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This paper establishes a version of Nevanlinna theory based
on Askey–Wilson divided difference operator for meromorphic
functions of finite logarithmic order in the complex plane C.
A second main theorem that we have derived allows us to
define an Askey–Wilson type Nevanlinna deficiency which
gives a new interpretation that one should regard many
important infinite products arising from the study of basic
hypergeometric series as zero/pole-scarce. That is, their
zeros/poles are indeed deficient in the sense of difference
Nevanlinna theory. A natural consequence is a version
of Askey–Wilson type Picard theorem. We also give an
alternative and self-contained characterisation of the kernel
functions of the Askey–Wilson operator. In addition we have
established a version of unicity theorem in the sense of Askey–
Wilson. This paper concludes with an application to difference
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equations generalising the Askey–Wilson second-order divided
difference equation.

© 2018 Published by Elsevier Inc.

1. Introduction

Without loss of generality, we assume q to be a complex number with |q| < 1. Askey

and Wilson evaluated a q-beta integral ([6, Theorem 2.1]) that allows them to construct

a family of orthogonal polynomials ([6, Theorems 2.2–2.5]) which are eigen-solutions of a

second order difference equation ([6, §5]) now bears their names. The divided difference

operator Dq that appears in the second-order difference equation is called Askey–Wilson

operator. These polynomials, their orthogonality weight, the difference operator and

related topics have found numerous applications and connections with a wide range of

research areas beyond the basic hypergeometric series. These research areas include, for

examples, Fourier analysis ([11]), interpolations ([38], [31]), combinatorics ([20]), Markov

process ([12], [44]), quantum groups ([34], [42]), double affine Hecke (Cherednik) algebras

([15], [33]).

In this paper, we show, building on the strengths of the work of Halburd and Korhonen

[23], [24] and as well as our earlier work on logarithmic difference estimates ([17], [18]),

that there is a very natural function theoretic interpretation of the Askey–Wilson oper-

ator (abbreviated as AW-operator) Dq and related topics. It is not difficult to show that

the AW-operator is well-defined on meromorphic functions. In particular, we show that

there is a Picard theorem associates with the Askey–Wilson operator just as the classical

Picard theorem is associated with the conventional differential operator f ′. Moreover, we

have obtained a full-fledged Nevanlinna theory for slow-growing meromorphic functions

with respect to the AW-operator on C for which the associated Picard theorem follows as

a special case, just as the classical Picard theorem is a simple consequence of the classical

Nevanlinna theory ([40], see also [41], [27] and [46]). This approach allows us to gain new

insights into the Dq and that give a radically different viewpoint from the established

views on the value distribution properties of certain meromorphic functions, such as the

Jacobi theta-functions, generating functions of certain orthogonal polynomials that were

used in L. J. Rogers’ derivation of the two famous Rogers–Ramanujan identities [43], etc.

We also characterise the functions that lie in the kernel of the Askey–Wilson operator,

which we can regard as the constants with respect to the AW-operator.

A value a which is not assumed by a meromorphic function f is called a Picard

(exceptional) value. The Picard theorem states that if a meromorphic f that has three

Picard values, then f necessarily reduces to a constant. For each complex number a,

Nevanlinna defines a deficiency 0 ≤ δ(a) ≤ 1. If δ(a) ∼ 1, then that means f rarely

assumes a. In fact, if a is a Picard value of f , then δ(a) = 1. If f assumes a frequently,

then δ(a) ∼ 0. Nevanlinna’s second fundamental theorem implies that
∑

a∈C
δ(a) ≤ 2 for
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a non-constant meromorphic function. Thus, the Picard theorem follows easily. For each

a ∈ C, we formulate a q-deformation of the Nevanlinna deficiency ΘAW(a) and Picard

value which we call AW-deficiency and AW-Picard value respectively. Their definitions

will be given in §8. The AW-deficiency also satisfies the inequalities 0 ≤ ΘAW(a) ≤ 1.

A very special but illustrative example for a ∈ C to be an AW-Picard value of a

certain f if the pre-image of a ∈ C assumes the form, with some za ∈ C,

xn :=
1

2

(
za qn + q−n/za

)
, n ∈ N ∪ {0}. (1)

This leads to ΘAW(a) = 1.

We illustrate some such AW-Picard values in the following examples from the view-

point with our new interpretation. Let us first introduce some notation.

We define the q-shifted factorials:

(a; q)0 := 1, (a; q)n :=
n∏

k=1

(1 − aqk−1), n = 1, 2, · · · , (2)

and the multiple q-shifted factorials:

(a1, a2, · · · , ak; q)n :=
k∏

j=1

(aj ; q)n. (3)

Thus, the infinite product

(a1, a2, · · · , ak; q)∞ = lim
n→+∞

(a1, a2, · · · , ak; q)n

always converge since |q| < 1.

The infinite products that appear in the Jacobi triple-product formula ([21, p. 15])

f(x) = (q; q)∞(q1/2z, q1/2/z; q)∞ =

∞∑

k=−∞

(−1)kqk2/2zk, (4)

can be considered as a function of x where x = 1
2(z + z−1). The corresponding (zero)

sequence is given by

xn :=
1

2

(
q1/2+n + q−1/2−n

)
, n ∈ N ∪ {0}

where za = (q1/2 + q−1/2)/2 (a = 0). Thus 0 is an AW-Picard value of f when viewed

as a function of x, and hence f has ΘAW(0) = 1.

Our next example is a generating function for a class of orthogonal polynomials known

as continuous q-Hermite polynomials first derived by Rogers in 1895 [43]
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f(x) =
1

(teiθ, te−iθ; q)∞
=

∞∑

k=0

Hk(x | q)

(q; q)k
tk, 0 < |t| < 1,

where

Hn(x | q) =
n∑

k=0

(q; q)n

(q; q)k (q; q)n−k
ei(n−2k)θ, x = cos θ.

The orthogonality of these polynomials were worded out by Askey and Ismail [5, 1983].

We easily verify that the ∞ is an AW-Picard value of f when viewed as a functions of

x with the pole-sequence given by

xn :=
1

2

(
t qn + q−n/t

)
, n ∈ N ∪ {0}, (5)

where za = (t + t−1)/2 (a = ∞). This implies ΘAW(∞) = 1.

Our third example has both zeros and poles. It is again a generating function for a

more general class of orthogonal polynomials also derived by Rogers in 1895 [43]. That

is,

H(x) :=
(βeiθt, βe−iθt; q)∞

(eiθt, e−iθt; q)∞
=

∞∑

n=0

Cn(x; β | q) tn, x = cos θ, (6)

where

Cn(x; β | q) =

n∑

k=0

(β; q)k(β; q)n−k

(q; q)k(q; q)n−k
cos(n − 2k)θ

=
n∑

k=0

(β; q)k(β; q)n−k

(q; q)k(q; q)n−k
Tn−2k(x)

is called continuous q-ultraspherical polynomials by Askey and Ismail [5]. Here the Tn(x)

denotes the n-th Chebychev polynomial of the first kind. Rogers [43] used these polyno-

mials to derive the two celebrated Rogers–Ramanujan identities

∞∑

n=0

qn2

(q; q)n
=

1

(q; q5)∞(q4; q5)∞
and

∞∑

n=0

qn2+n

(q; q)n
=

1

(q2; q5)∞(q3; q5)∞
.

One can find a thorough discussion about the derivation of these identities in Andrews

[3, §2.5].

The zero- and pole-sequences of H(x) in the x-plane are given, respectively, by

xn :=
1

2

(
βt qn + q−n/(βt)

)
, n ∈ N ∪ {0}, (7)
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and (5). The point is that we have both 0 and ∞ to be the AW-Picard values according

to our interpretation. Thus ΘAW(0) = 1 and ΘAW(∞) = 1 for the generating function

H(x).

Our Askey–Wilson version of Nevanlinna’s second fundamental theorem (Theo-

rem 7.1) for slow-growing meromorphic functions not belonging to the kernel of Dq

also implies that

∑

a∈C

ΘAW(a) ≤ 2. (8)

This new relation allows us to deduce a AW-Picard theorem (Theorem 10.2): Suppose a

slow-growing meromorphic function f has three values a, b, c ∈ C such that ΘAW(a) =

ΘAW(b) = ΘAW(c) = 1. Then f lies in the kernel of Dq.

Note that, what Nevanlinna proved can be viewed when a meromorphic function has

three Picard values then the function lies in the kernel of differential operator.

By the celebrated Jacobi triple-product formula [4, p. 497], we can write the Jacobi

theta-function ϑ4(z, q) = 1 + 2
∑∞

k=1(−1)nqk2

cos 2kz in the infinite product form

ϑ4(z, q) = (q2; q2)∞ (q e2iz, q e−2iz, q2)∞

implying that it too has ΘAW(0) = 1 when viewed as a function f(x) of x. Since the

f(x) is entire, so that the relationship (8) becomes

1 = ΘAW(0) ≤
∑

a∈C

ΘAW(a) ≤ 1.

We deduce from this inequality that there could not be a non-zero a such that the

theta function have f(xn) = a only on a sequence {xn} of the form (1). Otherwise, it

would follow from Theorem 8.4 that the theta function ϑ4 would belong to the kernel

ker Dq, contradicting the kernel functions representation that we shall discuss in the next

paragraph. The same applies to the remaining three Jacobi theta-functions. Intuitively

speaking, the more zeros the function has out of the maximal allowable number of zeros

of the meromorphic function can have implies the larger the AW-Nevanlinna deficiency

ΘAW(0). That is, the function assumes x = 0 less often in the AW-sense, even though

the function actually assumes x = 0 more often in the conventional sense. Thus, since

the theta function assumes zero maximally, so it misses x = 0 also maximally in the

AW-sense. The following examples that we shall study in details in §9 show how zeros

are missed/assumed in proportion to the maximally allowed number of zeros against

their AW-deficiencies. That is, for a given integer n,

f n−1
n

(x) =

n−1∏

k=0

(qkeiθ, qke−iθ; qn+1)∞, ΘAW(0) =
n − 1

n
,

and
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f 1
n

(x) =
n−1∏

k=0

(q2keiθ, q2ke−iθ; q2n−1)∞, ΘAW(0) =
1

n
.

In [30, p. 365] Ismail has given an example of meromorphic function that belongs to

ker Dq:

f(x) =
(cos θ − cos φ)

(
qei(θ+φ), qe−i(θ+φ); q)∞(qei(θ−φ), qe−i(θ−φ); q

)
∞(

q1/2ei(θ+φ), q1/2e−i(θ+φ); q)∞(q1/2ei(θ−φ), q1/2e−i(θ−φ); q
)

∞

, (9)

for a fixed φ. Let f belong to the kernel of Dq, that is Dqf ≡ 0. Then one can readily

deduce from (18) that the f , when viewed upon as a function of θ, is doubly periodic,

and hence must be an elliptic function in θ.3 However, the authors could not find an

explicit discussion of this observation in the literature. Here we offer an alternative and

self-contained derivation to characterise these kernel functions when viewed as a function

of x = cos θ. Our Theorem 10.2 shows that all functions in the ker Dq are essentially a

product of functions of this form. Intuitively speaking, the functions that lie in the kernel

must have zero- and pole-sequences described by (1). We utilise the linear structure of the

ker Dq to deduce any given number of linear combination of certain q-infinite products

can again be expressed in terms of a single q-infinite product of the same form whose

zero- and pole-sequences can again be described by (1) (see Theorems 10.3 and 10.4).

Many important Jacobi theta-function identities such as the following well-known (see

[45])

ϑ2
4(z) ϑ2

4 + ϑ2
2(z) ϑ2

2 = ϑ2
3(z) ϑ2

3 (10)

and

ϑ3(z + y) ϑ3(z − y) ϑ2
2 = ϑ2

3(y) ϑ2
3(z) + ϑ2

1(y) ϑ2
1(z) (11)

are of the forms described amongst our Theorems 10.3 and 10.4.

The key to establishing a q-deformation of the classical Nevanlinna second fundamen-

tal theorem is based on our AW-logarithmic difference estimate of the proximity function

for the meromorphic function f :

m
(

r,
(Dqf)(x)

f(x)

)
= O

(
(log r)σlog−1+ε

)
(12)

holds for all x = r sufficiently large, where σlog is the logarithmic order of f (Theo-

rem 3.1). This estimate is the key of our argument to establishing our AW-Nevanlinna

theory (see also [41], [23], [24]). We have also obtained a corresponding pointwise estimate

(Theorem 3.2) outside a set of finite logarithmic measure.

3 The authors are grateful for the referee who pointed out this fact.
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Similar estimates for the simple difference operator ∆f(x) = f(x+η)−f(x) for a fixed

η 6= 0, were obtained by Chiang and Feng in [17], [18], and by Halburd and Korhonen [23]

independently in a slightly different form for finite-order meromorphic functions. Halburd

et al. showed the same for the case of q-difference operator ∆qf(x) = f(qx) − f(x) in

[7] for zero-order meromorphic functions, whilst Cheng and Chiang [14] showed that a

similar logarithmic difference estimate again holds for the Wilson operator.

There has been a surge of activities in extending the classical Nevanlinna theory

which is based on differential operator to various difference operators in recent years

such as the ones mentioned above [13]. The idea has been extended to tropical functions

[26], [36]. The original intention was to apply Nevanlinna theory to study integrability

of non-linear difference equations ([1], [24]). But as it turns out that difference type

Nevanlinna theories have revealed previously unnoticed complex analytic structures of

seemingly unrelated subjects far from the original intention, such as the topic discussed

in this paper.

This paper is organised as follows. We will introduce basic notation of Nevanlinna

theory and Askey–Wilson theory in §2. The AW-type Nevanlinna second main theorems

will be stated in §3 and §7. The definition of AW-type Nevanlinna counting function will

also be defined in §7. The proofs of the logarithmic difference estimate (12) and the trun-

cated form of the second main theorem are given in §4 and §7 respectively. The AW-type

Nevanlinna defect relations as well as an AW-type Picard theorem are given in §8. This

is followed by examples constructed with arbitrary rational AW-Nevanlinna deficient

values in §9. We characterize the transcendental functions that belongs to the kernel

of the AW-operator in §10. These are the so-called AW-constants. We also illustrate

how these functions are related to certain classical identities of Jacobi theta-functions

there. It is known that the Askey–Wilson orthogonal polynomials are eigen-functions to

a second-order linear self-adjoint difference equation given in [6]. In §11 we demonstrate

that if two finite logarithmic order meromorphic functions such that the pre-images at

five distinct points in C are identical except for an infinite sequences of the form as given

in (1), then the two functions must be identical, thus giving an AW-Nevanlinna version

of the well-known unicity theorem. We study the Nevanlinna growth of entire solutions

to a more general second-order difference equation in §12 than the Askey–Wilson self-

adjoint Strum–Liouville type equation (171) using the tools that we have developed in

this paper.

2. Askey–Wilson operator and Nevanlinna characteristic

Let f(x) be a meromorphic function on C. Let r = |x|, then we denote log+ r =

max{log r, 0}. We define the Nevanlinna characteristic of f to be the real-valued function

T (r, f) := m(r, f) + N(r, f), (13)

where
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m(r, f) =

2π∫

0

log+ |f(reiθ)| dθ, N(r, f) =

r∫

0

n(t, f) − n(0, f)

t
dt (14)

and n(r, t) denote the number of poles in {|x| < r}. The real-valued functions m(r, f)

and N(r, f) are called the proximity and integrated counting functions respectively. The

characteristic function T (r, f) is an increasing convex function of log r, which plays the

role of log M(r, f) for an entire function. The first fundamental theorem states that for

any complex number c ∈ C

T (r, c) := T
(

r,
1

f − c

)
= T (r, f) + O(1) (15)

as r → +∞. We refer the reader to Nevanlinna’s [41] and Hayman’s classics [27] (see

also [46]) for the details of the Nevanlinna theory.

We now consider the Askey–Wilson operator. We shall follow the original notation

introduced by Askey and Wilson in [6] (see also alternative notation in [30, p. 300]) with

slight modifications. Let f(x) be a meromorphic function on C. Let x = cos θ. We define

f̆(z) = f
(
(z + 1/z)/2

)
= f(x) = f(cos θ), z = eiθ. (16)

That is, we regard the function f(x) as a function f̆(z) of eiθ = z. Then for x 6= ±1 the

q-divided difference operator

(
Dqf

)
(x) :=

δq f̆

δqx̆
:=

f̆(q
1
2 eiθ) − f̆(q− 1

2 eiθ)

ĕ(q
1
2 eiθ) − ĕ(q− 1

2 eiθ)
, eiθ = z, (17)

where e(x) = x is the identity map, is called the Askey–Wilson divided difference opera-

tor. In these exceptional cases, we have
(
Dqf

)
(±1) = limx→±1

x6=±1

(
Dqf

)
(x)

= f ′(±(q
1
2 + q− 1

2 )/2) instead. It can also be written in the equivalent form

(
Dqf

)
(x) :=

f̆(q
1
2 eiθ) − f̆(q− 1

2 eiθ)

(q
1
2 − q− 1

2 )(z − 1/z)/2
, x = (z + 1/z)/2 = cos θ. (18)

Since there are two branches of z that corresponds to each fixed x, we choose a branch

of z = x +
√

x2 − 1 such that
√

x2 − 1 ≈ x as x → ∞ and x /∈ [−1, 1]. We define the

values of z on [−1, 1] by the limiting process that x approaches the interval [−1, 1] from

above the real axis. Thus, z assumes the value z = x + i
√

1 − x2 where x is now real and

|x| ≤ 1. So we can guarantee that for each x in C there corresponds a unique z in C and

z → ∞ as x → ∞. Finally we note that if we know that f(x) is analytic at x, then

lim
q→1

(
Dqf

)
(x) = f ′(x).
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We can now define a polynomials basis

φn(cos θ; a) := (aeiθ, ae−iθ; q)n =
n−1∏

k=0

(1 − 2axqk + a2q2k); (19)

which plays the role of the (1 − x)n in conventional differential operator. Askey and

Wilson [6] computed that

Dqφn(x; a) = −2a(1 − qn)

1 − q
φn−1(x; aq

1
2 ), (20)

for each integer n ≥ 1. Ismail and Stanton [31] established that if f(x) is an entire

function satisfying

lim sup
r→∞

log M(r, f)

(log r)2
= c <

1

2 log |q| , (21)

where M(r, f) := max|x|=r |f(x)| denotes the maximum modulus of f , then one has

f(x) =

∞∑

k=0

fk,φ (aeiθ, ae−iθ; q)k, fk, φ =
(q − 1)k

(2a)k(q; q)k
q−k(k−1)/4(Dk

q f)(xk) (22)

where the fk, φ is the k-th Taylor coefficients and the xk is defined by

xk :=
(
aqk/2 + q−k/2/a

)
/2, k ≥ 0. (23)

We note, however, that the interpolation points xk (1) are those points with k being even.

We record here some simple observations about the operator Dq acting on meromor-

phic functions, the justification of them will be given in the Appendix A. We first need

the averaging operator [30, p. 301]:

(Aqf)(x) =
1

2

[
f̆(q

1
2 z) + f̆(q− 1

2 z)
]
.

Theorem 2.1. Let f be an entire function. Then Aqf and Dqf are entire. Moreover, if

f(x) is meromorphic, then so are Aqf and Dqf .

The useful product/quotient rule [30, p. 301] is given by

Dq(f/g) = (Aqf)(Dq1/g) + (Aq1/g)(Dqf). (24)

Since we consider meromorphic functions in this paper so we extend the growth restric-

tion on f from (21) to those of finite logarithmic order [16], [9] defined by

lim sup
r→∞

log T (r, f)

log log r
= σlog(f) = σlog < +∞. (25)
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It follows from an elementary consideration that the logarithmic order for transcendental

function must have σlog(f) ≥ 1, and σlog(f) = 1 for rational functions and σlog = 0 for

constant functions. We note that the growth assumption in (21) is a special case of our

(25).

Now let us suppose that f(x) is a meromorphic function that satisfies (25). Then f has

order zero (in the proper Nevanlinna order sense (see [27])). It follows from a result by

Miles [39] that f can be represented as a quotient f = g/h where both g and h are entire

functions and that each of them again satisfies (25). Thus the Askey–Wilson operator

is well-defined on the class of slow-growing finite logarithmic order meromorphic func-

tions. We refer the reader to [8], [16], [9] and [28] for further properties of slow-growing

meromorphic functions.

3. Askey–Wilson type Nevanlinna theory – part I: preliminaries

Nevanlinna’s second main theorem is a deep generalisation of the Picard theorem.

Nevanlinna’s second main theorem implies that for any meromorphic function f satisfies

the defect relation
∑

c∈Ĉ
δ(c) ≤ 2. That is, if f 6= a, b, c on Ĉ, then δ(a) = δ(b) =

δ(c) = 1. This is a contradiction to Nevanlinna’s defect relation. The proof of the Second

Main Theorem is based on the logarithmic derivative estimates m(r, f ′/f) = o(T (r, f))

which is valid for all |x| = r if f has finite order and outside an exceptional set of

finite linear measure in general. We have obtained earlier that for a fixed η 6= 0 and any

finite order meromorphic function f of finite order σ, and arbitrary ε > 0 the estimate

m
(
f(x + η)/f(x)

)
= O(rσ−1+ε) [17] valid for all |x| = r. Halburd and Korhonen [23]

proved a comparable estimate independently for their pioneering work on a difference

version of Nevanlinna theory [24] and their work on the integrability of discrete Painlevé

equations [25]. Here we also have a AW-logarithmic difference lemma:

Theorem 3.1. Let f(x) be a meromorphic function of finite logarithmic order σlog (25)

such that Dqf 6≡ 0. Then we have, for each ε > 0, that

m
(

r,
(Dqf)(x)

f(x)

)
= O

(
(log r)σlog−1+ε

)
(26)

holds for all |x| = r > 0 sufficiently large.

This estimate is crucial to the establishment of the Nevanlinna theory in the sense

of Askey–Wilson put forward in this paper. In addition to the average estimate above,

we have obtained a corresponding pointwise estimate of the logarithmic difference which

holds outside some exceptional set of |x|:

Theorem 3.2. Let f(x) be a meromorphic function of finite logarithmic order σlog (25)

such that Dqf 6≡ 0. Then we have, for each ε > 0, that
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log+
∣∣∣ (Dqf)(x)

f(x)

∣∣∣ = O
(
(log r)σlog−1+ε

)
(27)

holds for all |x| = r > 0 outside an exceptional set of finite logarithmic measure.

This estimate when written in the form

∣∣∣ (Dqf)(x)

f(x)

∣∣∣ = exp
[
(log |x|)σlog−1+ε

]

should be compared to our earlier estimate |f(x + 1)/f(x)| ≤ exp
[
|x|σ−1+ε

]
[17, Theo-

rem 8.2] and the classical estimate |f ′(x)/f(x)| ≤ |x|σ−1+ε of Gundersen [22, Corollary 2]

for meromorphic functions of finite order σ, both hold outside exceptional sets of |x| of

finite logarithmic measures. An analogue has been obtained recently by Cheng and the

first author of this paper in [14] for the Wilson divided difference operator. However,

unlike in all these estimates where Cartan’s lemma was used in their derivations, our

argument is direct and avoids the Cartan lemma.

We will prove the Theorem 3.1 and Theorem 3.2 in section §4.

Theorem 3.3. Let f be a meromorphic function of finite logarithmic order σlog. Then,

for each ε > 0,

N(r, Dqf) ≤ 2N(r, f) + O
(
(log r)σlog−1+ε

)
+ O(log r). (28)

We shall prove this theorem in §5.

Theorem 3.4. Let f be a meromorphic function of finite logarithmic order σlog. Then,

for each ε > 0,

T (r, Dqf) ≤ 2T (r, f) + O
(
(log r)σlog−1+ε

)
+ O(log r). (29)

In particular, this implies

σlog(Dqf) ≤ σlog(f) = σlog. (30)

Proof. We deduce from Theorem 3.1 and Theorem 3.3 that

T (r, Dqf) ≤ m
(

r,
(Dqf)(x)

f(x)

)
+ m(r, f) + N(r, Dqf)

≤ m(r, f) + 2N(r, f) + O
(
(log r)

)σlog−1+ε
+ O(log r)

≤ 2T (r, f) + O
(
(log r)σlog−1+ε

)
+ O(log r),

(31)

as required. ✷

We are now ready to state our first version of the Second Main Theorem whose proof

will be given in §6.
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Theorem 3.5. Suppose that f(z) is a meromorphic function of finite logarithmic order

σlog (25) such that Dqf 6≡ 0 and let A1, A2, · · · , Ap (p ≥ 2), be mutually distinct elements

in C. Then we have for every ε > 0

m(r, f) +

p∑

ν=1

m(r, Aν) ≤ 2 T (r, f) − NAW(r, f) + O
(
(log r)σlog−1+ε

)
(32)

holds for all r = |x| > 0, where

NAW(r, f) := 2N(r, f) − N(r, Dqf) + N
(

r,
1

Dqf

)
. (33)

4. Logarithmic difference estimates and proofs of Theorem 3.2 and 3.1

We recall the following elementary estimate.

Lemma 4.1 ([17]). Let α, 0 < α ≤ 1 be given. Then there exists a constant Cα > 0

depending only on α, such that for any two complex numbers x1 and x2, we have the

inequality

∣∣∣∣log

∣∣∣∣
x1

x2

∣∣∣∣
∣∣∣∣ ≤ Cα

(∣∣∣∣
x1 − x2

x2

∣∣∣∣
α

+

∣∣∣∣
x2 − x1

x1

∣∣∣∣
α)

. (34)

In particular, C1 = 1.

Lemma 4.2. Let f(x) be a meromorphic function of finite logarithmic order σlog (25)

such that Dqf 6≡ 0 and α is an arbitrary real number such that 0 < α < 1. Then there

exist a positive constant Cα such that for 2(|q1/2| + |q−1/2|)|x| < R, we have

log+
∣∣∣ (Dqf)(x)

f(x)

∣∣∣ ≤ 4 R (|q1/2 − 1| + |q−1/2 − 1|) |x|
(R − |x|)[R − 2(|q1/2| + |q−1/2|)|x|]

(
m
(
R, f

)
+ m

(
R,

1

f

))

+ 2(|q1/2 − 1| + |q−1/2 − 1|)|x|
( 1

R − |x| +
1

R − 2(|q1/2| + |q−1/2|)|x|
)

×
(

n(R, f) + n(R,
1

f
)
)

+ 2Cα(|q1/2 − 1|α + |q−1/2 − 1|α)|x|α)
∑

|cn|<R

1

|x − cn|α

+ 2Cα(|q−1/2 − 1|α|x|α)
∑

|cn|<R

1

|x + c(q)q−1/2z−1 − q−1/2cn|α

+ 2Cα(|q1/2 − 1|α|x|α)
∑

|cn|<R

1

|x − c(q)q1/2z−1 − q1/2cn|α + log 2,

(35)

where the {cn} denotes the combined zeros and poles sequences of f .
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Proof. We start by expressing all the logarithmic difference in terms of complex variables

x as well as in z in the Askey–Wilson divided difference operator. So it follows from (18)

that

(Dqf)(x)

f(x)
=

f̆(q
1
2 eiθ) − f̆(q− 1

2 eiθ)

f(x)(q
1
2 − q− 1

2 )(z − 1/z)/2
, (36)

=
f
[
(q1/2z + q−1/2z−1)/2

]
− f

[
(q−1/2z + q1/2z−1)/2

]

f(x)(q
1
2 − q− 1

2 )(z − 1/z)/2

=
1

(q
1
2 − q− 1

2 )(z − 1/z)/2
(37)

×
(

f
[
(q1/2z + q−1/2z−1)/2

]

f(x)
− f

[
(q−1/2z + q1/2z−1)/2

]

f(x)

)

where

x = (z + 1/z)/2 = cos θ

and we recall that we have fixed our branch of z for the corresponding x in the above

expressions. Let

c(q) = (q−1/2 − q1/2)/2. (38)

We deduce from (36) that, by letting |x| and hence |z| to be sufficiently large

log+
∣∣∣ (Dqf)(x)

f(x)

∣∣∣ ≤ log+
∣∣∣ 1

(q
1
2 − q− 1

2 )(z − 1/z)/2

∣∣∣

+ log+
∣∣∣
f
[
(q1/2z + q−1/2z−1)/2

]

f(x)

∣∣∣

+ log+
∣∣∣
f
[
(q−1/2z + q1/2z−1)/2

]

f(x)

∣∣∣+ log 2

≤ log+ 2/|c(q)z| + log+
∣∣∣
f
[
(q1/2z + q−1/2z−1)/2

]

f(x)

∣∣∣

+ log+
∣∣∣
f
[
(q−1/2z + q1/2z−1)/2

]

f(x)

∣∣∣+ log 2

=

∣∣∣∣ log
∣∣∣
f
[
(q1/2z + q−1/2z−1)/2

]

f(x)

∣∣∣
∣∣∣∣

+

∣∣∣∣ log
∣∣∣
f
[
(q−1/2z + q1/2z−1)/2

]

f(x)

∣∣∣
∣∣∣∣+ log 2.

(39)

For |x| and hence |z| to be sufficiently large,
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|(q±1/2z + q∓1/2z−1)/2| = |q±1/2x + (q∓1/2 − q±1/2)z−1/2| ≤ 2|q±1/2x| < R. (40)

It is obvious that |x| < R. We apply the Poisson–Jensen formula (see e.g., [27, p. 1]) to

estimate the individual terms on the right-hand side of the above expression (39). Thus,

log

∣∣∣∣∣
f
[
(q1/2z + q−1/2z−1)/2

]

f(x)

∣∣∣∣∣ = log
∣∣∣f
[
(q1/2z + q−1/2z−1)/2

]∣∣∣− log |f(x)|

=
1

2π

2π∫

0

log |f(Reiφ) |ℜ
(Reiφ + (q1/2z + q−1/2z−1)/2

Reiφ − (q1/2z + q−1/2z−1)/2

)
dφ

− 1

2π

2π∫

0

log |f(Reiφ)| ℜ
(Reiφ + x

Reiφ − x

)
dφ

+
∑

|bµ|<R

log
∣∣∣R

2 − b̄µ(q1/2z + q−1/2z−1)/2

R[(q1/2z + q−1/2z−1)/2 − bµ]

∣∣∣

−
∑

|aν |<R

log
∣∣∣R

2 − āν(q1/2z + q−1/2z−1)/2

R[(q1/2z + q−1/2z−1)/2 − aν ]

∣∣∣

−
∑

|bµ|<R

log
∣∣∣ R2 − b̄µx

R(x − bµ)

∣∣∣+
∑

|aν |<R

log
∣∣∣ R2 − āνx

R(x − aν)

∣∣∣.

That is,

log

∣∣∣∣∣
f
[
(q1/2z + q−1/2z−1)/2

]

f(x)

∣∣∣∣∣

=
1

2π

2π∫

0

log |f(Reiφ) |ℜ
( Reiφ (q1/2z + q−1/2z−1 − 2x)

(Reiφ − x)[Reiφ − (q1/2z + q−1/2z−1)/2]

)
dφ

+
∑

|bµ|<R

log
∣∣∣R

2 − b̄µ(q1/2z + q−1/2z−1)/2

R2 − b̄µx

∣∣∣

−
∑

|bµ|<R

log
∣∣∣R((q1/2z + q−1/2z−1)/2 − bµ)

R(x − bµ)

∣∣∣

−
∑

|aν |<R

log
∣∣∣R

2 − āν(q1/2z + q−1/2z−1)/2

R2 − āνx

∣∣∣

+
∑

|aν |<R

log
∣∣∣R((q1/2z + q−1/2z−1)/2 − aν)

R(x − aν)

∣∣∣

=
1

2π

2π∫

0

log |f(Reiφ) |ℜ
( Reiφ [2(q1/2 − 1) x + (q−1/2 − q1/2)z−1]

(Reiφ − x)[Reiφ − (q1/2x + (q−1/2 − q1/2)z−1/2)]

)
dφ (41)
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+
∑

|bµ|<R

log
∣∣∣R

2 − b̄µ[q1/2x + (q−1/2 − q1/2)/2 z−1]

R2 − b̄µx

∣∣∣

−
∑

|bµ|<R

log
∣∣∣ [q

1/2x + (q−1/2 − q1/2)/2 z−1] − bµ

(x − bµ)

∣∣∣

−
∑

|aν |<R

log
∣∣∣R

2 − āν [q1/2x + (q−1/2 − q1/2)/2 z−1]

R2 − āνx

∣∣∣

+
∑

|aν |<R

log
∣∣∣ [q

1/2x + (q−1/2 − q1/2)/2 z−1] − aν

(x − aν)

∣∣∣

=
1

2π

2π∫

0

log |f(Reiφ) |ℜ
( 2 Reiφ [(q1/2 − 1) x + c(q) z−1]

(Reiφ − x)[Reiφ − (q1/2x + c(q) z−1)]

)
dφ

+
∑

|bµ|<R

log
∣∣∣R

2 − b̄µ[q1/2x + c(q) z−1]

R2 − b̄µx

∣∣∣−
∑

|bµ|<R

log
∣∣∣ [q

1/2x + c(q) z−1] − bµ

x − bµ

∣∣∣

−
∑

|aν |<R

log
∣∣∣R

2 − āν [q1/2x + c(q) z−1]

R2 − āνx

∣∣∣+
∑

|aν |<R

log
∣∣∣ [q

1/2x + c(q) z−1] − aν

x − aν

∣∣∣

where we have made the substitution (38). We let |x| and hence |z| be sufficiently large,

so we may assume that

|c(q)z−1| < min(|q−1/2x|, |q1/2x|, |(q1/2 − 1)x|, |(q−1/2 − 1)x|)

in the following calculations.

We notice that the integrated logarithmic average term from (41) has the following

upper bound

∣∣∣ 1

2π

2π∫

0

log |f(Reiφ) |ℜ
( 2 Reiφ [(q1/2 − 1) x + c(q) z−1]

(Reiφ − x)[Reiφ − (q1/2x + c(q) z−1)]

)
dφ
∣∣∣

≤ 1

2π

2π∫

0

∣∣ log |f(Reiφ) |
∣∣ 4 R |q1/2 − 1| |x|
(R − |x|)(R − 2|q1/2x|) dφ

≤ 4 R |q1/2 − 1| |x|
(R − |x|)(R − 2|q1/2x|)

(
m
(
R, f

)
+ m

(
R,

1

f

))
.

(42)

Hence (41) becomes

∣∣∣∣∣ log
∣∣∣
f
[
(q1/2z + q−1/2z−1)/2

]

f(x)

∣∣∣
∣∣∣∣∣

≤ 4 R |q1/2 − 1| |x|
(R − |x|)(R − 2|q1/2x|)

(
m
(
R, f

)
+ m

(
R,

1

f

))
(43)
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+
∑

|bµ|<R

∣∣∣∣∣ log
∣∣∣R

2 − b̄µ[q1/2x + c(q) z−1]

R2 − b̄µx

∣∣∣
∣∣∣∣∣+

∣∣∣∣∣
∑

|bµ|<R

log
∣∣∣ [q

1/2x + c(q) z−1] − bµ

x − bµ

∣∣∣
∣∣∣∣∣

+
∑

|aν |<R

∣∣∣∣∣ log
∣∣∣R

2 − āν [q1/2x + c(q) z−1]

R2 − āνx

∣∣∣
∣∣∣∣∣+

∑

|aν |<R

∣∣∣∣∣ log
∣∣∣ [q

1/2x + c(q) z−1] − aν

x − aν

∣∣∣
∣∣∣∣∣

Applying the Lemma 4.1 with α = 1, to each individual term in the first summand of

(43) with |bν | < R yields

∣∣∣∣∣ log
∣∣∣R

2 − b̄µ[q1/2x + c(q)z−1]

R2 − b̄µx

∣∣∣
∣∣∣∣∣ (44)

≤
∣∣∣ b̄µ[(1 − q1/2)x − c(q)z−1])

R2 − b̄µ[q1/2x + c(q)z−1]

∣∣∣+
∣∣∣ b̄µ[(1 − q1/2)x − c(q)z−1])

R2 − b̄µx

∣∣∣

≤ 2R|1 − q1/2||x|
R2 − 2R|q1/2x| +

2R|1 − q1/2||x|
R2 − R|x|

= 2|q1/2 − 1||x|
( 1

R − |x| +
1

R − 2|q1/2x|
)

Similarly, we have, for the third summand that for |aµ| < R,

∣∣∣∣∣ log
∣∣∣R

2 − āν [q1/2x + c(q)z−1]

R2 − āνx

∣∣∣
∣∣∣∣∣ (45)

= 2|q1/2 − 1||x|
( 1

R − |x| +
1

R − 2|q1/2x|
)

Again applying the Lemma 4.1 with 0 ≤ α < 1 to each individual term in the second

summand of (41) yields

∣∣∣∣∣ log
∣∣∣q

1/2x + c(q)z−1 − bµ

x − bµ

∣∣∣
∣∣∣∣∣ (46)

≤ Cα

(∣∣∣ (q
1/2 − 1)x + c(q)z−1

q1/2x + c(q)z−1 − bµ

∣∣∣
α

+
∣∣∣ (q

1/2 − 1)x + c(q)z−1

x − bµ

∣∣∣
α)

≤ 2Cα(|q1/2 − 1|α|x|α)
( 1

|x − bµ|α +
1

|(q1/2x + c(q)z−1 − bµ|α
)

Similarly, we have, for the fourth summand,

∣∣∣∣∣ log
∣∣∣q

1/2x + c(q)z−1 − aν

x − aν

∣∣∣
∣∣∣∣∣ (47)

≤ 2Cα(|q1/2 − 1|α|x|α)
( 1

|x − aν |α +
1

|(q1/2x + c(q)z−1 − aν |α
)

.
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Combining the inequalities (43), (44)–(47) yields

∣∣∣∣∣ log
∣∣∣
f
[
(q1/2z + q−1/2z−1)/2

]

f(x)

∣∣∣
∣∣∣∣∣

≤ 4 R |q1/2 − 1| |x|
(R − |x|)[R − 2|q1/2x|]

(
m
(
R, f

)
+ m

(
R,

1

f

))

+ 2|q1/2 − 1||x|
( 1

R − |x| +
1

R − 2|q1/2x|
)(

n(R, f) + n(R,
1

f
)
)

+ 2Cα(|q1/2 − 1|α|x|α)
∑

|aν |<R

( 1

|x − aν |α +
1

|(q1/2x + c(q)z−1 − aν |α
)

+ 2Cα(|q1/2 − 1|α|x|α)
∑

|bµ|<R

( 1

|x − bµ|α +
1

|(q1/2x + c(q)z−1 − bµ|α
)

=
4 R |q1/2 − 1| |x|

(R − |x|)[R − 2|q1/2x|]
(

m
(
R, f

)
+ m

(
R,

1

f

))

+ 2|q1/2 − 1||x|
( 1

R − |x| +
1

R − 2|q1/2x|
)(

n(R, f) + n(R,
1

f
)
)

+ 2Cα(|q1/2 − 1|α|x|α)
∑

|cn|<R

( 1

|x − cn|α +
1

|(q1/2x + c(q)z−1 − cn|α
)

(48)

where we have re-labelled all the zeros {aν} and poles {bµ} by the single sequence {cn}.

Replacing q by q−1 in the (48), we obtain for |x| sufficiently large

∣∣∣∣∣ log
∣∣∣
f
[
(q−1/2z + q1/2z−1)/2

]

f(x)

∣∣∣
∣∣∣∣∣

≤ 4 R |q−1/2 − 1| |x|
(R − |x|)[R − 2|q−1/2x|]

(
m
(
R, f

)
+ m

(
R,

1

f

))

+ 2|q−1/2 − 1||x|
( 1

R − |x| +
1

R − 2|q−1/2x|
)(

n(R, f) + n(R,
1

f
)
)

+ 2Cα(|q−1/2 − 1|α|x|α)
∑

|cn|<R

( 1

|x − cn|α +
1

|(q−1/2x − c(q)z−1 − cn|α
)

(49)

Substituting the (48) and (49) into (39) yields (35). ✷

Proof of Theorem 3.2. In order to give an upper bound estimate for the last three

summands of the above sum (35), we need to avoid exceptional sets arising from the

sequence given by

{dn} := {cn} ∪ {cn q1/2} ∪ {cn q−1/2}.
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Given ε > 0, let

En =

{
r : r ∈

[
|dn| − |dn|

logσlog+ε(|dn| + 3)
, |dn| +

|dn|
logσlog+ε(|dn| + 3)

]}
(50)

and

E = ∪nEn.

Henceforth we consider the |x| /∈ E. It is not difficult to see the inequality

|x − dn| ≥
∣∣|x| − |dn|

∣∣ ≥ |x|
2 logσlog+ε(|x| + 3)

, (51)

holds for all |x| sufficiently large. Thus

∑

|cn|<R

1

|x − cn|α ≤ 2α logα σlog+ε(|x| + 3)

|x|α
(

n(R, f) + n(R,
1

f
)
)

. (52)

Similarly, we have

|x + c(q)q−1/2z−1 − q−1/2cn| ≥ |x − q−1/2cn| − |c(q)q−1/2z−1|
≥
∣∣|x| − |q−1/2cn|

∣∣− |c(q)q−1/2z−1|

≥ |x|
2 logσlog+ε(|x| + 3)

− |c(q)q−1/2z−1|

≥ |x|
3 logσlog+ε(|x| + 3)

,

(53)

and

|x − c(q)q1/2z−1 − q1/2cn| ≥ |x|
3 logσlog+ε(|x| + 3)

(54)

holds for |x| sufficiently large. Hence

∑

|cn|<R

1

|x + c(q)q−1/2z−1 − q−1/2cn|α ≤ 3α logα(σlog+ε)(|x| + 3)

|x|α
(

n(R, f) + n(R,
1

f
)
)

(55)

and

∑

|cn|<R

1

|x − c(q)q1/2z−1 − q1/2cn|α ≤ 3α logα(σlog+ε)(|x| + 3)

|x|α
(

n(R, f)+n(R,
1

f
)
)

. (56)

We obtain from (35), after substituting (52), (55)–(56), the inequality
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log+
∣∣∣ (Dqf)(x)

f(x)

∣∣∣ ≤ 4 R (|q1/2 − 1| + |q−1/2 − 1|) |x|
(R − |x|)[R − 2(|q1/2| + |q−1/2|)|x|]

(
m
(
R, f

)
+ m

(
R,

1

f

))

+ 2(|q1/2 − 1| + |q−1/2 − 1|)|x|
( 1

R − |x| +
1

R − 2(|q1/2| + |q−1/2|)|x|
)

×
(

n(R, f) + n(R,
1

f
)
)

+ Dα (|q1/2 − 1|α + |q−1/2 − 1|α) logα(σlog+ε)(|x| + 3)
(

n(R, f) + n(R,
1

f
)
)

+ log 2

(57)

where Dα := 4 Cα3α, |x| /∈ E.

On the other hand,

N(R2, f) ≥
R2∫

R

n(t, f) − n(0, f)

t
dt + n(0, f) log R2

≥ n(R, f)

R2∫

R

1

t
dt − n(0, f)

R2∫

R

dt

t
+ n(0, f) log R2

≥ n(R, f) log R.

(58)

Hence

n(R, f) ≤ N(R2, f)

log R
=

O[(log R2)σlog+ ε
2 ]

log R
(59)

= O
(

logσlog−1+ ε
2 R
)
.

Similarly, we have

n
(

R,
1

f

)
= O

(
logσlog−1+ ε

2 R
)
. (60)

We now choose α = ε
2(σlog+ε) and substitute |x| = r, R = r log r into Lemma 4.2 to

obtain the (27).

We now compute the logarithmic measure of E. To do so, we first note the elementary

inequality that given δ > 0 sufficiently small, there is a positive constant Cδ so that

log
1 + t

1 − t
≤ Cδt (61)

for 0 ≤ t < δ. We assume, in the case when there are infinitely many {dn} (otherwise, the

logarithmic measure of E is obviously finite), they are ordered in the increasing moduli.

Then we choose an N sufficiently large such that
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1

logσlog+ε|dN |
< δ. (62)

Hence

log-meas E =

∫

E∩[1, +∞)

dt

t
=

∫

E∩[1, |dN |]

dt

t
+

∫

E∩[|dN |, +∞)

dt

t

≤ log |dN | +

∞∑

n=N

∫

En

dt

t
= log |dN | +

∞∑

n=N

log
(1 + 1/logσlog+ε|dn|

1 − 1/logσlog+ε|dn|
)

≤ log |dN | + Cδ

∞∑

n=N

1

logσlog+ε |dn|
< ∞

where the conclusion of the last sum is convergent follows from [16, Lemma 4.2] for

meromorphic functions of finite logarithm order σlog. ✷

Proof of Theorem 3.1. We first prove a crucial estimate.

Lemma 4.3. Let 0 < α < 1 be given. Then for each fixed A ∈ C and an arbitrary w and

we have

2π∫

0

1

|reiφ − A(reiφ −
√

r2e2iφ − 1) − w|α
dφ ≤ Eα

rα
(63)

for all r sufficiently large, where Eα is independent of w. Here the square root is given

by
√

r2e2iφ − 1 ≈ reiφ as reiφ → ∞ (as the agreed convention in §2).

Remark 4.4. We note that when A = 0 in the above lemma, with the same 0 < α < 1

and w ∈ C arbitrary, recovers the known estimate

1

2π

2π∫

0

1

|reiφ − w|α dφ ≤ 1

(1 − α)rα
, (64)

holds for all r > 0 (see e.g., [29, p. 62] and [32, p. 66]).

Proof. Since for each r large enough,

{
reiφ − A(reiφ −

√
r2e2iφ − 1) : 0 ≤ φ ≤ 2π

}
(65)

is a closed curve enclosing the origin, therefore, for each non-zero w, the curve must

intersect with the array

{
tw : 0 < t < ∞

}
(66)
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at least once. So we can find a real C > 0 and 0 ≤ β < 2π such that we can represent w

as

w = C
(
reiβ − A(reiβ −

√
r2e2iβ − 1)

)
. (67)

When w = 0, we can still represent w by (67) with C = 0.

Substituting (67) into the integral on the left side of (63) yields

2π∫

0

1

|reiφ − A(reiφ −
√

r2e2iφ − 1) − w|α
dφ

=

2π∫

0

dφ∣∣reiφ − Creiβ − A
[
(reiφ −

√
r2e2iφ − 1) − C(reiβ −

√
r2e2iβ − 1)

]∣∣α

=

2π∫

0

dφ∣∣rei(φ−β) − Cr − A
[
(rei(φ−β) −

√
r2e2i(φ−β) − e−2iβ) − C(r −

√
r2 − e−2iβ)

]∣∣α

=

2π−β∫

−β

dφ∣∣reiφ − Cr − A
[
(reiφ −

√
r2e2iφ − e−2iβ) − C(r −

√
r2 − e−2iβ)

]∣∣α

=
(

π
2∫

− π
2

+

3π
2∫

π
2

)

dφ∣∣reiφ − Cr − A
[
(reiφ −

√
r2e2iφ − e−2iβ) − C(r −

√
r2 − e−2iβ)

]∣∣α

:= I1 + I2.
(68)

We now estimate I1. We first consider

∣∣reiφ − Cr − A
[
(reiφ −

√
r2e2iφ − e−2iβ) − C(r −

√
r2 − e−2iβ)

]∣∣

=
∣∣(1 − C)(r − A(r −

√
r2 − e−2iβ))

+ r(eiφ − 1) − A(reiφ − r +
√

r2 − e−2iβ −
√

r2e2iφ − e−2iβ)
∣∣

= |r − A(r −
√

r2 − e−2iβ)|

×
∣∣∣(1 − C) +

r(eiφ − 1) − A(reiφ − r +
√

r2 − e−2iβ −
√

r2e2iφ − e−2iβ)

r − A(r −
√

r2 − e−2iβ)

∣∣∣.

(69)

We see (from the agreed convention) that when and |φ| < π/2 and r → ∞,

reiφ −
√

r2e2iφ − e−2iβ =
e−2iβ

reiφ +
√

r2e2iφ + e−2iβ
= O(1/r) (70)
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and in particular,

r −
√

r2 − e−2iβ = O(1/r), (71)

where and henceforth in the rest of this proof the big-O notation denotes constants, not

necessary the same each time, are independent of w and φ, though they may depend on

the (corresponding) A. Then for all r sufficiently large,

|r − A(r −
√

r2 − e−2iβ)| ≥ r

2
. (72)

Since C is real, we deduce

∣∣∣(1 − C) +
r(eiφ − 1) − A(reiφ − r +

√
r2 − e−2iβ −

√
r2e2iφ − e−2iβ)

r − A(r −
√

r2 − e−2iβ)

∣∣∣

≥
∣∣∣ℑ
(r(eiφ − 1) − A(reiφ − r +

√
r2 − e−2iβ −

√
r2e2iφ − e−2iβ)

r − A(r −
√

r2 − e−2iβ)

)∣∣∣

=
∣∣∣ℜ
(

r(eiφ − 1) − A(reiφ − r +
√

r2 − e−2iβ −
√

r2e2iφ − e−2iβ)
)

× ℑ
( 1

r − A(r −
√

r2 − e−2iβ)

)

+ ℑ
(

r(eiφ − 1) − A(reiφ − r +
√

r2 − e−2iβ −
√

r2e2iφ − e−2iβ)
)

× ℜ
( 1

r − A(r −
√

r2 − e−2iβ)

)∣∣∣.

(73)

We deduce from (71),

ℜ
( 1

r − A(r −
√

r2 − e−2iβ)

)
=

1

r
+ O(

1

r3
) (74)

and

ℑ
( 1

r − A(r −
√

r2 − e−2iβ)

)
= O(

1

r3
) (75)

as r → ∞.

Let us now estimate |reiφ − r +
√

r2 − e−2iβ −
√

r2e2iφ − e−2iβ |, which we rewrite into

the form

∣∣reiφ − r +
√

r2 − e−2iβ −
√

r2e2iφ − e−2iβ
∣∣

=
∣∣∣
(reiφ − r)

(√
r2 − e−2iβ +

√
r2e2iφ − e−2iβ

)
+ (r2 − r2e2iφ)√

r2 − e−2iβ +
√

r2e2iφ − e−2iβ

∣∣∣ (76)
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= |reiφ − r| ·
∣∣∣ (r −

√
r2 − e−2iβ) + (reiφ −

√
r2e2iφ − e−2iβ)√

r2 − e−2iβ +
√

r2e2iφ − e−2iβ

∣∣∣

= r|1 − eiφ| ·
∣∣∣ O(1/r)

r + reiφ + O(1/r)

∣∣∣,

where we have applied the estimates (70) and (71) to both the numerator and denomi-

nator in the last step above. When |φ| < π
2 and r sufficiently large

|r + reiφ + O(1/r)| ≥
√

2r − O
(
1/r
)

≥ r,

hence

∣∣reiφ − r +
√

r2 − e−2iβ −
√

r2e2iφ − e−2iβ
∣∣

= |1 − eiφ| · O(1/r) = O
( |φ|

r

)
.

(77)

Therefore

|ℜ
(

r(eiφ − 1) − A(reiφ − r +
√

r2 − e−2iβ −
√

r2e2iφ − e−2iβ)
)

|

= r| cos φ − 1| + O
( |φ|

r

)
= O(r|φ|),

(78)

and

∣∣ℑ
(

r(eiφ − 1)−A(reiφ − r +
√

r2 − e−2iβ −
√

r2e2iφ − e−2iβ)
)∣∣

≥ r| sin φ| + O
( |φ|

r

)

≥ (2/π)r|φ| + O
( |φ|

r

)
≥ r|φ|/2.

(79)

Substituting (78), (79), (74) and (75) into (73) yields the inequality

∣∣∣(1−C) +
r(eiφ − 1) − A(reiφ − r +

√
r2 − e−2iβ −

√
r2e2iφ − e−2iβ)

r − A(r −
√

r2 − e−2iβ)

∣∣∣

≥
∣∣∣ℑ
(

r(eiφ − 1) − A(reiφ − r +
√

r2 − e−2iβ −
√

r2e2iφ − e−2iβ)
)

× ℜ
( 1

r − A(r −
√

r2 − e−2iβ)

)∣∣∣

−
∣∣∣ℜ
(

r(eiφ − 1) − A(reiφ − r +
√

r2 − e−2iβ −
√

r2e2iφ − e−2iβ)
)

(80)

× ℑ
( 1

r − A(r −
√

r2 − e−2iβ)

)∣∣∣
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≥ r|φ|
2

·
(1

r
+ O(

1

r3
)
)

− O(r|φ|) · O(
1

r3
)

=
|φ|
2

(
1 + O

( 1

r2

))
≥ |φ|

3
,

as r → ∞.

We substitute (72) and (80) into (69) give

∣∣reiφ − Cr − A
[
(reiφ −

√
r2e2iφ − e−2iβ) − C(r −

√
r2 − e−2iβ)

]∣∣ ≥ r|φ|/6 (81)

for r large enough. It follows from (81) that

I1 =

π
2∫

− π
2

dφ∣∣reiφ − Cr − A
[
(reiφ −

√
r2e2iφ − e−2iβ) − C(r −

√
r2 − e−2iβ)

]∣∣α

≤ 6α

rα

π
2∫

− π
2

1

|φ|α dφ =
12α · π1−α

(1 − α)rα

(82)

for all r sufficiently large. We can convert the integration range (π
2 , 3π

2 ) of I2 into that

of (−π
2 , π

2 ) by

I2 =

=

π
2∫

− π
2

dφ∣∣rei(φ+π) − Cr − A
[
(rei(φ+π) −

√
r2e2i(φ+π) − e−2iβ) − C(r −

√
r2 − e−2iβ)

]∣∣α

=

π
2∫

− π
2

dφ∣∣− reiφ − Cr − A
[
(−reiφ +

√
(reiφ)2 − e−2iβ) − C(r −

√
r2 − e−2iβ)

]∣∣α

=

π
2∫

− π
2

dφ∣∣reiφ + Cr − A
[
(reiφ −

√
(reiφ)2 − e−2iβ) + C(r −

√
r2 − e−2iβ)

]∣∣α

(83)

Notice that the integrand of this integral is the same as that of I1 with C replaced by

−C. We can easily see the above estimate for I1 is still valid when C is replaced by −C.

Hence

I2 ≤ 12α · π1−α

(1 − α)rα

for all r sufficiently large. This completes the proof with Eα := 212α·π1−α

(1−α) . ✷
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Completion of the proof of Theorem 3.1. Let us choose R = r log r. Then we integrate

the inequality (35) from 0 to 2π and apply the inequalities (63) and (64) to yield

m
(

r,
(Dqf)(x)

f(x)

)
≤ O

( 1

log r

)
·
(

m
(
r log r, f) + m

(
r log r, 1/f)

)

+ O
(

n
(
r log r, f

)
+ n

(
r log r, 1/f

))
+ O(1)

+ O(rα) ·
∑

|cn|≤r log r

2π∫

0

1

|reiφ − cn|α dφ

+ O(rα) ·
∑

|cn|≤r log r

2π∫

0

1

|x + c(q)q−1/2z−1 − q−1/2cn|α dφ

+ O(rα) ·
∑

|cn|≤r log r

2π∫

0

1

|x − c(q)q1/2z−1 − q1/2cn|α dφ + O(1)

= O
( 1

log r

)
·
(

m
(
r log r, f) + m

(
r log r, 1/f)

)

+ O
(

n
(
r log r, f

)
+ n

(
r log r, 1/f

))
+ O(1).

(84)

As a result, we obtained the desired estimate (26) after applying (59) and (60).

5. Askey–Wilson type counting functions and proof of Theorem 3.3

We need to set up some preliminary estimates first.

Let g : C −→ C be a map, not necessary entire. Let f be a meromorphic function on C

and a ∈ Ĉ, we define the counting function n(r, f(g(x)) = a) to be the number of a-points

of f , counted according to multiplicity of f = a at the point g(x), in {g(x) : |x| < r}.

The integrated counting function is defined by

N
(
r, f(g(x)) = a

)
=

r∫

0

n
(
t, f(g(x)) = a

)
− n

(
0, f(g(x)) = a

)

t
dt

+ n
(
0, f(g(x)) = a

)
log r.

(85)

For z = eiθ, we shall write (17) in the following notation

(
Dqf

)
(x) :=

f̆(q
1
2 eiθ) − f̆(q− 1

2 eiθ)

ĕ(q
1
2 eiθ) − ĕ(q− 1

2 eiθ)
=

f(x̂q) − f(x̌q)

x̂q − x̌q
=

f(x̂) − f(x̌)

x̂ − x̌
(86)

where
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x̂ = x̂q :=
q1/2z + q−1/2z−1

2
, x̌ = x̌q :=

q−1/2z + q1/2z−1

2
. (87)

Note that the maps x̂ and x̌ are analytic and invertible (ˆ̌x = ˇ̂x = x) when |x| is sufficiently

large.

The Theorem 3.3 is a direct consequence of the following Theorem.

Theorem 5.1. Let f be a meromorphic function of finite logarithmic order σlog(f) ≥ 1.

Then for each extended complex number a ∈ Ĉ, and each ε > 0, we have

N
(
r, f(x̂) = a

)
= N

(
r, f(x) = a

)
+ O

(
(log r)σlog−1+ε

)
+ O(log r), (88)

and similarly,

N
(
r, f(x̌) = a

)
= N

(
r, f(x) = a

)
+ O

(
(log r)σlog−1+ε

)
+ O(log r), (89)

N
(
r, f(ˆ̂x) = a

)
= N

(
r, f(x) = a

)
+ O

(
(log r)σlog−1+ε

)
+ O(log r). (90)

Here the meaning of N(r, f(x̂) = a) is interpreted as taking g(x) = x̂ mentioned above.

The expressions N
(
r, f(x̌) = a) and N

(
r, f(ˆ̂x) = a) have similar interpretations.

Proof. We shall only prove the (88) since the (89) and (90) can be proved similarly. Let

(aµ)µ∈N be a sequence of a-points of f , counting multiplicities.

Recall that for |x| and hence |z| to be sufficiently large we have ˆ̌x = ˇ̂x = x. Therefore,

there exists a sufficiently large M > 1 and for r ≥ M ,

N
(
r, f(x̂) = a

)
=

r∫

0

n
(
t, f(x̂) = a

)
− n

(
0, f(x̂) = a

)

t
dt + n

(
0, f(x̂) = a

)
log r

=

M∫

0

n
(
t, f(x̂) = a

)
− n

(
0, f(x̂) = a

)

t
dt +

r∫

M

n
(
t, f(x̂) = a

)
− n

(
0, f(x̂) = a

)

t
dt

+ n
(
0, f(x̂) = a

)
log r

=

r∫

M

n
(
t, f(x̂) = a

)

t
dt + O(log r)

=

r∫

M

n
(
t, f(x̂) = a

)
− n

(
M, f(x̂) = a

)

t
dt + O(log r)

=
∑

M≤|ǎµ|<r

log
r

|ǎµ| + O(log r)

by the definition (85). Then
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∣∣N
(
r, f(x) = a

)
− N

(
r, f(x̂) = a

)∣∣

=

∣∣∣∣
∑

0<|aµ|<r

log
r

|aµ| + n(0, f(x) = a) · log r −
∑

M≤|ǎµ|<r

log
r

|ǎµ| + O(log r)

∣∣∣∣

=

∣∣∣∣
∑

M≤|aµ|<r

log
r

|aµ| −
∑

M≤|ǎµ|<r

log
r

|ǎµ| + O(log r)

∣∣∣∣

≤
∣∣∣∣∣

∑

M≤|aµ|<r,
M≤|ǎµ|<r

(
log

r

|ǎµ| − log
r

|aµ|

) ∣∣∣∣∣+
∑

M≤|ǎµ|<r,
|aµ|≥r or |aµ|<M

log
r

|ǎµ|

+
∑

M≤|aµ|<r,
|ǎµ|≥r or |ǎµ|<M

log
r

|aµ| + O(log r)

≤
∑

M≤|ǎµ|<r,
M≤|aµ|<r

∣∣∣∣ log

∣∣∣∣
aµ

ǎµ

∣∣∣∣
∣∣∣∣+

∑

M≤|ǎµ|<r,
|aµ|≥r

log
r

|ǎµ| +
∑

M≤|aµ|<r,
|ǎµ|≥r

log
r

|aµ| + O(log r).

(91)

Let us write

x̌ = q−1/2x + η(x), (92)

where

η(x) =
q1/2 − q−1/2

2(x +
√

x2 − 1)
(93)

which clearly tends to zero as x → ∞. Thus, there exists a constant h > 0 such that

|η(x)| ≤ h (94)

for all sufficiently large |x|. Thus, it follows from Lemma 4.1 with α = 1, (92) and (94)

that for M ≤ |ǎµ|, M ≤ |aµ|,
∣∣∣∣ log

∣∣∣∣
aµ

ǎµ

∣∣∣∣
∣∣∣∣ =

∣∣∣∣ log

∣∣∣∣
q−1/2aµ + η(aµ)

aµ

∣∣∣∣
∣∣∣∣ =

∣∣∣∣ log

∣∣∣∣
q−1/2aµ

aµ

∣∣∣∣+ log

∣∣∣∣
q−1/2aµ + η(aµ)

q−1/2aµ

∣∣∣∣
∣∣∣∣

≤ | log |q−1/2|| +

∣∣∣∣
η(aµ)

q−1/2aµ

∣∣∣∣+

∣∣∣∣
η(aµ)

q−1/2aµ + η(aµ)

∣∣∣∣

≤ | log |q−1/2|| +
h

|q−1/2||aµ| +
h

|ǎµ| .

(95)

Let

c = | log |q−1/2|| + | log |q1/2|| +
h|q1/2|

M
+

h|q−1/2|
M

+
h

M
. (96)
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Then,

∑

M≤|ǎµ|<r,
M≤|aµ|<r

∣∣∣∣ log

∣∣∣∣
aµ

ǎµ

∣∣∣∣
∣∣∣∣ ≤ c ·

( ∑

M≤|ǎµ|<r,
M≤|aµ|<r

1

)
(97)

Similarly we have

∑

M≤|ǎµ|<r,
|aµ|≥r

log
r

|ǎµ| ≤
∑

M≤|ǎµ|<r,
|aµ|≥r

log
|aµ|
|ǎµ| ≤ c

( ∑

M≤|ǎµ|<r,
|aµ|≥r

1

)
, (98)

and

∑

M≤|aµ|<r,
|ǎµ|≥r

log
r

|aµ| ≤ c

( ∑

M≤|aµ|<r,
|ǎµ|≥r

1

)
. (99)

Combining the (91), (97), (98) and (99) yields

∣∣N
(
r, f(x) = a

)
− N

(
r, f(x̂) = a

)∣∣ ≤ c

( ∑

M≤|aµ|<r

1 +
∑

M≤|ǎµ|<r

1

)
+ O(log r). (100)

For M ≤ |ǎµ| < r and r large enough and taking into account of the (94),

|aµ| ≤ |q1/2ǎµ| + |η(ǎµ)| ≤ 2|q1/2|r. (101)

This together with (100) and an inequality similar to (59) imply that, for every ε > 0,

we have

∣∣N
(
r, f(x) = a

)
− N

(
r, f(x̂) = a

)∣∣

≤ c

( ∑

|aµ|<r

1 +
∑

|aµ|<2|q1/2|r

1

)
+ O(log r)

= c
[

n
(
r, f(x) = a

)
+ n

(
2|q1/2|r, f(x) = a

)]
+ O(log r)

= O
(
(log r)

)σlog−1+ε
+ O(log r).

(102)

This completes the proof. ✷

The above estimate should be compared with the estimate of N(r, f(x + η)) =

N(r, f(x))+O(rσ−1+ε) obtained by the authors in [17, Theorem 2.2] for a meromorphic

function of finite order σ, where η is a fixed, though arbitrary non-zero, complex number.
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6. Proof of the Second Main Theorem 3.5

We shall follow Nevanlinna’s argument4 by replacing the f ′(x) by the AW-operator

Dqf [41, pp. 238–240]. The methods used in [7] and [25] were based on Mohon’ko’s

theorem (see [35, p. 29]). We let

F (x) :=

p∑

ν=1

1

f(x) − Aν
. (103)

We deduce from [27, p. 5] that

m(r, F ) = m
(

r, FDqf · 1

Dqf

)
≤ m

(
r,

1

Dqf

)
+ m

(
r,

p∑

ν=1

Dqf

f − Aν

)
. (104)

On the other hand, for a given µ amongst {1, · · · , p} we write F in the for

F (x) :=
1

f(x) − Aµ

(
1 +

p∑

ν=1
ν 6=µ

f(x) − Aµ

f(x) − Aν

)
. (105)

Let δ = min{|Ah −Ak|, 1} whenever h 6= k. We follow the argument used by Nevanlinna

[41, pp. 238–240] to arrive at the inequality

m(r, F ) >

p∑

µ=1

m
(
r, Aµ

)
− p log

2p

δ
− log 3.

Combining this inequality with (104) yields

m
(

r,
1

Dqf

)
>

p∑

µ=1

m
(
r, Aµ

)
− m

(
r,

p∑

µ=1

Dqf

f − Aµ

)
− p log

2p

δ
− log 3. (106)

Let us now add N
(
r, 1/Dqf

)
on both sides of this inequality and utilizing the first main

theorem [40] (see also [27] and [41]), we deduce

T (r, Dqf) = T
(

r,
1

Dqf

)
+ O(1) = m

(
r,

1

Dqf

)
+ N

(
r,

1

Dqf

)
+ O(1) (107)

> N
(

r,
1

Dqf

)
+

p∑

ν=1

m
(
r, Aν

)
− m

(
r,

p∑

ν=1

Dqf

f − Aν

)
+ O(1).

But is it elementary that

4 According to [41, pp. 238–240] Nevanlinna proved the original version of (32) for p = 3 in 1923 and the
general case for p > 3 for entire functions was due to Collingwood in 1924 [19].
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T (r, Dqf) = m(r, Dqf) + N(r, Dqf) (108)

≤ N(r, Dqf) + m
(
r, Dqf/f

)
+ m(r, f).

Eliminating the T (r, Dqf) from the inequalities (108) and (107), adding m(r, f) on both

sides of the combined inequalities and rearranging the terms yield

m(r, f) +

p∑

ν=1

m(r, Aν) ≤ 2T (r, f) −
(

2N(r, f) − N(r, Dqf) + N
(

r,
1

Dqf

))
(109)

+ m
(

r,
Dqf

f

)
+ m

(
r,

p∑

ν=1

Dqf

f − Aν

)
+ O(1).

The inequality (32) now follows by noting the

m
(

r,

p∑

ν=1

Dqf

f − Aν

)
= m

(
r,

p∑

ν=1

(Dq)(f − Aν)

f − Aν

)
≤

p∑

ν=1

m
(

r,
(Dq)(f − Aν)

f − Aν

)
,

Theorem 3.1 and the (33). ✷

7. Askey–Wilson type Second Main theorem – part II: truncations

We recall that in classical Nevanlinna theory, for each element a, the counting function

n̄
(
r, 1

f−a

)
counts distinct a-points for a meromorphic function f in C can be written as a

sum of integers “h−k” summing over all the points x in {|x| < r} at which f(x) = a with

multiplicity “h”, and where “k (= h−1)” is the multiplicity of f ′(x) = 0 where f(x) = a.

We define an Askey–Wilson analogue of the n̄(r, f). We define the Askey–Wilson-type

counting function of f

ñAW (r, f = a) = ñAW

(
r,

1

f − a

)
(110)

to be the sum of integers of the form “h − k” summing over all the points x in {|x| < r}
at which f(x) = a with multiplicity “h”, while the k is defined by k := min{h, k′} and

where “k′” is the multiplicity of Dqf(x̂) = 0 at x̂. Similarly, we define

ñAW (r, f) = ñAW (r, f = ∞) = ñAW

(
r,

1

f
= 0

)
(111)

to be the sum of integers “h−k”, summing over all x in |x| < r at which (1/f)(x) = 0 with

multiplicity “h”, k := min{h, k′} and where “k′” is the multiplicity of Dq(1/f)(x̂) = 0

at x̂.
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We define the Askey–Wilson-type integrated counting function of f(x) by

ÑAW (r, f = a) = ÑAW

(
r,

1

f − a

)
=

r∫

0

ñAW (t, f = a) − ñAW (0, f = a)

t
dt

+ ñAW (0, f = a) log r,

(112)

and

ÑAW (r, f) =

r∫

0

ñAW (t, f) − ñAW (0, f)

t
dt + ñAW (0, f) log r. (113)

The (112) and (113) are respectively the analogues for the N̄(r, f = a) and N̄(r, f) from

the classical Nevanlinna theory.

We are now ready to state an alternative Second Main Theorem in terms of the

AW-type integrated counting function defined above. The theorem could be regarded as

a truncated form of the original Second Main Theorem, the Theorem 3.5.

Theorem 7.1. Suppose that f(z) is a non-constant meromorphic function of finite loga-

rithmic order σlog(f) as defined in (25) such that Dqf 6≡ 0, and let a1, a2, · · · , ap where

p ≥ 2, be mutually distinct elements in C. Then we have, for r < R and for every ε > 0,

(
p − 1

)
T (r, f) ≤ ÑAW (r, f) +

p∑

ν=1

ÑAW (r, f = aν) + Slog(r, ε; f) (114)

where Slog(r, ε; f) = O
(
(log r)σlog−1+ε

)
+O

(
log r

)
holds for all |x| = r sufficiently large,

where ÑAW (r, f = aν) and ÑAW (r, f) are defined by (112) and (113), respectively.

This truncated form of the Second Main Theorem leads to new interpretation of

Nevanlinna’s original defect relation, deficiency, etc, and perhaps the most important

of all, is a new type of Picard theorem gears toward the Askey–Wilson operator. We

will discuss the functions that lie in the kernel of the AW-operator in §10. We note

that Halburd and Korhonen [24] was the first to give such a truncated form of a Second

Main theorem for the difference operator ∆f(x) = f(x + η) − f(x). However, both the

formulation of our counting functions ÑAW(r) and the method of proof differs greatly

from their original argument.

Proof of the Theorem 7.1. We are ready to prove the Theorem 7.1. Adding the sum

N(r, f) +

p∑

ν=1

N(r, f = aν) (115)

on both sides of (32) and rearranging the terms yields
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(
p−1

)
T (r, f)

≤ N(r, f) +

p∑

ν=1

N(r, f = aν) − NAW(r, f) + O
(
(log r)σlog−1+ε

) (116)

holds for all |x| = r > 0. It remains to compare the sizes of (115) and

ÑAW (r, f) +

p∑

ν=1

ÑAW (r, f = aν) . (117)

Subtracting (117) from (115) yields

(
N(r, f) − ÑAW (r, f)

)
+

p∑

ν=1

(
N(r, f = aν) − ÑAW (r, f = aν)

)
. (118)

It follows from the definitions of ñAW (r, f) and ñAW (r, f = aν) that the difference

n(r, f) − ñAW (r, f) enumerates the number of zeros of Dq(1/f)(x̂) at which (1/f)(x)

has a zero in the disk |x| < r, with due count of multiplicities, while the difference

n(r, f = aν) − ñAW (r, f = aν) enumerates the number of zeros of Dqf(x̂) in the disk

|x| < r at which f(x) = aν , with due count of multiplicities, and those points x in |x| < r

that arise from the common aν-points of f(x̂) and f(x̌), respectively. We have

(
Dq

1

f

)
(x̂) =

f(x) − f
(
ˆ̂x)

(ˆ̂x − x) f(x) f
(
ˆ̂x
) =

−(Dqf)(x̂)

f(x) f
(
ˆ̂x
) . (119)

Recall that the maps x̂ and x̌ are analytic and invertible (ˆ̌x = ˇ̂x = x) when |x| is

sufficiently large. It follows from (119) that the zeros of (Dq1/f)(x̂) originate from the

poles of f(x), f
(
ˆ̂x
)

or from the zeros of (Dqf)(x̂). On the other hand, the poles of

(Dqf)(x̂) must be amongst the poles of f(x) and/or poles of f
(
ˆ̂x
)
, and in this case,

the multiplicity of zeros of (Dq1/f)(x̂), which is non-negative, equals to subtracting the

multiplicity of poles of (Dqf)(x̂) from the sum of multiplicities of the poles of f(x) and

the poles of f
(
ˆ̂x
)
. It follows from this consideration and the definitions of (110) and

(111) that

(
N(r, f) − ÑAW (r, f)

)
+

p∑

ν=1

(
N(r, f = aν) − ÑAW (r, f = aν)

)

≤ N(r, f(x)) + N
(
r, f

(
ˆ̂x
))

+ N
(

r,
1

Dqf(x̂)

)
− N(r, Dqf(x̂))

(120)

holds. We deduce from Theorem 5.1 and Theorem 3.4 that the followings

N
(
r, f(ˆ̂x)

)
= N

(
r, f(x)

)
+ O

(
(log r)σlog−1+ε

)
+ O(log r); (121)

N
(
r, Dqf(x̂)

)
= N

(
r, Dqf(x)

)
+ O

(
(log r)σlog−1+ε

)
+ O(log r); (122)



ARTICLE IN PRESS

U
N

C
O

R
R
E
C
T

E
D

P
R
O

O
F

Please cite this article in press as: Y.-M. Chiang, S. Feng, Nevanlinna theory of the Askey–Wilson
divided difference operator, Adv. Math. (2018), https://doi.org/10.1016/j.aim.2018.02.006

JID:YAIMA AID:6155 /FLA [m1L; v1.231; Prn:21/02/2018; 9:28] P.33 (1-56)

Y.-M. Chiang, S. Feng / Advances in Mathematics ••• (••••) •••–••• 33

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

and

N
(

r,
1

Dqf(x̂)

)
= N

(
r,

1

Dqf(x)

)
+ O

(
(log r)σlog−1+ε

)
+ O(log r) (123)

hold. Substituting the (121), (122) and (123) into (120) yields

(
N(r, f) − ÑAW (r, f)

)
+

p∑

ν=1

(
N(r, f = aν) − ÑAW (r, f = aν)

)

≤ 2N(r, f(x)) + N
(

r,
1

Dqf(x)

)
− N(r, Dqf(x)) + O

(
(log r)σlog−1+ε

)
+ O(log r)

= NAW(r, f) + O
(
(log r)σlog−1+ε

)
+ O(log r),

(124)

where the NAW(r, f) is given by (33). Combining the (116) and (124) gives the desired

inequality (114). ✷

8. Askey–Wilson-type Nevanlinna defect relation

We recall Nevanlinna’s original deficiency, multiplicity index and ramification in-

dex are defined, respectively, by δ(a) = 1 − limr→∞ N(r, f = a)/T (r, f), ϑ(a) =

ϑ(a, f) = limr→∞(N(r, f = a) − N̄(r, f = a))/T (r, f) and Θ(a) = Θ(a, f) = 1 −
limr→∞ N̄(r, f = a)/T (r, f). Nevanlinna’s second main theorem implies

∑

a∈Ĉ

(
δ(a) + ϑ(a)

)
≤
∑

a∈Ĉ

Θ(a) ≤ 2. (125)

We define the AW-multiplicity index and AW-deficiency by

ϑAW(a) = ϑAW(a, f) = lim
r→∞

N(r, f = a) − ÑAW (r, f = a)

T (r, f)
, (126)

and

ΘAW(a) = ΘAW(a, f) = 1 − lim
r→∞

ÑAW (r, f = a)

T (r, f)
(127)

respectively. It follows from the definition of ÑAW (r, f = a) that we have the relationship

0 ≤ ϑAW(a, f) ≤ ΘAW(a, f) ≤ 1.

Dividing the inequality (114) in Theorem 7.1 by T (r, f) and rearranging the terms yield

1 − ÑAW (r, f = ∞)

T (r, f)
+

p∑

ν=1

(
1 − ÑAW (r, f = aν)

T (r, f)

)
≤ 2 +

Slog(r, ε; f)

T (r, f)
. (128)
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Taking limit infimum on both sides of the above inequality as r → +∞ yields the

following theorem.

Theorem 8.1. Suppose that f(z) is a transcendental meromorphic function of finite log-

arithmic order, such that Dqf 6≡ 0. Then

∑

a∈Ĉ

(
δ(a) + ϑAW(a)

)
≤
∑

a∈Ĉ

ΘAW(a) ≤ 2. (129)

Remark 8.2. We note that Chern showed in [16, Theorem 8.1] that for entire func-

tion f of finite logarithmic order growth with its log-order σlog and lower order

ν = lim infr→∞ log T (r, f)/log log r satisfying σlog − µ < 1, must have

N(r, f = a) ∼ T (r, f).

This implies that the two quantities θAW(a) and ΘAW(a) are identical for any finite a.

Definition 8.3. We call a complex number a ∈ C an

1. AW-Picard value if ñAW (r, f = a) = O(1) (note that this is equivalent to

ÑAW (r, f = a) = O(log r)),

2. AW-Nevanlinna deficient value if ΘAW(a) > 0.

We remark that a is an AW-Picard value of f means that except for at most a finite

number of points, the multiplicity “h” of f(x) = a at x is not larger than “k′”, the

multiplicity of Dqf(x̂) = 0 at x̂. We also note that for a transcendental function f to

have AW-Picard value a implies that ΘAW(a) = 1.

We immediately deduce from Theorem 8.1 the following AW-type Picard theorem for

finite logarithmic order meromorphic functions.

Theorem 8.4. Let f be a meromorphic function with finite logarithmic order, and that

f has three distinct AW-Picard values. Then f is either a rational function or f ∈
ker Dq. ✷

We also deduce from the Theorem 8.1 the following

Theorem 8.5. Let f be a transcendental meromorphic function with finite logarithmic

order. Then f has at most a countable number of AW-Nevanlinna deficient values.

Remark 8.6. Suppose f is a meromorphic function of finite logarithmic order, and an

extended complex number A. If there exists 0 < q < 1, f(x) has most finitely many

A-points, or there exists positive integer J , complex numbers aj (1 ≤ j ≤ J), and each j

associates an integer dj (1 ≤ j ≤ J), such that, except for at most finitely many points,

the A-points of f(x) situate at the sequences
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1

2

(
ajqn + a−1

j q−n
)
, j = 1, 2, · · · , J, n = 1, 2, 3, · · · , (130)

with multiplicity dj , j = 1, 2, · · · , J . Then it is easy to check that A is an AW-Picard

exceptional value.

We note that the definition of AW-type exceptional values includes the classical defini-

tion of Picard exceptional value, namely that the meromorphic f(x) equals to A at most

finitely many times. It is known that for meromorphic functions of finite logarithmic

order of growth, one needs only two Picard-exceptional values in order for f to reduce

to a (genuine) constant [16]. Thus, when interpreted in the classical (most restricted)

setting, one needs only two classical Picard exceptional values in order for f to reduce

to a constant. However, as exhibited in the earlier example of the generating function

discovered by Rogers (6), when interpreted in the Askey–Wilson (most general) setting,

one needs three AW-Picard exceptional values in order to conclude that f ∈ ker Dq.

9. Askey–Wilson type Nevanlinna deficient values

We construct two kinds of examples below that both give AW-Nevanlinna deficiencies

at x = 0 as arbitrary rational number, that is, ΘAW(0) = m
n > 0. The first category of

examples is based on the Definition 8.3 that if the pre-image of zero for certain function

f lies on an infinite sequence of the form (1), then ΘAW(0) = 1. Our second category

example is based on constructing multiple zeros interpreted in the conventional sense

(that is, in the sense of differentiation).

In our first example below all the zeros are simple when interpreted in the conventional

sense, but when some of them are grouped into an infinite union of certain finite sequences

are in fact multiple zeros when interpreted in the sense of Askey–Wilson.

Example 9.1. Let n be a positive integer. Then the function

f(x) =

n−1∏

k=0

(qkeiθ, qke−iθ; qn+1)∞ (131)

has

ΘAW(0) =
n − 1

n
,

according to the definition of ÑAW (r, f = 0) in (112).

Proof. We first note that for arbitrary j,

(qkeiθ, qke−iθ; qj)∞ =
∞∏

ν=1

(q2k+2j(ν−1) + 1)
(

1 − x
1
2 (qk+j(ν−1) + q−k−j(ν−1))

)
.
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Let n(r) denote the number of zeros of (qkeiθ, qke−iθ; qj)∞ in |x| < r. Then for k ≤ j,

we clearly can find constants c1 and c2 such that

c1 log r ≤ n
(
r, (qkeiθ, qke−iθ; qj)∞ = 0

)
≤ c2 log r. (132)

Hence there are constants C1 and C2 such that

C1(log r)2 ≤ N
(
r, (qkeiθ, qke−iθ; qj)∞ = 0

)
≤ C2(log r)2. (133)

Similarly

D1(log r)2 ≤ ÑAW

(
r, (qkeiθ, qke−iθ; qj)∞ = 0

)
≤ D2(log r)2, (134)

for some positive constants D1 and D2. On the other hand, it also follows from the

Definition 8.3 and a simple observation from (131) that

1

n

(
1 − o(1)

)
≤

ÑAW

(
r,
∏n−1

k=0(qkeiθ, qke−iθ; qj)∞ = 0
)

N
(
r,
∏n−1

k=0(qkeiθ, qke−iθ; qj)∞ = 0
) ≤ 1

n
(1 + o

(
1
)
) (135)

as r → +∞.

log
∣∣(qkeiθ, qke−iθ; qj)N

∣∣ ≤
N∑

ν=1

log
(

1 +

∣∣∣∣
x

1
2 (qk+j(ν−1) + q−k−j(ν−1))

∣∣∣∣
)

+

N∑

ν=1

log |1 + q2k+2j(ν−1)|

≤
r∫

0

log
(

1 +
|x|
t

)
dn(t) +

N∑

ν=1

|q|2k+2j(ν−1)

= n(r) log
(

1 +
|x|
r

)
+

r∫

0

|x| n(t)

t(t + |x|) dt + |q|2k
N∑

ν=1

|q|2j(ν−1).

Taking limits of N → +∞ on both sides of the above inequality and with reference to

(132) yield

log
∣∣(qkeiθ, qke−iθ; qj)∞

∣∣ ≤ |x|
∞∫

0

n(t)

t(t + |x|) dt + C

≤
|x|∫

0

n(t)

t
dt + |x|

∞∫

|x|

n(t)

t2
dt +

|q|2k

1 − |q|2j
.
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It is a standard technique to apply integration-by-parts repeatedly on the second integral

above (see e.g. [9, Lemma 5.1], [16, Theorem 7.1]) to yield, for some positive constant B

that

T
[
r, (qkeiθ, qke−iθ; qj)∞

]
≤ log M

(
r, (qkeiθ, qke−iθ; qj)∞

)

≤ N
(
r, (qkeiθ, qke−iθ; qj)∞ = 0

)
+

+ [O(log r)σ−1+ε + O(log r)σ−2+ε · · · + O(log r)] + B

≤ N
(
r, (qkeiθ, qke−iθ; qj)∞ = 0

)

+ [O(log r)σ−1+ε + O(log r)] + B,
(136)

where σ = σlog = 2. It follows from (136) and (131) that

N(r, f) ≤ T (r, f) ≤ N(r, f) + O(log1+ε r).

Hence it follows from (135)

ΘAW(0) = 1 − 1

n

as asserted. ✷

Example 9.2. Applying similar idea used in the last example, we can show that the

function

f 1
n

(x) =
n−1∏

k=0

(q2keiθ, q2ke−iθ; q2n−1)∞

has

ΘAW(0) =
1

n
.

Again, one can generalise the above idea to construct an entire function with arbitrary

rational AW-Nevanlinna deficient value.

Example 9.3. Let m, n be positive integers such that 1 ≤ m < n.

f m
n

(x) =

m−1∏

k=0

(qkeiθ, qke−iθ; q2n−m)∞

×
n−m∏

k′=1

(qm+2k′−1eiθ, qm+2k′−1e−iθ; q2n−m)∞.

Then
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ΘAW(0) =
m

n
.

Remark 9.4. We note that the construction of entire functions with rational AW-deficient

value above are far from being unique. For example, each of the following two functions

has AW-deficient value equal to 1
2 :

f 1
2
(x) = (eiθ, e−iθ; qeiθ, qe−iθ; q3)∞

g 1
2
(x) = (eiθ, e−iθ; qeiθ, qe−iθ; q2eiθ, q2e−iθ; q4eiθ, q4e−iθ; q5)∞.

We next consider an example of different type.

Example 9.5. Let M, N be non-negative integers such that M > N .

f M
N

(x) = [(eiθ, e−iθ; q)∞]M [(qeiθ, qe−iθ; q)∞]N .

It follows from the above construction of f and the definition of ÑAW (r, f = a) in (112)

that

ΘAW(0) = 1 − M − N

M + N
=

2N

M + N
.

Proof. We skip the derivation. ✷

10. The Askey–Wilson kernel and theta functions

Here we give an alternative and self-contained characterisation of the functions that lie

in the kernel of the AW-operator without appealing to elliptic functions. A way to look

at the classical small Picard theorem is that when a meromorphic function omits three

values in C, then the function belongs to the kernel of conventional differential operator,

that is, it is a constant. We now show that the “constants” for the AW-operator Dq are

very different.

Theorem 10.1. Let f(x) be an entire function in C that satisfies (Dqf)(x) ≡ 0. Then

f(x) = c throughout C for some complex number c.

Proof. We recall our initial assumption that |q| < 1. Let f be an entire function that lies

in the kernel of Dq, that is, Dqf ≡ 0. Hence for every complex number z 6= 0, we have

f
(z + 1/z

2

)
= f

(qz + q−1/z

2

)
.

We deduce easily by induction that, for every integer n, the equality
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f
(z + 1/z

2

)
= f

(qnz + q−n/z

2

)
, (137)

holds.

For each x ∈ C, we can find a non-zero z ∈ C such that

x =
z + 1/z

2
.

Let

m =
[ log |z|

log
∣∣∣ 1

q

∣∣∣

]
(138)

be in Z, where [α] denote the integral part of real number α. Then we have

1 ≤ |qmz| ≤
∣∣∣1
q

∣∣∣. (139)

Noting that the real-valued function t + 1
t is increasing for t ≥ 1, we deduce that

∣∣∣q
mz + q−m/z

2

∣∣∣ ≤ |q| + |q|−1

2
(140)

holds. Therefore

|f(x)| =
∣∣∣f
(qmz + q−m/z

2

)∣∣∣ ≤ M := max
|y|≤ |q|+|q|−1

2

|f(y)|. (141)

Since x is arbitrary, we have shown that f(x) is a bounded entire function and so it must

reduce to a constant function. ✷

The example (9) of meromorphic function that satisfies Dqf ≡ 0 given by Ismail [30,

p. 365] has finite logarithmic order. We call these functions AW-constants. For the sake

of simplicity, we adopt Ismail’s notation that (9) can be rewritten in the form

f(x) = (cos θ − cos φ)
φ∞(cos θ; qeiφ) φ∞(cos θ; qe−iφ)

φ∞(cos θ; q1/2eiφ) φ∞(cos θ; q1/2e−iφ)
. (142)

We show below that all functions in the ker Dq are essentially functions made up of this

form.

Theorem 10.2. Let f(x) be a meromorphic function in C that satisfies (Dqf)(x) ≡ 0.

Then there exist a nonnegative integer k and complex numbers a1, a2, · · · , ak; b1, b2,

· · · , bk; C such that
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f(x) = C

k∏

j=1

φ∞(cos θ; aj) φ∞(cos θ; q/aj)

φ∞(cos θ; bj) φ∞(cos θ; q/bj)

= C
k∏

j=1

(ajeiθ, aje−iθ; q)∞ (q/ajeiθ, q/aje−iθ; q)∞

(bjeiθ, bje−iθ; q)∞ (q/bjeiθ, q/bje−iθ; q)∞
, (143)

where x = 1
2 (eiθ + e−iθ), and φ∞(x; a) := (aeiθ, ae−iθ; q)∞. That is, each AW-constant

assumes the form (143).

Proof. For any complex numbers a and b, let

fa,b(x) :=
φ∞(x; a) φ∞(x; q/a)

φ∞(x; b) φ∞(x; q/b)
. (144)

It is routine to check that

(Dqfa,b)(x) ≡ 0 (145)

holds. Without loss of generality, we assume that f(x) 6≡ 0. Let us suppose that x0 =

(z0 + 1/z0)/2 be a zero (resp. pole) of f , then so is each point that belongs to the sequence

{(qnz0 + 1/qn/z0)/2}n∈Z in view of (137) with the same multiplicity. We introduce an

equivalence relation on all the zeros (resp. poles) of f . For x1 = (z1 + 1/z1)/2 and

x2 = (z2 + 1/z2)/2, if there exists an integer n such that z1 = z2qn, then we say x1 and x2

is equivalent to each other. We denote the class of zeros (resp. poles) which is equivalent to

x0 by {x0}. Clearly every zero (resp. pole) in an equivalent class has the same multiplicity.

It follows from (141), that for every equivalent class of zeros (resp. poles), there exists

an element x′, say, such that |x′| ≤ (q + 1/q)/2. Since f is meromorphic, it has at most

finite number of zeros and poles in the disc {|x| ≤ (q + 1/q)/2}, and thus f has at most

finitely many equivalent classes of zeros (resp. poles) in the complex plane. Denote by

{a1}, {a2}, · · · , {al} the equivalent classes of zeros of f and by {b1}, {b2}, · · · , {bk} the

equivalent classes of poles of f , list according to their multiplicities.

We now distinguish two cases:

Case A l ≥ k. Set

g(x) =
k∏

j=1

φ∞(x; aj) φ∞(x; q/aj)

φ∞(x; bj) φ∞(x; q/bj)
. (146)

Then it follows from the same principle as in (145) that it again satisfies

(Dqg)(x) ≡ 0. (147)

Notice that f(x)/g(x) is now an entire function, and it also satisfies
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(
Dq

f

g

)
(x) ≡ 0. (148)

Theorem 10.1 implies that we have

f(x)

g(x)
≡ C. (149)

This establishes (143) as required.

Case B k ≥ l. We consider the meromorphic function 1/f(x) instead. So it satisfies

(
Dq

1

f

)
(x) ≡ 0, (150)

and has equivalent classes of zeros {b1}, {b2}, · · · , {bk} and the equivalent classes of

poles {a1}, {a2}, · · · , {al}, listed according to their multiplicities. Notice that 1/f(x)

falls into the category considered in case A above, so that

1

f(x)
= C

l∏

j=1

φ∞(x; bj) φ∞(x; q/bj)

φ∞(x; aj) φ∞(x; q/aj)
. (151)

Hence

f(x) =
1

C

l∏

j=1

φ∞(x; aj) φ∞(x; q/aj)

φ∞(x; bj) φ∞(x; q/bj)
(152)

as required. ✷

We now explore the fact that the space ker Dq is a linear space. This allows us to derive

a number of interesting relationships amongst some arbitrary combinations of products

of φ∞(x; a) φ∞(x; q/a) can be represented by a single such product. We shall show that

many well-known identities about Jacobi theta functions can be expressed in the forms

that fit those relationships.

Theorem 10.3. Given positive integer k and complex numbers aj , Cj, j = 1, 2, · · · k, there

exist complex numbers b and C such that

k∑

j=1

Cj φ∞(x; aj) φ∞(x; q/aj) = C φ∞(x; b) φ∞(x; q/b). (153)

Alternatively, we express this equation in q-rising factorial notation as

k∑

j=1

Cj (ajeiz, aje−iz; q)∞(q/ajeiz, q/aje−iz; q)∞

= C (beiz, be−iz; q)∞(q/beiz, q/be−iz; q)∞.

(154)
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Proof. Let d be a complex number such that d 6= aj for 1 ≤ j ≤ k. Set

f(x) =
k∑

j=1

Cj
φ∞(x; aj) φ∞(x; q/aj)

φ∞(x; d) φ∞(x; q/d)
. (155)

Then we know from (144) that

(Dqf)(x) ≡ 0. (156)

Hence f(x) lies in the kernel of Dq. We deduce from Theorem 10.2 that there exist

a nonnegative integer m and complex numbers C, c1, c2, · · · , ck; d1, d2, · · · , dk, listed

according to their multiplicities, such that

f(x) = C

m∏

j=1

φ∞(x; cj) φ∞(x; q/cj)

φ∞(x; dj) φ∞(x; q/dj)
. (157)

However, f(x) can only have a single equivalent class {d} of poles of multiplicity one.

We deduce m = 1 and d1 = d, let b = c1, we have

f(x) = C
φ∞(x; b) φ∞(x; q/b)

φ∞(x; d) φ∞(x; q/d)
. (158)

Combining (155) and (158) yields (153). ✷

Similarly we obtain the following extension but we omit its proof.

Theorem 10.4. Given nonnegative integers k, m and complex numbers aij , Cj, i =

1, 2, · · · , m; j = 1, 2, · · · k, there exist complex numbers c1, c2, · · · , cm and C such

that

k∑

j=1

Cj

m∏

i=1

φ∞(x; aij) φ∞(x; q/aij) = C
m∏

i=1

φ∞(x; ci) φ∞(x; q/ci). (159)

Alternatively, we express this equation in q-rising factorial notation as

k∑

j=1

Cj

m∏

i=1

(
aijeiz, aije−iz; q

)
∞

(
q/aijeiz, q/aije−iz; q

)
∞

= C

m∏

i=1

(
cie

iz, cie
−iz; q

)
∞

(
(q/ci)e

iz, (q/ci)e
−iz; q

)
∞

.

(160)

Let us write q = eiπτ where ℑ(τ) > 0. Hence |q| < 1. Identifying the theta functions

in the notation of infinite q-product with [45, pp. 469–473]:
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•

ϑ4(z, q) = (q2; q2)∞ (q e2iz, q2)∞ (q e−2iz, q2)∞, (161)

•
ϑ3(z) = ϑ4(z +

π

2
) = (q2; q2)∞ (q e2iz+iπ, q e−2iz−iπ; q2)∞, (162)

•
ϑ1(z)/(−iq1/4eiz) = ϑ4(z +

πτ

2
) = (q2; q2)∞ (q2 e2iz; q2)∞ (e−2iz; q2)∞, (163)

and finally

•

ϑ2(z) = ϑ1(z +
1

2
π) = q

1
4 eiz (q2; q2)∞ (−q2 e2iz, −e−2iz; q2)∞. (164)

Then it is straightforward to verify the theta identities (10) corresponds to given k = 2,

a1 = q, a2 = −q2, C1 = (q2; q2)2
∞ϑ4, C2 = q

1
2 (q2; q2)2

∞ϑ2, then b = −q and C =

(q2; q2)2
∞ϑ3 from Theorem 10.3. Similarly, the identity (11) corresponds to given k = 2,

a1 = q2, a2 = −q2 and q replaced by q2,

C1 = [q1/2(q2; q2)2
∞]2(q2 eiy, q2 e−iy; q2)∞ (q2/q2 eiy, q2/q2 e−iy q2)∞,

C2 = [(q2; q2)2
∞]2(−q2 eiy, −q2 e−iy; q2)∞

(
q2/(−q2) eiy, q2/(−q2) e−iy; q2

)
∞

,

then C = [(q2; q2)2
∞]2 and b = q eiy. We omit the detailed verification.

11. Askey–Wilson type five-value theorem

The above consideration allows us to obtain a variation of Nevanlinna’s five values

theorem for finite logarithmic order meromorphic functions. Nevanlinna showed in 1929

[27, §2.7] that if two arbitrary meromorphic functions share five values, that is, the

pre-images of the five points (ignoring their multiplicities) in C are equal, then the two

functions must be identical. There has been numerous generalisations of this result,

including those taking multiplicities into account. Halburd and Korhonen showed that

there is a natural analogue of the five-value theorem for two finite order meromorphic

functions for the simple difference operator ∆f in [24]. We show below that there is also a

natural extension for the five-value theorem for two finite logarithmic order meromorphic

functions with respect to the AW-operator. Our definition for two functions sharing a

value in Askey–Wilson appears to be different in spirit from that given in [24].

Definition 11.1. Let f and g be two meromorphic functions with finite logarithmic orders.

Let a ∈ Ĉ. We write Ef (a) to be the inverse image of a under f , that is, it is the subset

of C where f(x) = a. Then we say that f and g share the AW-value a if Ef (a) = Eg(a)

except perhaps on the subset of C such that
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ñAW(r, f = a) − ñAW(r, g = a) = O(1). (165)

We can write the above statement in the equivalent form

ÑAW (r, f = a) − ÑAW (r, g = a) = O(log r). (166)

We recall from the §7 that the definition (165) means that

∑

|x|<r

(
hf (x) − kf (x)

)
−
∑

|x|<r

(
hg(x) − kg(x)

)
= O(1),

where k = min{h, k′}. We note that the definition entails that two finite logarithmic

order meromorphic functions share a AW−a value could be very different from two

meromorphic functions share the value a in the classical sense. If the pre-images of

a ∈ C under f and g lie on a sequence defined by (1), then f and g share AW−a. On

the other hand, there are many ways for which the hf (x) − kf (x) and hg(x) − kg(x) can

behave that would lead to the upper bound stipulated in (166).

Theorem 11.2. Let fi(z), i = 1, 2 be non-constant transcendental meromorphic functions

of finite logarithmic orders (25) such that Dqfi 6≡ 0 (i = 1, 2). Suppose that fi(z), i = 1, 2

share five distinct AW-points aν , ν = 1, · · · , 5. Then f1 ≡ f2.

Proof. We denote σlog to be the maximum of the logarithmic orders of f1, f2. We suppose

on the contrary that the functions f1, f2 are not identically the same. According to the

assumption, we shall assume that Ef1
(aν) ≡ Ef2

(aν) except perhaps on those x for which

the (166) holds with ν = 1, · · · , 5. Hence

N12, ν(r) := ÑAW

(
r,

1

f1 − aν

)
= ÑAW

(
r,

1

f2 − aν

)
+ O(log r), ν = 1, · · · , 5.

Choosing p = 5 in (114) yields

4 T (r, fi) ≤ ÑAW (r, fi) +
5∑

ν=1

N12, ν(r, fi) + O(logσlog−1+ε r) + O(log r), i = 1, 2,

and hence,

3 T (r, fi) ≤
5∑

ν=1

N12, ν(r) + O(logσlog−1+ε r) + O(log r), i = 1, 2. (167)

Since f1, f2 are not identical, so applications of (167) give
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T
(

r, (f1 − f2)−1
)

= T (r, f1 − f2) + O(1)

≤ T (r, f1) + T (r, f2) + O(1)

≤ 2

3

5∑

ν=1

N12, ν(r) + O(logσlog−1+ε r) + O(log r).

Thus except for those x for which the (166) may hold with aν-points (ν = 1, · · · , 5), the

zeros of f1 − f2 satisfy

5∑

ν=1

N12, ν(r) ≤ ÑAW

(
r,

1

f1 − f2

)
≤ T

(
r, (f1 − f2)−1

)

≤ 2

3

5∑

ν=1

N12, ν(r) + O(logσlog−1+ε r) + O(log r).

Thus,

5∑

ν=1

N12, ν(r) = O(logσlog−1+ε r) + O(log r).

Substitute the above equation into (167) yields

T (r, fi) = O(logσlog−1+ε r) + O(log r)

which is impossible unless f1, f2 are rational functions. This is a contradiction. ✷

12. Applications to difference equations

Let

Pn(x) = pn(x; a, b, c, d |q) :

=
(ab, ac, ad, ; q)n

an 4φ3

( q−n, a b c d qn−1, a eiθ, a e−iθ

a b, a c, a d

∣∣∣ q; q
) (168)

be the n-th Askey–Wilson polynomial, where we recall that x = cos θ. It is known from

[6, Theorem 2.2] that when −1 < q < 1, a, b, c, d are real or appear in conjugate pairs,

and that max{|a|, |b|, |c|, |d|} < 1, then the AW-polynomials are orthogonal on [−1, 1]

with respect to the weight function

ω(x) = ω(x; a, b, c, d |q) :=
w(x; a, b, c, d |q)√

1 − x2

=
(e2iθ, e−2iθ; q)∞

(a eiθ, a e−iθ; q)∞(b eiθ, b e−iθ; q)∞(c eiθ, c e−iθ; q)∞(d eiθ, d e−iθ; q)∞ sin θ
.

(169)
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Let

ω̃(x) := ω(x; a q
1
2 , b q

1
2 , c q

1
2 , d q

1
2 |q), (170)

be a shifted-weight function. Askey and Wilson showed (see [6, (5.16)]) that the

AW-polynomials are also eigen-solutions to the (self-adjoint) second-order difference

equation

(1 − q)2 Dq

[
ω̃(x) Dq y(x)

]
+ λnω(x) y(x) = 0 (171)

where y(x) = pn(x; a, b, c, d |q)

λn = 4q−n+1(1 − qn)(1 − a b c d qn−1),

are corresponding eigenvalues. We consider a self-adjoint type equation with a more gen-

eral entire coefficient. Entire functions of zero-order have particularly simple Hadamard

factorization. Littlewood [37, §14]5 gave a detailed but lengthy analysis of asymptotic

behaviour of q-infinite products. We instead derive a less accurate estimate but with

shorter argument based on Bergweiler and Hayman [10, Lemma 3] for the Jacobi theta

function ϑ4(z; q) (see [45, p. 469]) in the punctured plane C
∗ = C\{0} away from the

zeros when considered as the function of z. If x = cos θ = (z + 1/z)/2, then in our

notation, their theta function [10, (4.5)] is represented as

(q2, qeiθ, qe−iθ; q2)∞.

We modify their argument to suit the notation we use for our infinite products which

allow for an extra non-zero parameter a. Unlike the restriction that q is required to be

real and −1 < q < 1 in [6, Theorem 2.2], we allow our q to be complex.

Lemma 12.1. Suppose a ∈ C\{0}, x = cos θ = 1
2 (z + z−1), and

f(x) = (aeiθ, ae−iθ; q)∞.

Let |z| > max{|aq− 1
2 |, |a−1q

1
2 |}, ν ∈ N and τ ∈ [0, 1) be two numbers (both depend on z)

that satisfy

|az| = |q| 3
2

−τ−ν . (172)

Then we have,

5 The authors are grateful for the referee who pointed out this information.
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log |f(x)| =
(log |az|)2

−2 log |q| +
1

2
log(|az|) + log |1 − aqν−1z| + O(1) (173)

as x → ∞ and hence z → ∞.

Proof. We write

log
∣∣(aeiθ, ae−iθ; q)∞

∣∣ =

∞∑

k=1

log
∣∣(1 − aqk−1z)(1 − aqk−1/z)

∣∣

= S1 + S2 + S3 + log |1 − aqv−1z|
(174)

where

S1 =

ν−1∑

k=1

log
∣∣(1 − aqk−1z)

∣∣, S2 =

∞∑

k=ν+1

log
∣∣(1 − aqk−1z)

∣∣,

and

S3 =

∞∑

k=1

log
∣∣(1 − aqk−1/z)

∣∣.

We first consider

S1 =
ν−1∑

k=1

log |aqk−1z| +
ν−1∑

k=1

log
∣∣∣1 − 1

aqk−1z

∣∣∣

= (ν − 1) log |az| + (ν − 1)(ν/2 − 1) log |q| +
ν−1∑

k=1

log
∣∣∣1 − 1

aqk−1z

∣∣∣.
(175)

Since k ≤ ν − 1, so that ν − k ≥ 1, we have

∣∣1/(aqk−1z)
∣∣ = |q|− 3

2
+ν+τ+(1−k) ≤ |q|ν−k−1/2 ≤ |q| 1

2 < 1.

So6

∣∣∣∣∣ log
∣∣∣1 − 1

aqk−1z

∣∣∣
∣∣∣∣∣ < log

1

1 − |q|ν−k− 1
2

<
|q|ν−k− 1

2

1 − |q|ν−k− 1
2

<
|q|ν−k

|q| 1
2 (1 − |q| 1

2 )
. (176)

Hence

6 Since | log(1 + z)| < log 1
1−|z| < |z|

1−|z| , (0 < |z| < 1), see e.g., [2, p. 68, (4.1.34) and (4.1.38)].
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ν−1∑

k=1

∣∣∣∣∣ log
∣∣∣1 − 1

aqk−1z

∣∣∣
∣∣∣∣∣ <

ν−1∑

k=1

|q|ν−k

|q| 1
2 (1 − |q| 1

2 )
<

1

|q| 1
2 (1 − |q| 1

2 )

∞∑

j=1

|q|j

=
|q| 1

2

(1 − |q| 1
2 )(1 − |q|)

.

(177)

We deduce that

∣∣S1 − (ν − 1) log |az| + (ν − 1)(ν/2 − 1) log |q|
∣∣ <

|q| 1
2

(1 − |q| 1
2 )(1 − |q|)

. (178)

Now let us compute S2. Since k ≥ ν + 1 and τ ∈ [0, 1), so

|aqk−1z| = |q| 1
2

+k−ν−τ < |q|k−ν− 1
2 ≤ |q|1/2 < 1.

Hence

∣∣∣ log
∣∣1 − aqk−1z

∣∣
∣∣∣ ≤ log

1

1 − |q|k−ν− 1
2

≤ |q|k−ν− 1
2

1 − |q|k−ν− 1
2

<
|q|k−ν

|q| 1
2 (1 − |q| 1

2 )
. (179)

We deduce

|S2| ≤ 1

|q| 1
2 (1 − |q|1/2)

∞∑

k=ν+1

|q|k−ν =
1

|q| 1
2 (1 − |q|1/2)

( ∞∑

j=1

|q|j
)

=
|q| 1

2

(1 − |q|)(1 − |q|1/2)
.

(180)

It remains to estimate S3. According to our assumption |z| > |aq− 1
2 | that

|aqk−1/z| < |q|k− 1
2 ≤ |q| 1

2 < 1

so that, we can invoke a similar argument used to estimate (176)–(180) to derive

|S3| ≤
∞∑

k=1

∣∣∣∣∣ log
∣∣∣1 − aqk−1

z

∣∣∣
∣∣∣∣∣ ≤

∞∑

k=1

log
1

1 −
∣∣aqk−1/z

∣∣ <
∞∑

k=1

log
1

1 − |q|k− 1
2

<
∞∑

k=1

|q|k− 1
2

1 − |q|k− 1
2

<
1

1 − |q| 1
2

∞∑

k=1

|q|k− 1
2 =

|q| 1
2

(1 − |q|)(1 − |q| 1
2 )

.

(181)

Combining the estimates (175), (178), (180) and (181) yields the estimate (173) as re-

quired. ✷

Lemma 12.2. Let ω(x) and ω̃(x) be as defined in (169) and (170) respectively. Then we

have
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m
(

r,
ω̃

ω

)
= O(log r), |x| = r. (182)

Proof. It is elementary that

m
(

r,
ω̃

ω

)
≤ m

(
r,

(aq
1
2 eiθ, aq

1
2 e−iθ; q)∞

(aeiθ, ae−iθ; q)∞

)
+ m

(
r,

(bq
1
2 eiθ, bq

1
2 e−iθ; q)∞

(beiθ, be−iθ; q)∞

)

+ m
(

r,
(cq

1
2 eiθ, cq

1
2 e−iθ; q)∞

(ceiθ, ce−iθ; q)∞

)
+ m

(
r,

(dq
1
2 eiθ, dq

1
2 e−iθ; q)∞

(deiθ, de−iθ; q)∞

)
.

(183)

Without loss of generality, we consider m
(
r, (aq

1
2 z, aq

1
2 /z; q)∞/(az, a/z; q)∞

)
. Since

|z| = 2|x| + o(1) as |x| = r → ∞, we have by Lemma 12.1

log
∣∣∣ (aq

1
2 z, aq

1
2 /z; q)∞

(az, a/z; q)∞

∣∣∣ = − log |1 − aqν1−1z| + log |1 − aqν2− 1
2 z| + O(log r), (184)

with |az| = |q| 3
2

−τ1−ν1 , |aq
1
2 z| = |q| 3

2
−τ2−ν2 . By Lemma 4.1 with α = 1

2 , we have

log |1 − aqν1−1z| = O
(

|aqν1−1z| 1
2 +

∣∣∣ z

z − a−1q1−ν1

∣∣∣
1
2
)

= O
( r

1
2

|z − a−1q1−ν1 | 1
2

)
+ O(1).

(185)

On the other hand,

|x − (a−1q1−ν1 + aqν1−1)/2| =
1

2
|z − a−1q1−ν1 ||1 − aqν1−1z−1| = O

(
|z − a−1q1−ν1 |

)
.

(186)

Then

log |1 − aqν1−1z| = O
( r

1
2

|x − (a−1q1−ν1 + aqν1−1)/2| 1
2

)
+ O(1). (187)

Similarly we have

log |1 − aqν2− 1
2 z| = O

( r
1
2

|x − (a−1q
1
2

−ν2 + aqν2− 1
2 )/2| 1

2

)
+ O(1). (188)

Substitute (187) and (188) into (184) yields

log
∣∣∣ (aq

1
2 z, aq

1
2 /z; q)∞

(az, a/z; q)∞

∣∣∣

= O
( 1

|x − (a−1q1−ν1 + aqν1−1)/2| 1
2

+
1

|x − (a−1q
1
2

−ν2 + aqν2− 1
2 )/2| 1

2

)
r

1
2 + O(log r).

(189)
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Let r be large enough and fixed, x = reiφ. We note that when φ varies in [0, 2π], |z|
makes a corresponding small change with |z| = 2r + o(1). This may result in the change

of integers ν1 and ν2 but each of them can assume at most two consecutive integer values.

Thus

m
(

r,
(aq

1
2 z, aq

1
2 /z; q)∞

(az, a/z; q)∞

)
= O

( 4∑

j=1

2π∫

0

r
1
2

|reiφ − wj | 1
2

dφ
)

+ O(log r), (190)

where w1, 2 = (a−1q1−ν1 + aqν1−1)/2, w3, 4 = (a−1q
1
2

−ν2 + aqν2− 1
2 )/2. Hence, we deduce

from (64) that

m
(

r,
(aq

1
2 z, aq

1
2 /z; q)∞

(az, a/z; q)∞

)
= O(log r). (191)

Similarly we can repeat the above argument to the remaining three terms in (183). This

completes the proof. ✷

Theorem 12.3. Let A(x) be an entire function of finite logarithmic order σlog(A) > 1.

Suppose that f is an entire solution to the second-order difference equation

Dq

[
ω̃(x) Dq y(x)

]
+ ω(x)A(x) y(x) = 0 (192)

where the ω and ω̃ are defined in (169) and (170) respectively. Then σlog(f) ≥ σlog(A)+1.

Proof. Let

F (x) := ω̃(x)Dqf(x).

We deduce from Theorem 3.4 that σlog(F ) ≤ max{σlog(ω), σlog(Dqf)} ≤ max{2,

σlog(f)}. Then by the Theorem 3.1, for each ε > 0,

m(r, A) = m
(

r,
Dq

[
ω̃(x) Dq f(x)

]

ω f

)

≤ m
(

r,
DqF (x)

F (x)

)
+ m

(
r,

ω̃

ω

)
+ m

(
r,

Dqf(x)

f(x)

)

= O
(
(log r)σlog(F )−1+ε

)
+ O(log r) + O

(
(log r)σlog(f)−1+ε

)

= O
(
(log r)max{1, σlog(f)−1}+ε

)
.

(193)

Since σlog(A) > 1 and ε > 0 is arbitrary, so we deduce the desired result. ✷

We further define

ω̃k(x) := ω(x; a q
k
2 , b q

k
2 , c q

k
2 , d q

k
2 |q), (194)
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to be the k-shifted weight function of (169), where k ≥ 1 and ω̃0(x) = ω(x; a, b, c, d |q).

Then Askey and Wilson [6, (5.15)] derived a Rodrigues-type formula:

(Dq)k
[
ω(x; a q

k
2 , b q

k
2 , c q

k
2 , d q

k
2 |q)

]

=
(q − 1

2

)−n

q− 1
2

n(n−1)ω(x; a q
1
2 , b q

1
2 , c q

1
2 , d q

1
2 |q)pn(x; a, b, c, d |q)

(195)

which may be regarded as a higher order difference equation. We can apply a simi-

lar technique used in the last theorem to obtain the following theorem whose proof is

omitted. See also [17, Theorem 9.2].

Theorem 12.4. Let k ≥ 1, Aj(x), j = 0, 1, · · · k − 1 be an entire functions such that

σlog(A0) > σlog(Aj) ≥ 1, j = 1, · · · , k − 1. Suppose that f is an entire solution to the

k-th order difference equation

D(k)
q y(x) + Ak−1D(k−1)

q y(x) + · · · + +A1 Dq y(x) + A0(x) y(x) = 0. (196)

Then σlog(f) ≥ σlog(A0) + 1.

13. Concluding remarks

We have shown in this paper that the AW-operator naturally induces a version of

difference value distribution theory on meromorphic functions of finite logarithmic order

of growth. Although the finite logarithmic order growth appears to be restrictive, it

turns out that this class of functions contains a large family of meromorphic functions,

including the Jacobi theta functions and theta-like functions and also many q-series type

special functions.

In particular, a Picard-type theorem based on the AW-operator is derived. For any

complex a, instead of the classical Nevanlinna theory in which the Nevanlinna de-

ficiency δ(a) plays an important role, we have shown that it is the ΘAW(a) which

corresponds to what we used to call the ramification index that plays the crucial role

in our AW-Nevanlinna theory. It appears to be a proper index to consider when dealing

with function theoretic problems on finite differences in general and AW-difference op-

erator in particular. As a result, we have called the ΘAW(a), where 0 ≤ ΘAW(a) ≤ 1, the

AW-deficiency and showed that
∑

a∈C
ΘAW(a) ≤ 2 in this paper. Thus there is a makred

difference between the corresponding deficient value
∏

c(a, f) which can be straightly

greater than one for the difference operator ∆f(x) = f(x + c) − f(x) defined by Halburd

and Korhonen [24, p. 472] and our definition of ΘAW(a). This difference is due to the way

in which our ÑAW(r, f = a) is defined in §8 and the the way that Ñc(r, a) is defined in

[24, p. 469]. Our new Picard type theorem says that if a slow-growing (finite logarithmic

order) meromorphic function f has three such AW-deficient values, then f belongs to

ker Dq. Special cases of an a-point being a AW-deficient value of f include when the
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pre-image of an a-point lies on an infinite sequence of the type (1). Thus, although the

equation f(x) = a has infinitely many solutions, our theory suggests us to interpret

these a-points as if they are not present in the sense of Askey–Wilson. We have also

given an alternative derivation of functions that lie in the ker Dq. Unlike the kernel of

conventional differential operator, the ker Dq is non-trivial. As a consequence, we have

derived a number of relationships exist amongst families of q-infinite products.

Although one can write down an infinite convergent series given by the AW-Taylor-

expansion (22) in terms of the AW-basis, little is known about the value distribution

of those functions. One such example is given by Koelink and Stokman in [33] where

they constructed a transcendental function solution to (171) which is linearly indepen-

dent to the Askey–Wilson polynomials (168). This transcendental function were further

studied in [34]. But we still do not know its logarithmic order. Needless to say that

much less is known about the value distribution properties of other transcendental

meromorphic functions associated with the AW-operator. Our AW-Nevanlinna theory

allows us to understand a little more. For example, the generating function H(x) (6) for

q-ultraspherical polynomials found by Rogers mentioned earlier has zero-sequence and

pole sequences as described by (7) and (5) respectively. However, it has ΘAW(0) = 1

and ΘAW(∞) = 1 under our interpretation. Thus the H(x) can be regarded as AW-zero-

scarce and pole-scarce. On the other hand, the H(x) is not in the form (143) described

by the Theorem 10.2, so it does not belong to the Dq. Hence the H(x) must assume all

a 6= 0, ∞ infinitely often in the sense of Askey–Wilson.

We recall that a function is called a polynomial if the function is annihilated after

repeated application of conventional differentiation a finite number of times. Thus, those

functions that are annihilated after a differentiation are called constants. If we replace

the differential operator by the AW-operator, then the Theorem 10.2 shows that apart

from the conventional constants, there are also constants (given by (143)) with respect

to the AW-operator. So it is natural to ask what are the polynomials and transcendental

functions with respect to the AW-operator. Since even the class of AW-constants consists

of a rich collection of conventional transcendental meromorphic functions, thus it can be

anticipated that these polynomials should be rich and worthy of exploration.

The classical Picard theorem and Nevanlinna theory are about a particular way of

counting zeros/poles and their multiplicities about a meromorphic function with respect

to the basis {xn} (−∞ ≤ n < +∞) which is natural with respect to the derivative

operator. However, the natural basis for a difference operator is not the usual {xn}. It

is known that some natural bases for difference operator ∆f(x) = f(x + c) − f(c) and

the AW-operator Dqf are, respectively,

1. The Netwon basis: pn(x) = x(x + 1) · · · (x + n − 1)

2. the AW-basis: φ(x; a)n = (aeiθ, ae−iθ; q)n,

when n ≥ 0. However, when defined in an appropriate manner, they can be extended to

the full-range (−∞ < n < +∞). Thus it may be more appropriate to establish the various
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Nevanlinna theories for difference operators with respect to their natural interpolatory

bases, and therefore this includes finding their appropriate forms of residue calculus.
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Appendix A. Proof of Theorem 2.1

Although the Askey–Wilson operator is defined on basic hypergeometric polynomials

in their original memoir [6], it follows from a terminating sum of (22), that one can write

xn explicitly in terms of {φn(cos θ; a)}, together with (20) show that the Askey–Wilson

operator will reduce the a degree n polynomial f(x) to degree n − 1. Alternatively, one

can verify this directly:

[(q1/2 − q−1/2)i sin θ] Dqxk = (q1/2z − q−1/2z−1)k − (q−1/2z − q1/2z−1)k

=
k∑

j=0

(
k

j

)
q−(k−2j)/2(2i) sin(k − 2j)θ.

Hence

Dqxk =
k∑

j=0

(
k

j

)
2q−(k−2j)/2

q1/2 − q−1/2
Uk−2j(x),

where x = cos θ and Uk is the Chebyshev polynomial of the second kind, shows that Dqxk

is indeed a polynomial in x.

Let f(x) =
∑∞

k=0 akxk be entire so fN (x) :=
∑∞

k=N akxk → 0 uniformly on any

compact subset of C as N → +∞. Thus it is clear that both f̆N (q1/2z) and f̆N (q−1/2z),

and hence Dq(
∑∞

k=N akxk
)

→ 0 uniformly on any compact subset of C as N → +∞.

Thus Dqf = Dq

(∑∞
k=0 akxk

)
is analytic and hence entire.

We would like to extend the definition of Dq to meromorphic functions. To do so we

first establish that given f(x) entire, then so is the

(Aqf)(x) =
1

2

[
f̆(q

1
2 z) + f̆(q− 1

2 z)
]
,
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which is called the averaging operator [30, p. 301]. In view of the argument to justify the

analyticity of Dqf above, it suffices to show that Aqxk is again a polynomial in x. Since

Aqxk =
1

2

{
(q1/2z + q−1/2/z)k + (q−1/2z + q1/2/z)k

}

=

k∑

j=0

(
k

j

)
q−(k−2j)/2 cos(k − 2j)θ =

k∑

j=0

(
k

j

)
q−(k−2j)/2Tk−2j(x),

where the Tk is the Chebyshev polynomial of the first kind. Thus Aqf(x) is again entire.

Moreover, one can check easily that

(Dq1/f)(x) =
−(Dqf)(x)

f(q1/2z + q−1/2/z)f(q−1/2z + q1/2/z)

(We note that it tends to −f ′(x)/f2(x) as q → 1.) We consider

f
(
q1/2z + q−1/2/z)/2

)
f
(
q−1/2z + q1/2/z)/2

)
(A.1)

=
( ∞∑

k=0

ak

2k

(
q1/2z + q−1/2/z

)k
)( ∞∑

k′=0

ak′

2k′

(
q−1/2z + q1/2/z

)k′)

=
∞∑

k=0

∞∑

k′=0

akak′

2k+k′

(
q1/2z + q−1/2/z

)k(
q−1/2z + q1/2/z

)k′

.

We only need to consider the cases when k 6= k′. Suppose k > k′. We note the following

term in the (A.1).

(q1/2z + q−1/2z−1)k(q−1/2z + q1/2z−1)k′

+ (q1/2z + q−1/2z−1)k′

(q−1/2z + q1/2z−1)k

= (q1/2z + q−1/2z−1)k′

(q−1/2z + q1/2z−1)k′

(A.2)

×
[
(q1/2z + q−1/2z−1)k−k′

+ (q−1/2z + q1/2z−1)k−k′]

= (x2 + q + q−1 − 2)k′
k−k′∑

j=0

(
k − k′

j

)
2q(2j−k−k′)/2 cos(k + k′ − 2j)θ.

But cos(k + k′ − 2j)θ = Tk+k′−2j(x) is a polynomial in x, so that

f
(
q1/2z + q−1/2/z)/2

)
f
(
q−1/2z + q1/2/z)/2

)

is again entire. Thus Dq

(
1/f

)
is meromorphic. We note that f can be represented as a

quotient f = g/h where both g and h are entire. Since

(Aq1/h)(x) =
(Aqh)(x)

h(q1/2z + q−1/2/z)h(q−1/2z + q1/2/z)
,
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it is now easy to see that Aq1/h is meromorphic. Then, we deduce from the quotient

rule [30, p. 301]

Dq(g/h) = (Aqg)(Dq1/h) + (Aq1/h)(Dqg)

that Dqf is a meromorphic function.
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