(ζ) ≡ const. which we

incorporate into R(ζ). Taking z → ∞ in (2.4) and considering the highest exponents implies that `q = 2m

where m = degR. Since ` is odd, we deduce q = 2. This gives (2.1).

Suppose now that ` is a positive even integer. Let us suppose further that q = 2 in (2.1). Then the

right-hand side of (2.4), as z →∞, is asymptotic to an odd exponent of ez, while the left-hand side of (2.4)

is asymptotic to an even exponent of ez. This is a contradiction, and hence q = 1. Thus, ` = `q = 2m

gives m = `/2. A similar argument applied to (2.4) after making a change of variable t = 1/ζ in (2.4) gives

m′ = −k/2. This gives (2.2).
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Although most of the above conclusions are noted in various forms in [2],[6], [10], and [3], they have not

been given in a unified and explicit form. The above proposition serves this purpose, and it is also deployed

later in this paper. In addition, we note that the distinction between ` in (1.2) as odd and even cases is

important, which will become evident in the main results below.

We remark that in view of (1.3), a solution f of (1.1) which is zero-free is equivalent to λ(f) = 0.

Theorem 1. Let the two integers ` and k in (1.2) be such that ` ≥ 0 is odd and ` ≥ |k| ≥ 0. Suppose

the equation (1.1), with coefficient A(z) = B(ez), admits a zero-free solution f , then k = 0, Ki = 0, i =

1, · · · , `− 1 and K0 6= 0. Moreover,

K0 = − `
2

16
(2.5)

and

f(z) = exp(d`e
`z/2 − `z/4), (2.6)

where `2d2
` + 4K` = 0. Conversely, given K0 in (2.5), then f defined by (2.6) always satisfy (1.1) with

A(z) = B(ez), B(ζ) = K`ζ
` +K0.

We immediately deduce

Corollary 1. Let ` ≥ 1 be an odd integer and k = 0 in (1.2). Suppose (1.1), with A(z) = B(ez), is

such that either K0 = 0 or at least one of the coefficients Ki 6= 0, i ∈ {1, · · · , ` − 1}, then λ(f) > 0 for any

non-trivial solution of f of (1.1).

Proof of Theorem 1 Let f be a zero-free solution of (1.1). By Proposition 1 and (2.1), we can find a

polynomial P1(ζ) such that f ′(z)/f(z) = P1(ez/2). Thus

−B(ez) = −A(z) =
1
2
ez/2P ′

1(e
z/2) + P1(ez/2)2. (2.7)

Substituting ζ = ez/2 into (2.7) yields

1
2
ζP ′

1(ζ) + P1(ζ)2 = −B(ζ2) =
1
2
ζP ′

1(−ζ) + P1(−ζ)2,

since B(ζ2) is even in ζ.

Suppose P1(ζ)− P1(−ζ) 6≡ 0. It follows that

P1(ζ) + P1(−ζ) =
1
2
ζ
P ′

1(ζ) + P ′
1(−ζ)

P1(ζ)− P1(−ζ)
. (2.8)

But
P ′

1(ζ) + P ′
1(−ζ)

P1(ζ)− P1(−ζ)
is the logarithmic derivative of the polynomial P1(ζ) − P1(−ζ). We deduce from (2.1) and (2.8) that the

only zero of P1(ζ) + P1(−ζ) must be at the origin. Thus P1(ζ) − P1(−ζ) = dζm for some odd integer

m, 1 ≤ m ≤ `, and d is a constant. It follows from (2.8) that P1(ζ) + P1(−ζ) is a constant b, say. So

2P1(ζ) =
(
P1(ζ)− P1(−ζ)

)
+

(
P1(ζ) + P1(−ζ)

)
= dζm + b.
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Thus f ′(z)/f(z) = d/2emz/2 + b/2. Substituting this expression into (1.1) yields

−B(ez) =
f ′′

f
=
d2

4
emz +

(
dm

4
+
db

2

)
emz/2 +

b2

4
.

Hence m = `. Since ` is odd, the coefficient of e`z/2 must be zero. That is, b = −`/2. Integration of f ′/f

gives precisely (2.5) and (2.6).

In the case when P1(ζ)− P1(−ζ) ≡ 0, then P1(ζ) is an even polynomial. Thus we can replace P1(ez/2)

by H(ez) in (2.7) where H(ζ) is a polynomial. We arrive at a contradiction in (2.7) since B(ζ) has an odd

degree at infinity.

The above also proves the converse of the Theorem.

Remarks 1. We note that the above proof actually shows there exists another zero-free linearly independent

solution and is given by

exp
(
− d`e

`z/2 − `z/4
)
.

2. In the proof of the original version of the paper the author substituted (2.1) into (1.1) with ψ(ez/2) ≡ 1

and compared the coefficients of the resulting equation. The method is discussed in Section 4 below for the

case when l is even. The referee of this paper illustrated the much simpler alternative above.

We next consider the case when ` is even. Proposition 1 implies that k must also be even.

Theorem 2. Let ` and k be even integers with ` ≥ k ≥ 0, and assume A(z) = B(ez) where B(ζ) is as in

(1.2). Write ζ = ez/2 and

B(ζ2) = B0(ζ2) + o(ζ`−k) (2.9)

as ζ → ∞. Suppose f is a zero-free solution of (1.1), then f ′(z)/f(z) = R(ez/2), where R(ζ) is a rational

function with poles of orders ` and k at ∞ and 0 respectively and is determined by computing the Laurent

series of

cB0(ζ2)1/2 − ζ2B′
0(ζ

2)
4B0(ζ2)

(2.10)

valid in a neighbourhood of infinity, and up to the term ζ−k, c2 + 1 = 0. In particular, the coefficients

Kj , j = −k, · · · , (`− k)/2− 1 are completely determined by Kj , j = `, · · · , (`− k)/2.

Proof Let `, k and B(ζ) be as in the Theorem. Let ζ = ez/2 and define B0(ζ) by

A(z) = B(ez) = B(ζ2)

= B0(ζ2) + o(ζ`−k)

as ζ →∞. Thus,

B0(ζ2) = K`ζ
2` +K`−1ζ

2`−2 + · · ·+K(`−k)/2ζ
`−k.

By Proposition 1, f ′(z)/f(z) = R(ez/2), where R(ζ) is a rational function with poles of order `/2 and k/2

respectively at ∞ and 0. Then

1
2
ζR′(ζ) +R(ζ)2 = −B(ζ2)

= −B0(ζ2) + o(ζ`−k).
(2.11)
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Taking the square root on both sides gives first the left-hand side

R(ζ)
(

1 +
1
2
ζ
R′(ζ)
R(ζ)2

)1/2

= R(ζ) +
1
4
ζR′(ζ)
R(ζ)

+ o(1)

= R(ζ) + `/4 +O(ζ−1),

and then the right-hand side

cB0(ζ2)1/2 + o(ζ−k), c2 + 1 = 0.

We obtain an asymptotic formula for

R(ζ) = cB0(ζ2)1/2 +W (2.12)

where

W = −`/4 + o(1), W ′ = o(ζ−1),

as ζ →∞. Substituting the formulae back into (2.11) we get

1
2
ζ

(
c

2
B′

0(ζ
2)2ζB−1/2

0 +W ′
)

+ c2B0(ζ2) + 2cWB0(ζ2)1/2 +W 2

= −B0(ζ2) + o(ζ`−k),

as ζ →∞. That is,
1
2
ζ2c

B′
0(ζ

2)
B0(ζ2)1/2

+
1
2
ζW ′ + 2cWB0(ζ2)1/2 +W 2 = o(ζ`−k),

or

2cW +
1
2
ζ2c

B′
0(ζ

2)
B0(ζ2)

+
`2

16
B0(ζ2)−1/2 = o(ζ−k)

because B0(ζ2)1/2 has a pole of order ` at ∞. Solving this equation for W and substituting the result into

(2.12) yields

R(ζ) = cB0(ζ2)1/2 − 1
4
ζ2B′

0(ζ
2)

B0(ζ2)
− `2

32c
B0(ζ2)−1/2 + o(ζ−k)

= cB0(ζ2)1/2 − 1
4
ζ2B

′
0(ζ

2)
B0(ζ2)

+ o(ζ−k),

since B0(ζ2)−1/2 = O(ζ−`), as ζ → ∞ and ` ≥ k ≥ 0 by our assumption. Now Proposition 1 implies that

R(ζ) has a pole of order k at 0, we conclude from the above derivation that R(ζ) can be determined by

computing the Laurent series of (2.10) down to the term ζ−k, which is as described in (2.10).

In order to see that the coefficients Kj , j = −k, · · · , (`− k)/2− 1 are completely determined by those of

Kj , j = `, · · · , (`− k)/2, we only need to note from (2.11) that B0(ζ2)1/2 depends entirely on the coefficients

Kj , j = `, · · · , (` − k)/2, and that R(ζ) is given by (2.12) up to the term ζ−k. This completes the proof of

the theorem.

Remark We note that for the proof of the theorem in the original version of this paper, the author used the

comparing coefficients method. The current asymptotic method suggested by the referee is much shorter.

On the other hand, although (2.10) can be computed by a symbolic computation package, we show in section

4 how to use comparing coefficients method to find the f in (2.2).

As an application, we use Theorem 2 to obtain the following result.
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Theorem 3. Let ` > k = 0 be an even integer. Suppose the equation

f ′′ +
(
K`e

`z/2 +
`/2∑
j=0

Kje
jz

)
f = 0, (2.13)

K` 6= 0, admits a zero-free solution f , then Kj = 0, j = 1, · · · , `/2− 1, and

f(z) = exp
(

2c
`
K

1/2
` e`z/2 +

(
c

2
K`/2

K
1/2
`

− `

4

)
z

)
, (2.14)

where c2 + 1 = 0.

We immediately obtain

Corollary 2. Let ` and k = 0 be as in Theorem 3 and f be a non-trivial solution to (2.13). Suppose

Kj 6= 0 for some j ∈ {1, · · · , `/2− 1}, then λ(f) > 0.

Proof of Theorem 3 Let B(ζ) be as in (2.13). We get B(ζ2) = K`ζ
2` +K`ζ

` + o(ζ`). Then (2.9) gives

B0(ζ) = K`ζ
` +K`/2ζ

`/2.

Thus,

B0(ζ2)1/2 = K
1/2
` ζ`

(
1 +

K`/2

K`
ζ−`

)1/2

= K
1/2
` ζ` +

1
2
K`/2

K
1/2
`

+ o(ζ−`)

as ζ →∞, and
1
4
ζ2B

′
0(ζ

2)
B0(ζ2)

=
1
8

(
2ζ2B

′
0(ζ

2)
B0(ζ2)

)
=

1
8

(
2`K`ζ

2` + `K`/2ζ
`

K`ζ2` +K`/2ζ`

)
=
`

4

(
1 +K`/2/2ζ−`

1 +K`/2ζ−`

)
=
`

4
+ o(1).

Thus, (2.10) becomes

cB0(ζ2)1/2 − ζ2B′
0(ζ

2)
4B0(ζ2)

= cK
1/2
` ζ` +

(
c

2
K`/2

K
1/2
`

− `

4

)
+ o(1).

We determine R(ζ) by the above Laurent series up to ζ−k = ζ0, i.e., up to the constant term. That is,

R(ζ) = cK
1/2
` ζ` +

(
c

2
K`/2

K
1/2
`

− `

4

)
.

Thus,
f ′

f
(z) = cK

1/2
` e`z/2 +

(
c

2
K`/2

K
1/2
`

− `

4

)
,

and this is precisely (2.14) after an integration on both sides.
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Remark The original proof was again proved by the method of “comparison of coefficients”.

We next consider the case in which (1.1) admits a solution f with 0 < λ(f) < +∞. In [4], Bank proved

the following result.

Theorem C. Let ` > 0 be an even integer and k = 0 in (1.2) for B(ζ). Suppose (1.1), with A(z) = B(ez),

admits a pair of linearly independent solutions f1 and f2 with λ(fi) < +∞, i = 1, 2 and that f1 has the

representation (2.2), then the representation for f2 is given by

f2(z) = Φ(ez) exp
(
−

`/2∑
j=−k/2

dje
jz + dz

)
(2.15)

where Φ(ζ) is a polynomial with only simple zeros and the constants dj , j = −k/2, · · · , `/2 and d are the

same as those in (2.2). Moreover, we have the relation

2d+ `/2 + degψ(ζ) + deg Φ(ζ) = 0. (2.16)

Although this result only describes solutions to (1.1) with finite exponent of convergence of zeros when

` is even, it can easily be extended to cover the case when ` is odd, as noted by Bank in [4, Section 5], that

4d+ `/2 + degψ(ζ) + deg Φ(ζ) = 0. (2.17)

Theorem 4. Let ` > 0 be an odd integer and k = 0 in (1.2). Suppose (1.1), with A(z) = B(ez), admits a

pair of linearly independent solutions f1 and f2 with λ(fi) < +∞, i = 1, 2, and f1 has representation (2.1),

then

f2(z) = Φ(ez/2) exp
(
−

∑̀
j=0

dje
jz/2 + dz

)
. (2.18)

In addition to (2.17), we have degψ(ζ) = deg Φ(ζ).

We remark that given d is the same in (2.2) and (2.15), the degψ(ζ) is not necessarily equal to deg Φ(ζ) when

` is even. For example, equation (1.9) admits two linearly independent solutions in (1.10), and degψ = s−1

while deg Φ = s.

Proof: We obtain (2.18) from considering (1.1) with A(z) = B(e2z), g(z) = f(2z). Then degB(ζ2) is 2`,

which is even, and we could then apply Theorem C to obtain (2.17).

Let f(z) = φ(ez/2) exp
(
P (ez/2) + dz

)
be one of the two linearly independent solutions of f1 and f2,

where deg φ(ζ) = s. Substituting ζ = ez/2 in f(z) as before yields

f ′

f
(z) = R(ζ) =

1
2
ζP ′(ζ) + d+ s/2 + o(1)

as ζ →∞. Thus,

−B(ζ2) =
f ′′

f
(z) =

1
2
ζR′(ζ) +R(ζ)2
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and

cB(ζ2)1/2 = R(ζ)
(
1 + ζR′(ζ)/2R(ζ)2

)1/2

= R(ζ) +
1
4
ζ
R′(ζ)
R(ζ)

+ o(1)

=
1
2
ζP ′(ζ) + d+ s/2 +

1
4
ζ
R′(ζ)
R(ζ)

+ o(1), (2.19)

as ζ → ∞, where c2 + 1 = 0. It is easy to see that the constant term on the right-side of the (2.19) is

d + s/2 + `/4, while the left-side of the (2.19) gives no contribution of any constant term at infinity since

B(ζ) has an odd degree. Hence d+ `/4 + s/2 = 0. This proves that degψ = deg Φ in (2.19).

Corollary 3. Let ` > 0 be an odd integer and k = 0 in (1.2). Suppose the differential equation (1.1)

with its coefficient given by A(z) = B(ez) admits a pair of linearly independent solutions f1 and f2 with

max{λ(f1), λ(f2)} < +∞. Then λ(f1), λ(f2) equal to either 0 or 1 simultaneously.

3. Examples
Although Theorem 1 shows that all Ki = 0, i = 1, · · · , `− 1 if (1.1) admits a zero-free solution when `

is odd, the converse of it is not true.

Example [10] Let ` > 0 be an odd integer. The equation

f ′′ +
(
K`e

`z − `2(2s+ 1)2/16
)
f = 0

admits two linearly independent solutions of the forms

ψi(ez/2) exp
(
die

`z/2 − (2s+ 1)`z/4
)
,

where degψi(ζ) = s`, d2
i + 1 = 0, i = 1, 2. In fact, we can find a polynomial ψ̃ of degree s such that

ψ(ζ) = ψ̃(ζ`). We also note that (2.17) becomes 4d+ `+ 2s` = 0. This example shows that the distinction

between zero-free solutions and solutions with 0 < λ(f) < +∞.

Example [14] The equation

f ′′ +
(
− 9

4
e3z − 3

2
3
√

3e2z − 3
4

3
√

9ez − 25
16

)
f = 0

admits a solution

f(z) = e

(
ez/2 − 1

3
√

3

)
exp

(
e3z/2 + 3

√
3ez/2 − 5

4
z

)
where ψ(ζ) = e(ζ − 1/ 3

√
3). Thus degψ = 1 and deg(ζ2 + 3

√
3ζ) = 3 and d = −5/4. Thus (2.17) becomes

4(−5/4) + 3 + 2(1) = 0.

This example shows that there exists a (1.1), with ` > 0, which admits a non-trivial solution with λ(f) > 0

but Ki 6= 0 for some i ∈ {1, · · · , `− 1}.
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Example Suppose equation (1.1) with A(z) = B(ez),

B(ζ) = K4ζ
4 +K3ζ

3 +K2ζ
2 +K1ζ +K0

admits a zero-free solution. Then according to Theorem 2 we have

B0(ζ) = K4ζ
4 +K3ζ

3 +K2ζ
2,

and so
B0(ζ2)1/2 = K

1/2
4 ζ4

(
1 +K3/K4 ζ

−2 +K2/K4 ζ
−4

)1/2

= K
1/2
4 ζ4 +

1
2
K3

K
1/2
4

ζ2 +
(

1
2
K2

K
1/2
4

− 1
8
K2

3

K
3/2
4

)
+ o(1).

Similarly, B0(ζ2)−1/2 = o(1), and ζ2B′
0(ζ

2)/4B0(ζ2) = `/4(1+ o(1)) = 1+ o(1), as ζ →∞. Hence according

to Theorem 2
f ′

f
(z) = R(ez/2) = cK

1/2
4 e2z +

c

2
K3

K
1/2
4

ez +
(
c

2

(
K2

K
1/2
4

− K2
3

4K3/2
4

)
− 1

)
,

and thus

f(z) = exp
{
c

2
K

1/2
4 e2z +

c

2
K3

K
1/2
4

ez +
(
cK

1/2
4

(
K2

2K4
− K2

3

8K2
4

)
− 1

)
z

}
,

in which c2 + 1 = 0. We deduce

d2 =
c

2
K

1/2
4 , d1 =

c

2
K3

K
1/2
4

and d = cK
1/2
4

(
K2

2K4
− K2

3

8K2
4

)
− 1.

Substituting f back into (1.1) gives

K1 =
c

2
K3√
K4

− 1
4
K2

3

K4
+K2K3, K0 = −

(
cK

1/2
4

(
1
2
K2

K4
− K3

8K4

)
− 1

)2

,

in (1.2). This example clearly shows that K4,K3 and K2 completely determine d2, d1 and d, and K1 and

K0.

4. The method of comparing coefficients
Let us consider again the coefficient of (1.1) with ` > 0 being an even integer. By theorem 2 although

symbolic computational software can be used to compute any zero-free solution f of (1.1) and the relations

between the constants Kj in (1.2), the method is less effective when used to discover new properties of (1.1),

especially about new relations of Kj , j = `, · · · , 0. Thus, we provide a second approach to the problem here.

The comparing coefficient method is not only instrumental in the initial stage of this work, but it was used

successfully to consider certain higher-order equations in [8] and [9].

Suppose (1.1) admits a zero-free solution f with A(z) = B(ez) where B(ζ) is given in (1.2) with

` > k ≥ 0 both even. Then according to Proposition 1 (2.2) with ψ(ζ) ≡ 1, f(z) = exp
(
P (ez) + dz

)
where

P (ζ) =
∑`/2

−k/2 djζ
j . Substituting P into (1.1) yields

ζ2P ′′(ζ) +
(
ζP ′(ζ)

)2

+ (2d+ 1)ζP ′(ζ) +
(
d2 +

∑̀
j=−k

Kjζ
j

)
= 0. (4.1)

We immediately deduce ( `
2

)2

d`/2
2 +K`,

(−k
2

)2

d−k/2
2 +K−k = 0, (4.2)

by comparing the coefficients of ζν with ν = ` and −k respectively in (4.1). Similarly, we have
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(A) ν even: `/2 + 1 ≤ ν ≤ `− 1 and − (k − 1) ≤ ν ≤ (k/2 + 1) when k ≥ 4

(ν
2

)2

dν/2
2 + 2

∑
i+j=ν

i<j

ij di dj +Kν = 0 (4.3)

` ≤ ν ≤ `/2,−k/2 ≤ ν ≤ −1,

ν(2d+ ν)dν +
(ν

2

)2

dν/2
2 + 2

∑
i+j=ν

i<j

ij di dj +Kν = 0; (4.4)

(B) ν odd: `/2 + 1 ≤ ν ≤ `− 1, and − (k − 1) ≤ ν ≤ (k/2 + 1) when k ≥ 4

2
∑

i+j=ν
i<j

ij di dj +Kν = 0, (4.5)

` ≤ ν ≤ `/2, and − k/2 ≤ ν ≤ −1

ν(2d+ ν)dν + 2
∑

i+j=ν
i<j

ij di dj +Kν = 0. (4.6)

In particular, we have

d2 + 2
∑

i+j=0
i<j

ij di dj +K0 = 0 (4.7)

for the constant term. The above algorithm can be verified by finite induction.

Example Suppose equation (1.1), with

A(z) = 36e6z + 72e5z + 24e4z + (12 + 6i)e3z − 5e2z + (6− i)ez − 3i
2
e−z +

1
4
e−2z,

admits a solution f with λ(f) = 0. Then Proposition 1 immediately implies

f(z) = exp
( 3∑

j=−1

dje
jz + dz

)

where dj , j = −1, · · · , 3 and d are constants to be determined.

Applying the algorithm (4.2)–(4.7) above, we easily arrive at the following equations
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9d2
3 +K6 = 0, (4.8)

12d2 d3 +K5 = 0, (4.9)

4d2
2 + 6d1 d3 +K4 = 0, (4.10)

4d1 d2 + 3(2d+ 3)d3 +K3 = 0, (4.11)

d2
1 + 2(2d+ 2)d2 − 6d−1 d3 +K2 = 0, (4.12)

−4d2 d−1 + (2d+ 1) d1 +K1 = 0, (4.13)

d2 − 2d1 d−1 +K0 = 0, (4.14)

(1− 2d) d−1 +K−1 = 0, (4.15)

d2
−1 +K−2 = 0, (4.16)

where K6 = 36,K5 = 72,K4 = 24,K3 = −(12 + 6i),K2 = −5,K1 = −6 − i,K0 = 0,K−1 = −3i/2,K−2 =

1/4. Equation (4.8) gives d3 = ±2i. We consider the value d3 = 2i first and treat −2i later. Substituting

d3 into (4.9) yields d2 = 3i. Substituting the values for d3 and d2 into (4.10) yields d1 = −i. Substituting

the values for d3, d2, d1 and K3 into (4.11) gives d = −1. Substituting all the above values for d3, d2, d1, d

and K2 into (4.12) gives d−1 = i/2. It is now a routine exercise to check that the values for d3, d2, d1, d all

satisfy the equations (4.13)–(4.16). Thus

f(z) = exp
(
2ie3z + 3ie2z − iez + i/2e−z − z

)
(4.17)

is the desired solution.

If we had chosen d3 = −2i in (4.8) instead, then similar calculations show that the equations (4.8)–(4.16)

are inconsistent. In fact, this will give a different

A(z) = 36e6 + 72e5z + 24e4z − (12− 6i)e3z − (5− 12i)e2z − (6 + 3i)ez − 5i/2e−z + 1/4e−2z − 3.

Hence (4.17) is, except for a constant multiple, the only zero-free solution for (1.1) with this particular choice

of A(z). This conclusion is in line with the known result of Fact(B) in [3, page 108] that the equation (1.1),

with both ` and k even and k > 0 in (1.2), cannot process two linearly independent solutions each with finite

exponent of convergence of zeros.

Finally, we note that a set of equations similar to (4.2)–(4.7) exist when ` > 0 is odd. One can use these

formulae to prove Theorem 1.
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