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Abstract: This paper investigates the computational and statistical limits
in clustering matrix-valued observations. We propose a low-rank mixture
model (LrMM), adapted from the classical Gaussian mixture model (GMM)
to treat matrix-valued observations, which assumes low-rankness for popu-
lation center matrices. A computationally efficient clustering method is de-
signed by integrating Lloyd’s algorithm and low-rank approximation. Once
well-initialized, the algorithm converges fast and achieves an exponential-
type clustering error rate that is minimax optimal. Meanwhile, we show that
a tensor-based spectral method delivers a good initial clustering. Compa-
rable to GMM, the minimax optimal clustering error rate is decided by
the separation strength, i.e, the minimal distance between population cen-
ter matrices. By exploiting low-rankness, the proposed algorithm is blessed
with a weaker requirement on separation strength. Unlike GMM, however,
the statistical and computational difficulty of LrMM is characterized by
the signal strength, i.e, the smallest non-zero singular values of population
center matrices. Evidences are provided showing that no polynomial-time
algorithm is consistent if the signal strength is not strong enough, even
though the separation strength is strong. The performance of our low-rank
Lloyd’s algorithm is further demonstrated under sub-Gaussian noise. In-
triguing differences between estimation and clustering under LrMM are
discussed. The merits of low-rank Lloyd’s algorithm are confirmed by com-
prehensive simulation experiments. Finally, our method outperforms others
in the literature on real-world datasets.

MSC2020 subject classifications: Primary 62C20; secondary 62F30.
Keywords and phrases: Mixtures models, low-rank matrix, clustering,
Lloyd’s algorithm.

1. Introduction

Nowadays, clustering matrix-valued observations becomes a ubiquitous task in
diverse fields. For instance, each highly variable region (HVR) in the var genes
of human malaria parasite [37, 31] is representable by an adjacency matrix and a
key scientific question is to identify structurally-similar HVRs by, say, clustering
the associated adjacency matrices. The international trade flow of a commodity
across different countries can be viewed as a weighted adjacency matrix [47, 6].
Finding the similarity between trading patterns of different commodities is of
great value in understanding the global economic structure. This can also be
achieved by clustering the weighted adjacency matrices. Other notable exam-
ples include clustering multi-layer social networks [15, 23] and multi-view data
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Dataset n (d1, d2) K Ranks
BHL [49] 27 (1124,4) 3 ∼ {1, 1, 1}
EEG [66] 122 (256,64) 2 ∼ {2, 1}

Malaria gene networks [37] 9 (212,212) 6 ≤ 15
UN trade flow networks [47] 97 (48,48) 2 ∼ {3, 2}

Table 1
Summary of datasets. Here, n is the sample size, (d1, d2) is the dimension of each matrix
observation, and K is number of clusters. The underlying rank (r′ks) of population center

matrices from different clusters can be unequal.

[34, 49], modeling the connectivity of brain networks [2, 53], clustering the cor-
relation networks between bacterial species [52], EEG data analysis [19], etc.

Since matrix-valued observations can always be vectorized, a naive approach
is to ignore the matrix structure so that numerous classical clustering algo-
rithms, e.g. K-means or spectral clustering, are readily applicable. However,
matrix observations are usually blessed with hidden low-dimensional structures,
among which low-rankness is perhaps the most common and explored. Network
models such as stochastic block model [26, 31], random dot product graph [3]
and latent space model [25] often assume a low-rank expectation of adjacency
matrix. Low-rank structures have also been successfully explored in brain image
clustering [53], EEG data analysis [19], and international trade flow data [47], to
name but a few. Table 1 presents a summary of datasets analyzed in our paper,
where the matrix ranks rk’s (suggested by the numerical performance of our al-
gorithm) are much smaller than the ambient dimensions (d1, d2). Without loss
of generality, we assume d1 ≥ d2. For these applications, the naive clustering
approach becomes statistically sub-optimal since the planted low-dimensional
structure is overlooked.

Motivated by the aforementioned applications, throughout this paper, we as-
sume that each matrix-valued observation has a low-rank expectation and the
expectations are equal for observations from the same cluster. It is the essence of
low-rank mixture model (LrMM), which shall be formally defined in Section 2.
Several clustering methods exploiting low-rankness have emerged in the litera-
ture. [53] introduces a tensor Gaussian mixture model and recasts the clustering
task as estimating the factors in low-rank tensor decomposition. K-means clus-
tering is then applied to the estimated factors. While sharp estimation error
rate is derived under a suitable signal-to-noise ratio (SNR) condition, the accu-
racy of clustering is not provided. A tensor normal mixture model is proposed by
[49], where the authors have designed an enhanced EM algorithm for estimating
the distributional parameters. Under appropriate conditions, sharp estimation
error rates are established showing that minimax optimal test clustering error
rate is attainable. However, the training clustering error is missing, and it is
even unclear whether the proposed EM algorithm can consistently recover the
true cluster memberships. Aimed at analyzing multi-layer networks, [31] pro-
pose a mixture multi-layer SBM where a spectral clustering method based on
tensor decomposition is investigated. Clustering error rate is established under
a fairly weak network sparsity condition, although the rate is likely sub-optimal.



/Optimal Clustering of LrMM 3

More recently, [47] extends the mixture framework to latent space model and
sub-optimal clustering error rate is also derived. Note that [31] and [47] both
require a rather restrictive condition in that n = O(d1) rendering their theories
unattractive in many scenarios. Other representative works include [9], [5], [19]
and [52], but clustering error rates are not studied.

Note that LrMM reduces to the famous Gaussian mixture model (GMM)
in the dimension d∗ := d1d2 if each matrix-valued observation has a full-rank
expectation, and the noise matrix has i.i.d. standard normal entries. Under
GMM, [43] proves that a spectral method attains, with high probability, an
average mis-clustering error rate exp(−∆2/8) that is optimal in the minimax
sense. Here ∆ is the minimal Euclidean distance between the expected cen-
ters of distinct clusters (i.e., population center matrices), referred to as the
separation strength. This exponential rate is established by [43] under a sep-
aration strength1 condition ∆ � 1 + d∗n−1. [18] investigates a more general
iterative algorithm that achieves the same exponential rate under a weaker sep-
aration strength condition ∆ � 1 + (d∗/n)1/2. More recently, [65] applies the
leave-one-out method and proves the optimality of spectral clustering under a
relaxed separation strength condition. Besides deriving the optimal clustering
error rate, prior works also made efforts to establish the phase transitions in
exact recovery, i.e., when clustering error is zero. [50] investigates a power iter-
ation algorithm for a two-component GMM and proves that exact recovery is
attained if ∆2 is greater than

(
1 + (1 + 2d∗n−1 log−1 n)1/2

)
· log n. In addition,

the author shows that exact recovery is impossible if ∆2 is smaller than the
aforesaid threshold. Later, [10] establishes a similar phase transition for general
K-component GMM based on a semidefinite programming (SDP) relaxation.
These foregoing works suggest an intriguing gap in the regime n = O(d∗): [50]
and [10] reveal that exact recovery is achievable beyond the separation strength
threshold (2d∗n−1 log n)1/4, whereas the exponential-type clustering error rate
[18, 65] is derived only beyond the threshold (d∗/n)1/2. To our best knowledge,
the gap still exists at the moment. [30] proposes a two-component symmet-
ric sparse GMM and investigates the phase transition in consistent clustering.
Specifically, they show that, ignoring log factors, ∆ � 1 + s/n is necessary
for consistent clustering without restricting the computational complexity. Here
s is the sparsity of the expected observation. A recent work [42] designs an
SDP-based spectral method and establishes an exponential clustering error rate
when ∆ is greater than 1 + s1/2 log1/4(d∗)n−1/4. Moreover, they provide evi-
dence supporting the claim that no polynomial-time algorithm can consistent
recover the clusters if ∆ is smaller than the aforesaid threshold, i.e., there exists
a statistical-to-computational gap for clustering in sparse GMM. Both [30] and
[42] imply that the necessary separation strength primarily depends on the in-
trinsic dimension s rather than the ambient dimension d∗. We remark that there
is a vast literature studying the clustering problem for GMM. A representative
but incomplete list includes [44, 4, 12, 16, 22, 56, 58, 1] and references therein.

In contrast, the understanding of the limit of clustering for LrMM is still at

1For narration simplicity, we set the number of clusters K = O(1) here.
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its infant stage. In this paper, we fill the void in optimal clustering error rate
for LrMM and demonstrate that the rate is achievable by a computationally
fast algorithm. Challenges are posed from multiple fronts. First of all, designing
a computationally fast clustering procedure that sufficiently exploits low-rank
structure is non-trivial. Unlike (sparse) GMM [10, 42], convex relaxation for
LrMM seems not immediately accessible, especially when there are more than
two clusters. Non-convex approaches based on tensor decomposition and spec-
tral clustering [31, 45, 63] usually cannot distinguish the sample size dimension
(i.e., n) and data point dimension (i.e., d1, d2). Their theoretical results be-
come sub-optimal when sample size is much larger than d1. On the technical
front, low-rankness makes deriving an exact exponential-type clustering error
rate even more difficult. Under GMM [18, 43], the exponential-type clustering
error rate is established by carefully studying the concentration phenomenon
of a Gaussian linear form that usually admits an explicit representation. Esti-
mating procedures under LrMM, however, often require multiple iterations of
low-rank approximation, say, by singular value decomposition (SVD). Conse-
quently, deriving the concentration property of respective linear forms under
LrMM is much more involved than that under GMM. Moreover, prior related
works [42, 30, 64, 46] provide evidences that imply the existence of a statistical-
to-computational gap. It is unclear which model parameter characterizes such a
gap and how the gap depends on the sample size and dimensions. For instance,
how the low-rankness benefits the separation strength requirement? Interest-
ingly, we discover that the gap is not determined by the separation strength ∆
but rather by the signal strength (to be defined in Section 2) of the population
center matrices.

Our main contributions are summarized as follows. First, we propose a com-
putationally fast clustering algorithm for LrMM. At its essence is the com-
bination of Lloyd’s algorithm [41, 44] and low-rank approximation. Basically,
given the updated cluster memberships of each observation, the cluster centers
are obtained by the SVD of sample average within each cluster. The whole
algorithm involves only K-means clustering and matrix SVDs. Secondly, we
prove that, equipped with a good initial clustering, the low-rank Lloyd’s algo-
rithm converges fast and achieves the minimax optimal clustering error rate
exp(−∆2/8) with high probability as long as the separation strength satisfies
∆2 � rmax + r2

maxd1/n and the signal strength is strong enough. Here rmax is the
maximum rank among all the population center matrices. This dictates that a
weaker separation strength is sufficient for clustering under LrMM if the rank
rmax = O(1). Our key technical tool to develop the exponential-type error rate is
a spectral representation formula from [60], which has helped push forward the
understanding of statistical inference for low-rank models [61, 62]. Thirdly, we
propose a novel tensor-based spectral method for obtaining an initial clustering.
Under similar separation strength and signal strength conditions, this method
delivers an initial clustering that is sufficiently good for ensuring the conver-
gence of low-rank Lloyd’s algorithm. Lastly, compared with GMM that only
requires a separation strength condition [42, 18], an additional signal strength
condition seems necessary under LrMM. We provide evidences, based on the
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low-degree framework [36], showing that if the signal strength condition fails,
all polynomial-time algorithms cannot consistently recover the true clusters,
even when the separation strength is much stronger than the aforesaid one.
It is worth pointing out that, unlike tensor-based approaches [31, 45, 63], our
theoretical results impose no constraints on the relation between n and (d1, d2).

The rest of the paper is organized as follows. Low-rank mixture model is
formalized in Section 2, and we introduce the low-rank Lloyd’s algorithm and a
tensor-based method for spectral initialization. The convergence performance of
Lloyds’ algorithm, minimax optimal exponential-type clustering error rate, and
guarantees of a tensor-based spectral initialization are established in Section 3.
We discuss the computational barriers of LrMM in Section 4. In Section 5, we
slightly modify the low-rank Lloyd’s algorithm and derive the same minimax
optimal clustering error rate requiring a slightly weaker signal strength condi-
tion. Our theoretical results are extended to the case of sub-Gaussian noise in
Section 6. We discuss the difference between estimation and clustering under
LrMM in Section 7. Further discussions are provided in Section 8. Numerical
simulations and real data examples are presented in Section 9. All proofs and
technical lemmas are relegated to the appendix.

2. Methodology

2.1. Background and notations

For nonnegative D1, D2 , the notation D1 . D2 (equivalently, D2 & D1) means
that there exists an absolute constant C > 0 such that D1 ≤ CD2; D1 � D2

is equivalent to D1 . D2 and D2 . D1, simultaneously. Let ‖ · ‖ denote the `2
norm for vectors and operator norm for matrices, and ‖ · ‖F denotes the matrix
Frobenius norm. Denote σ1(M) ≥ · · · ≥ σr(M) > 0 the non-increasing singular
values of M where r = rank(M). We also define σmin(M) := σr(M). A third
order tensor is a three-dimensional array. Throughout the paper, a tensor is
written in the calligraphic bold font, e.g. M ∈ Rd1×d2×n. We use M1(M)
to denote the mode-1 matricization of M such that M1(M) ∈ Rd1×(d2n)

and M1(M)(i1, (i2 − 1)n + i3) = M(i1, i2, i3),∀i1 ∈ [d1], i2 ∈ [d2], i3 ∈ [n].
The mode-2 and mode-3 matricizations are defined in a similar fashion. Then{

rank
(
Mk(M)

)
: k = 1, 2, 3

}
are called Tucker rank or multilinear rank. The

mode-1 marginal multiplication between M and a matrix U> ∈ Rr×d1 results
into a tensor of size r1 × d2 × n, whose elements are(
M×1U

>)(j1, i2, i3) :=

d1∑
i1=1

M(i1, i2, i3)U(i1, j1), ∀j1 ∈ [r], i2 ∈ [d2], i3 ∈ [n]

Similarly, we can define the mode-2 and mode-3 marginal multiplication. Given
S ∈ Rr1×r2×r3 ,V ∈ Rd2×r2 ,W ∈ Rn×r3 , the multi-linear product M := S ×1

U×2 V ×3 W outputs a d1 × d2 × n tensor defined by,

M(i1, i2, i3) :=

r1∑
j1=1

r2∑
j2=1

r3∑
j3=1

S(j1, j2, j3)U(i1, j1)V(i2, j2)W(i3, j3) (1)
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More details can be found in [32]. Denote Od,r the set of all d × r matrices U
such that U>U = Ir, where Ir is the r× r identity matrix. Eq. (1) is known as
the Tucker decomposition if rk = rank

(
Mk(M)

)
, U ∈ Od1,r1 ,V ∈ Od2,r2 , and

W ∈ On,r3 .

2.2. Low-rank Gaussian mixture

Suppose that the d1 × d2 matrix-valued observations X1, · · · ,Xn are i.i.d., and
each of them has a latent label s∗i ∈ [K]. Here K denotes the number of under-
lying clusters, and without loss of generality, assume d1 ≥ d2. We assume that
there exist K deterministic but unknown matrices M1, · · · ,MK such that, con-
ditioned on s∗i = k, Xi follows a matrix normal distribution N (Mk, Id1

⊗ Id2
)

in that vec(Xi) ∼ N
(
vec(Mk), Id1d2

)
. This implies that Xi|s∗i = k is equal to

Mk + Ei in distribution where Ei has i.i.d. standard normal entries. Moreover,
we assume that the latent labels s∗1, · · · , s∗n are i.i.d. and

P(s∗i = k) = πk, ∀k ∈ [K]; where

K∑
k=1

πk = 1. (2)

Here the unknown πk > 0 stands for the mass of k-th cluster. Put it differently,
the matrix-valued observations have a marginal distribution

X1, · · · ,Xn
i.i.d.∼

k∑
k=1

πk · N (Mk, Id1
⊗ Id2

) (3)

Let rk = rank(Mk) and assume rk � d2 for all k, i.e., all the population center
matrices are low-rank. Model (3) is referred to as the low-rank mixture model
(LrMM). For simplicity, we treat the ranks rk’s as known and will briefly discuss
how to estimate them in Section 8. We denote the compact SVD of population
center matrices by Mk = UkΣkV

>
k with Uk ∈ Od1,rk and Vk ∈ Od2,rk . The

signal strength of Mk is characterized by σmin(Mk) := σrk(Mk). We remark that
estimating K is a challenging question even under GMM. Hence, throughout
this paper, it is assumed that K is provided beforehand.

[53] introduced a tensor Gaussian mixture model without specifically impos-
ing low-rank structures on the center matrices. A similar tensor normal mixture
model without low-rank assumptions is proposed by [49]. Our LrMM can be
viewed as a generalization of mixture multi-layer SBM proposed by [31] and as
an extension of the symmetric two-component case introduced by [47]. Mixture
of low-rank matrix normal models have also appeared in [19] for image analysis.

Since our goal of current paper is to investigate the fundamental limits of
clustering matrix-valued observations, hereafter, we view the latent labels s∗i , i ∈
[n] as a fixed realization sampled from the mixture distribution (2). Then the
matrix-valued observations can be written in the following form:

Xi = Ms∗i
+ Ei, i ∈ [n] (4)
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Denote s∗ = (s∗1, · · · , s∗n) the collection of true latent labels, known as the cluster
membership vector. The size of each cluster is given by n∗k :=

∑n
i=1 I (s∗i = k) ,∀k ∈

[K]. With mild conditions under LrMM, Chernoff bound [11] guarantees n∗k �
nπk with high probability.

Given an estimated cluster membership vector ŝ := (ŝ1, · · · , ŝn) ∈ [K]n, its
clustering error is measured by the Hamming distance defined by

hc(ŝ, s
∗) = min

π: permutation of [K]

n∑
i=1

I (π(ŝi) 6= s∗i ) (5)

2.3. Low-rank Lloyd’s algorithm

Lloyd’s algorithm [41] or K-means algorithm is perhaps, conceptually and implementation-
wise, the most simple yet effective method for clustering. It is an iterative al-
gorithm, which consists of two main routines at each iteration: 1). provided
with an estimated cluster membership vector, the cluster centers are updated
by taking the sample average within every estimated cluster; 2). provided with
the updated cluster centers, every data point is assigned an updated cluster
label according to its distances from the cluster centers. The iterations are ter-
minated once converged. The success of Lloyd’s algorithm is highly reliant on
a good initial clustering or initial cluster centers. It is proved by [44] and [18]
that, if well initialized, Lloyd’s algorithm converges fast and achieves minimax
optimal clustering error for GMM and community detections under stochastic
block model.

The original Lloyd’s algorithm updates the cluster centers by taking the
vanilla sample average. This approach is sub-optimal under LrMM because the
underlying low-rank structure is overlooked. It is well-known that exploiting the
low-rankness can further de-noise the estimates. Towards that end, we propose
the low-rank Lloyd’s algorithm whose details are enumerated in Algorithm 1.
Compared with the original Lloyd’s algorithm, the low-rank version only mod-
ifies the procedure of updating the cluster centers. At the (t + 1)-th iteration,
given the current cluster labels ŝ(t) and for each k, we calculate the sample
average X̄k(ŝ(t)) defined as in Algorithm 1, and then update the cluster center
by

M̂
(t+1)
k := Û

(t)
k Û

(t)>
k X̄k(ŝ(t))V̂

(t)
k V̂

(t)>
k

where Û
(t)
k and V̂

(t)
k are the top-rk left and right singular vectors of X̄k(ŝ(t)), re-

spectively. The update of cluster labels is unchanged compared with the original
Lloyd’s algorithm.

Conceptually, our low-rank Lloyd’s algorithm is a direct adaptation of Lloyd’s
algorithm to accommodate low-rankness. However, the low-rank update of clus-
ter centers poses fresh and highly non-trivial challenges in studying the con-
vergence behavior of Algorithm 1. The original Lloyd’s algorithm simply takes
the sample average and thus admits a clean and explicit representation form
for the updated centers, which plays a critical role in technical analysis, as in



/Optimal Clustering of LrMM 8

Algorithm 1 Low-rank Lloyd’s Algorithm (lr-Lloyd)

Input: Observations X1, · · · ,Xn ∈ Rd1×d2 ,initial estimate ŝ(0).
for t = 1, . . . , T do

for each k = 1, · · · ,K: (update cluster centers)

M̂
(t)
k ← best rank-rk approximation of X̄k(ŝ(t−1)) :=

∑n
i=1 I

(
ŝ
(t−1)
i = k

)
Xi∑n

i=1 I
(
ŝ
(t−1)
i = k

) (6)

for each i = 1, · · · , n: (update cluster labels)

ŝ
(t)
i ← arg min

k∈[K]
‖Xi − M̂

(t)
k ‖

2
F

end for
Output: ŝ := ŝ(T )

[18]. In sharp contrast, the required SVD in Algorithm 1 involves intricate and
non-linear operations on the matrix-valued observations, and there is surely no

clean and explicit representation form for M̂
(t)
k . More advanced tools are in need

for our purpose, as shall be explained in Section 3.

2.4. Tensor-based spectral initialization

The success of Algorithm 1 crucially depends on a reliable initial clustering. A
naive approach is to vectorize the matrix observations, concatenate them into
a new matrix of size n × (d1d2), then borrow the classic spectral clustering
method as in [43] and [65]. Unfortunately, the naive approach turns out to be
sub-optimal for ignoring the planted low-dimensional structure in the row space.

Our proposed initial clustering is based on tensor decomposition. Towards
that end, we construct a third-order data tensor X ∈ Rd1×d2×n by stacking the
matrix-valued observations slice by slice, i.e., its i-th slice2 X (:, :, i) = Xi. The
noise tensor E is defined in the same fashion. The signal tensor M is constructed
such that M(:, :, i) = Ms∗i

. The tensor form of LrMM (4) is

X = M + E (7)

Interestingly, eq. (7) coincides with the famous tensor SVD or PCA model [64,

63, 40]. Let r̊ :=
∑K
k=1 rk. Indeed, the signal tensor M admits the following

low-rank decomposition

M = S ×1 U×2 V ×3 W (8)

where the r̊×r̊×K core tensor S is constructed as S(:, :, k) := diag(0r1 , · · · ,0rk−1
,Σrk ,0rk+1

, · · · ,0rK ),
U = (U1, · · · ,UK) ∈ Rd1×r̊, V = (V1, · · · ,VK) ∈ Rd2×r̊, and W = (es∗1 , · · · , es∗n)> ∈
{0, 1}n×K . Here ek denotes the k-th canonical basis vector in Euclidean space
whose dimension might vary at different appearances. Clearly, the rows of W

2We follow Matlab syntax tradition and denote X (:, :, i) the sub-tensor by fixing one index.
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provide the cluster information and is referred to as the cluster membership
matrix. Note that (8) is not necessarily the Tucker decomposition since U,V
might be rank-deficient, in which case the decomposition in the form (8) is not
unique and U,V become unrecoverable.

The singular space of M is uniquely characterized by its Tucker decompo-
sition. To this end, denote U∗ ∈ Od1,rU and V∗ ∈ Od2,rV the left singular
vectors of U and V, respectively. Here, rU and rV are the ranks of M1(M)
and M2(M), respectively. Define W∗ ∈ On,K by normalizing the columns of
W. Re-compute the core tensor S∗ := M ×1 U∗> ×2 V∗> ×3 W∗> that is of
size rU × rV ×K. Finally, we re-parameterize the signal tensor via its Tucker
decomposition

M = S∗ ×1 U∗ ×2 V∗ ×3 W∗ (9)

Here U∗,V∗,W∗ are usually called the singular vectors of M. Still, the rows
of W∗ tell the cluster information in that W∗(i, :) = W∗(j, :) iff s∗i = s∗j , i.e,
i, j belongs to the same cluster. We note that there are interesting special cases
concerning the values of rU, rV. For instance, if rU = rV = r1, it implies that all
the population center matrices share the same low-dimensional singular space
with M1, which simplifies theoretical investigate of our proposed initialization
method. Another special case is rU = rV = r̊, namely the singular spaces of
all population center matrices are separated to a certain degree. Intuitively, the
clustering problem becomes easier. See Section 3.2 for discussions of both cases.

We now present our tensor-based spectral method for initial clustering. Unlike
the aforementioned naive spectral method, ours is specifically designed to exploit
the low-rank structure of M in the 1st and 2nd dimension. Without loss of
generality, we treat rU and rV as known here and shall discuss ways to estimate
them in Section 8. Our method consists of three crucial steps with details in
Algorithm 2. Step 1 aims to estimate the singular vectors U∗ and V∗. Here,
higher order SVD (HOSVD) is obtained by applying SVD to the matricizations
M1(M) and M2(M). See, for instance, [13] and [63]. The estimated singular
vectors are used for denoising in Step 2 by projecting the noise into a low-
dimensional space. Step 3 applies the classical K-means clustering [43, 65] to
the denoised observations. Note that solving K-means is generally NP-hard [48],
but there exist fast algorithms [35] achieving an approximate solution.

Algorithm 2 improves the naive spectral clustering whenever Û and V̂ are
reliable estimates of their population counterparts. This suggests that a cer-
tain signal strength condition on M1(S∗) and M2(S∗) is necessary. We remark
that the higher order orthogonal iteration (HOOI, [64]) algorithm for tensor
decomposition is not suitable for our purpose since it requires a lower bound on
σmin

(
M3(S∗)

)
, which is too restrictive under LrMM. See Section 3.2 for more

explanations.

3. Minimax Optimal Clustering Error Rate of LrMM

In this section, we establish the convergence performance of low-rank Lloyd’s
algorithm, validate our tensor-based spectral initialization, and derive the min-
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Algorithm 2 Tensor-based Spectral Initialization (TS-Init)

Input: Observations X1, · · · ,Xn ∈ Rd1×d2 or a tensor X ∈ Rd1×d2×n by concatenating
the matrix observations slice by slice.

1. Obtain the estimated factor matrices Û and V̂ by applying HOSVD to the tensor
X in mode-1 and mode-2 with rank rU and rV, respectively.

2. Project X onto the column space of Û and V̂ by

Ĝ := X ×1 ÛÛ> ×2 V̂V̂> ∈ Rd1×d2×n

3. Apply k-means on rows of Ĝ := M3(Ĝ) ∈ Rn×d1d2 to obtain initializer for s∗, i.e.

(ŝ(0), {M̂(0)
k }

K
k=1) := arg min

s∈[K]n,{Mk}Kk=1
,Mk∈Rd1×d2 ,∀k

n∑
i=1

∥∥∥[Ĝ]i· − vec(Msi )
∥∥∥2

Output: ŝ(0)

imax optimal clustering error rate for LrMM. The hardness of clustering under
LrMM is determined primary by two quantities:

Separation strength ∆ := min
a6=b,a,b∈[K]

‖Ma −Mb‖F

Signal strength λ := min
k∈[K]

σmin(Mk)

The separation strength is a generalization of the minimum `2 distance between
different population centers under GMM [44, 10, 18], which characterizes the in-
trinsic difficult in clustering the observations. In fact, the minimax optimal error
rate, i.e, the best achievable clustering accuracy, is exclusively decided by ∆. On
the other hand, the signal strength determines whether the population centers
or their singular spaces are estimable, only in which case the low-rank structure
can be beneficial. Actually, λ determines the computational and statistical limit
under LrMM.

3.1. Iterative convergence of low-rank Lloyd’s algorithm

The performance of Lloyd’s algorithm also relies on the minimal cluster size [44].
To this end, define α := mink∈[K] n

∗
k · (n/K)−1, where recall that n∗k := |{i ∈

[n] : s∗i = k}| is the size of k-th cluster. The cluster sizes are said to be balanced
if α � 1. The hamming distance hc(ŝ, s

∗) is defined as in eq. (5). Without loss
of generality, we assume r := r1 is the largest amongst {rk : k ∈ [K]} and
d := d1 ≥ d2.

Due to technical reasons, the following quantities are involved:

γ :=
maxa6=b,a,b∈[K] ‖Ma −Mb‖F

∆
and κ0 :=

maxk∈[K] ‖Mk‖
λ

Here κ0 can be viewed as the maximum condition number of all population
center matrices. They usually do not appear in the literature of GMM, but are



/Optimal Clustering of LrMM 11

of unique importance under LrMM. These two quantities play a critical role in

connecting the accuracy of updated center matrix M̂
(t)
k to the current clustering

accuracy hc(ŝ
(t−1), s∗). Since M̂

(t)
k stems from the SVD of X̄k(ŝ(t−1)), whose

accuracy is characterized by the strength of signal Mk and size of perturbation
X̄k(ŝ(t−1)) −Mk. Besides random noise, the latter term, roughly, consists of
(n∗a)−1hc(ŝ

(t−1), s∗)
(
Mk′ 6=k −Mk

)
, whose operator norm can be controlled by

O
(
(n∗a)−1hc(ŝ

(t−1), s∗) · min{κ0λ, γ∆}
)
. Quantities like γ and κ0 are, perhaps,

the unavoidable price to be paid for taking advantage of low-rankness.
The following theorem presents the convergence performance of low-rank

Lloyd’s algorithm (Algorithm 1). Due to the local nature of Lloyd’s algorithm,
its success highly relies on a good initialization. Theorem 3.1 assumes the initial
clustering is consistent, i.e., initial clustering error approaches zero asymptot-
ically as n → ∞. Under suitable conditions of separation strength and signal
strength, the output of Algorithm 1 attains an exponential-type error rate. The
constant factor 1/8 in the exponential rate exactly matches the minimax lower
bound in Theorem 3.4. Notice that our result is non-asymptotic, and all asymp-
totic conditions in Theorem 3.1 are to guarantee the sharp constant 1/8 in eq.
(13).

Theorem 3.1. Suppose d ≥ C0 logK for some absolute constant C0 > 0.
Assume that αn(κ2

0r
2K)−1 →∞ as n→∞ and

(i) initial clustering error:

n−1 · hc(ŝ(0), s∗) = o

(
α

(κ0 ∨ γ2)γ2K

)
(10)

(ii) separation strength:
∆2

α−1K2r
(
dr
n + 1

) →∞ (11)

(iii) signal strength:

λ ≥ C1

[
α−1/2K1/2

√
d

n
+ α−1K

√
hc(ŝ(0), s∗)

n
+ α−1/4 d

1/2

n1/4

]
(12)

for some absolute constant C1 > 0.

Let ŝ(t) be the cluster labels at t-th iteration generated by Algorithm 1. Then,
for all t ≥ 1, we have

n−1 · hc(ŝ(t), s) ≤ exp

(
−(1− o(1))

∆2

8

)
+

1

2t
(13)

with probability at least 1 − exp(−∆) − exp(−c1(d ∧ n)) with some absolute
constant c1 > 0.

By Theorem 3.1, after at most O
(

min{∆2, log n}
)

iterations, our low-rank
Lloyd’s algorithm achieves the minimax optimal clustering error rate exp(−∆2/8).
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Akin to GMM [44, 42, 18, 65], the best achievable clustering accuracy is exclu-
sively decided by the separation strength ∆. We note that the second term(
hc(ŝ

(0), s∗)/n
)1/2

on RHS of (12) can be simply replaced by 1. The present
form is to underscore the affect of initialization to the required signal strength.

Blessing of low-rankness and comparison with GMM. If low-rankness is ig-
nored so that LrMM is treated as GMM, the exponential-type error rate is
established only in the regime of separation strength ∆2 � 1 + (d1d2/n)1/2

[18, 65]. In contrast, our condition (11) only requires ∆2 � 1 + (rd1/n)1/2.
However, we need an additional signal strength condition that might be neces-
sary, as discussed below.

Discussions on signal strength. The signal strength condition is typically re-
quired in low-rank models [64, 51, 38, 60, 46]. The three terms on RHS of (12)
essentially depict the statistical and computational difficult of clustering under
LrMM. Without loss of generality, consider the case α � 1 and K = 2. The
denoising step for updating cluster centers in Algorithm 1 requires a sufficiently
accurate estimate of M1. Even if the true labels are revealed, , i.e., ŝ(t−1) = s∗,
the sample average of i.i.d. noise matrices has an operator norm, with high prob-
ability, at the order (d/n)1/2. It suggests that λ is at least greater than (d/n)1/2.
On the other hand, if there are n · hc(ŝ(t−1), s∗) mis-clustered observations,
bounding the sample average of noise matrices needs more delicate treatments
since these matrices are no longer independent. Through a careful investigation,

we derive an operator norm bound at the order
(
hc(ŝ

(t−1), s∗)/n
)1/2

where the
second term on RHS of (12) emerges. This condition weakens if a better initial
clustering is provided. Hence the first two terms on RHS of (12) reflects the sta-
tistical difficulty under LrMM. On the other hand, the third on RHS of (12) that
can be much stronger than the first two terms when n ≤ d2, reflects the compu-
tational difficulty under LrMM. Previously, [46] provides evidence showing that
no polynomial time can consistently estimate the population centers even in the
symmetric two-component LrMM if the signal strength λ = o(d1/2n−1/4). In
Section 4, evidences are provided showing that the same phenomenon exists for
clustering, that is, if λ = o(d1/2n−1/4), consistent clustering is impossible by
any polynomial time algorithms even when the separation strength ∆ is much
stronger than the minimal condition (11).

Discussions on separation strength. The separation strength condition is also
typical in the literature of clustering problems [54, 43]. To see why our condition
(11) is minimal, without loss of generality, consider the case α � 1 and K = 2.
Moreover, assume the singular vectors U1 = U2 and V1 = V2, and they are
already known. One can multiply each observation by U>1 from left and by
V1 from right, which reduces LrMM to GMM in the dimension r2. Literature
of GMM [18, 43, 65] all impose a separation strength condition ∆ � 1. This
certifies the constant 1 in eq. (11). To understand the term (rd/n)1/2, consider
that the true labels of first n−1 observations are revealed to us and our goal is to
estimate the label of the n-th sample Xn. A natural way is to first estimate the

population centers utilizing the given labels s∗1, · · · , s∗n−1, denoted by M̂1 and

M̂2, respectively. Literature of matrix denoising [7, 60, 20] tells that the minimax
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optimal estimation error is at the order ‖M̂1−M1‖F � ‖M̂2−M2‖ � (rd/n)1/2.
Thus ∆� (rd/n)1/2 is necessary for consistently distinguishing the two clusters.
The above rationale suggests that our separation strength condition (11) might
be minimal up to the order of n, if only the exponential-type error rate is sought.

We explained a gap concerning the separation strength in existing literature
of GMM. Under GMM with dimension d∗ = d1d2 and n ≤ d∗, the exponential-
type rate [18, 65] is established in the regime ∆ � (d∗/n)1/2, whereas exact
clustering results [50, 10] are attained in the regime ∆ & (d∗n−1 log n)1/4. This
leaves a natural question under LrMM: is the separation strength condition (11)
is relaxable to the scale n−1/4? Unfortunately, answering this question is perhaps
more challenging than that under GMM. We note that [50] and [10] achieve the
O(n−1/4) barrier by focusing entirely on clustering and by circumventing the
estimation of population centers. Nonetheless, under LrMM, exploiting the low-
rank structure demands estimating the population center matrices. We suspect,
together with the aforementioned special examples, that condition (11) might
not be improvable in terms of the order of n. Anyhow, It’s unclear whether one
can obtain a sharper characterization of ∆ under LrMM using other methods
like SDP. Further investigation in this respect is out of the scope of current
paper.

3.2. Guaranteed initialization

Besides the signal strength and separation strength conditions, Theorem 3.1 re-
quires a consistent initial clustering. We now demonstrate the validity of tensor-
based Algorithm 2. Observe that denoising by spectral projection (Step 2 of Al-

gorithm 2) is only beneficial if Û and V̂ are properly aligned with U∗ and V∗,
respectively. For that purpose, the signal strengths of M1(M) and M2(M)
need to be sufficiently strong, which can be characterized by their condition
numbers defined by

κ1 :=
‖M1(M)‖

σmin

(
M1(M)

) and κ2 :=
‖M2(M)‖

σmin

(
M2(M)

)
Recall that κ0 tells whether individual population center matrices are well-
conditioned. Here κ1 (κ2, resp.) measures the goodness of alignment among
the column (row, resp.) spaces of all population center matrices. However, the
exact relation between κ1 and the column spaces {ColSpan(U∗k)}Kk=1 can be
intricate. The following lemma unfolds two special cases. Recall that rU and
rV are the ranks of U = (U1, · · · ,UK) and V = (V1, · · · ,VK), respectively,

and r̊ =
∑K
k=1 rk. Denote κ(U) and κ(V) the condition numbers of U and V,

respectively.

Lemma 3.2. Let M admits low-rank decomposition (8). We have

M1(M)M>
1 (M) =U · diag

(
{n∗kΣ2

k}Kk=1

)
·U>

M2(M)M>
2 (M) =V · diag

(
{n∗kΣ2

k}Kk=1

)
·V>
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and κ1 ≤ κ0κ(U) · (n∗max/n
∗
min)

1/2 and κ2 ≤ κ0κ(V) · (n∗max/n
∗
min)

1/2 where n∗min :=
mink n

∗
k and n∗max := maxk n

∗
k. If rU = rV = r1, i.e., all the population center

matrices share the same singular space with M1, we have max{κ1, κ2} ≤ κ0 ·
(K2/α)1/2; if rU = rV = r̊ and Mk has mutually orthogonal singular space, we
have max{κ1, κ2} ≤ κ0 · (K/α)1/2.

According to Lemma 3.2, the unfolded matrices M1(M) and M2(M) are
well-conditioned if U and V are well-conditioned. Interestingly, this implies
that our tensor-based spectral initialization becomes more efficient when the
population center matrices Mk’s have either perfectly aligned singular spaces or
nearly orthogonal singular spaces.

Theorem 3.3. Let ŝ(0) be the initial clustering output by Algorithm 2. There
exists some absolute constant c, C1, C2 > 0 such that if

λ ≥ C1 max{κ1, κ2}rK ·
d1/2

n1/4
and ∆2 ≥ C2α

−1K2

(
dKr

n
+ 1

)
,

we get, with probability at least 1− exp(−c(n ∧ d)), that

n−1 · hc(ŝ(0), s∗) ≤ K

2∆2

(
dKr

n
+ 1

)
By Theorem 3.3, if κ1, κ2 = O(1), the signal strength condition required by

tensor-based spectral initialization method is comparable to but slightly weaker
than that needed in low-rank Lloyd’s algorithm. Both algorithms require a sig-
nal strength lower bound by d1/2n−1/4, but low-rank Lloyd’s algorithm involves
an additional lower bound related to the initial accuracy n−1 · hc(ŝ(0), s∗). The-
orem 3.3 also suggests that Algorithm 2 delivers a consistent clustering if the
separation strength ∆2 � K(1 + rdK/n).

Finally, by combining Theorem 3.3 and Theorem 3.1, the successes of Algo-
rithm 1 and Algorithm 2 require signal strength and separation strength condi-
tions

λ ≥ C1

[
α−1/2K1/2

(√
d

n
+ 1

)
+ max{(κ1 ∨ κ2)rK, α−1/4} d

1/2

n1/4

]
and

∆2

α−1(κ0 ∨ γ2)γ2K2
(
dKr
n + 1

) →∞
Comparison with HOOI [64] and the condition number of M3(M). Algo-

rithm 2 looks similar to HOOI [64], which uses HOSVD for mode-wise spec-
tral initialization and applies power iterations to further improve the estimates
of singular spaces. The mode-wise HOSVD and subsequent power iterations
both require a lower bound on σmin

(
Mk(M)

)
, k = 1, 2, 3. While our Theo-

rem 3.3 also requires a lower bound (in the form of κ1, κ2) on σmin

(
M1(M)

)
and σmin

(
M2(M)

)
, we emphasize that a similar lower bound on σmin

(
M3(M)

)
is too strong and trivialize the whole problem. To see this, just notice via defi-
nition that ∆ ≥ σmin

(
M3(M)

)
/2.
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3.3. Minimax lower bound

Theorem 3.1 has shown that the low-rank Lloyd’s algorithm achieves the asymp-
totical clustering error rate exp(−∆2/8). In this section, a matching minimax
lower bound is derived showing that the aforesaid rate is indeed optimal in the
minimax sense. A lower bound under GMM has been established by [44]. We
follow the arguments in [17] to establish the minimax lower bound for LrMM.
Observe that the error rate only depends on the separation strength ∆ implying
that the dimension d1, d2 and ranks rk’s play a less important role here.

Define the following parameter space for the population center matrices and
arrangements of latent labels:

Ω∆ ≡ Ω(∆, d1, d2, n,K, α) :=
{

({Mk}Kk=1, s) : Mk ∈ Rd1×d2 , rank(Mk) = rk, s ∈ [K]n,

min
k∈[K]

|{i ∈ [n] : si = k}| ≥ αn/K,min
a6=b
‖Ma −Mb‖F ≥ ∆

}
For notation simplicity, we omit its dependence on the ranks rk’s.

Theorem 3.4. Let X1, · · · ,Xn satisfy LrMM (3) with ({Mk}Kk=1, s
∗) ∈ Ω∆.

Suppose {Ei}ni=1 has i.i.d N (0, σ2) entries. If ∆2/
(
σ2 log(K/α)

)
→∞ as n→

∞, we have

inf
ŝ

sup
({Mk}nk=1,s

∗)∈Ω∆

E
hc(ŝ, s

∗)

n
≥ exp

(
−(1 + o(1))

∆2

8σ2

)
where inf

ŝ
is taken over all clustering algorithms.

Compared to Theorem 3.1 and Theorem 3.3, the minimax lower bound is
established only requiring a separation strength ∆2 � 1 assuming K/α = O(1).
Theorem 3.4 holds for any signal strength and the infimum is taking over all
possible clustering algorithms without considering their computational feasibil-
ity. Here, an algorithm is said computationally feasible if it is computable within
a polynomial time complexity in terms of n and d1, d2.

4. Computational Barriers

We now turn to the computational hardness of LrMM. For simplicity, we set
α,K, r � 1 throughout this section. Note that ∆� 1+(d/n)1/2 already implies
nearly all 3 population center matrices must own a signal strength λ & 1 +
(d/n)1/2. However, our signal strength condition (12) requires an additional
lower bound λ & d1/2n−1/4. The purpose of this section is to provide evidences
on its necessity to guarantee computationally feasible clustering algorithms. Our
evidence is built on the low-degree likelihood ratio framework for hypothesis

3More precisely, at most one population center matrix can violate the signal strength
condition. See Section 5 for more details.
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testing proposed by [36, 27], which has delivered convincing evidences justifying
the computational hardness under sparse GMM [42] and for sparse PCA [14].

Suppose that, given i.i.d. observations X1, · · · ,Xn, one is interested in the
computational and statistical limit in distinguishing two hypothesis Qn and Pn,
i.e,

H
(n)
0 : X1 ∼ Qn versus H

(n)
1 : X1 ∼ Pn (14)

The above two hypotheses are said statistically indistinguishable if no test can
have both type I and type II error probabilities vanishing asymptotically. The
famous Neyman-Pearson lemma tells us that the likelihood ratio test based on
Ln(X ) := dPn/dQn(X1, · · · ,Xn) has a preferable power and is uniformly most
powerful under some scenarios. A well recognized fact is that Qn and Pn are
statistically indistinguishable if the quantity ‖Ln‖2 := EQn [Ln(X )2] remains
bounded as n→∞. See [36] for a simple proof.

While the asymptotic magnitude of ‖Ln‖2 is informative for understanding
the statistical limit of testing (14), it does not directly reflect the computational
limit of testing (14). Towards that end, the low-degree likelihood ratio framework
seeks a polynomial approximation of Ln(X ) and investigates the magnitude of
the resultant approximation. More exactly, let L≤Dn (X ) be the orthogonal pro-
jection of Ln(X ) onto the linear space spanned by polynomials Rd1×d2×n 7→ R of
degrees at most D. Similarly, define ‖L≤Dn ‖2 := EQn [L≤Dn (X )2]. [36] conjectures
that the asymptotic magnitude of ‖L≤Dn ‖2 reflects the computational hardness
of testing the hypothesis (14). More formally, their conjecture, slightly adapted
for our purpose, can be written as follows. It has been introduced in [46]. Here,
a test φn(·) taking value 1 means rejecting the null hypothesis and takes value
0 if the null hypothesis is not rejected. Thus EQn [φn(X )] and EPn [1 − φn(X )]
stands for type-I and type-II error, respectively.

Conjecture 4.1 ([46]). If there exists ε > 0 and D = Dn ≥ (log nd)1+ε for
which

∥∥L≤Dn ∥∥ = 1 + o(1) as n → ∞, then there is no polynomial-time test
φn : Rd1×d2×n 7→ {0, 1} such that the sum of type-I error and type-II error
probabilities

EQn [φn(X )] + EPn [1− φn(X )]→ 0 as n→∞

Based on this conjecture, [36] reproduces the sharp phase transitions for the
spiked Wigner matrix model and the widely-believed statistical-to-computational
gap in tensor PCA, and [46] develops a computational hardness theory for esti-
mating the population low-rank matrices under LrMM.

Note that a specific hypothesis Pn is necessary to apply Conjecture 4.1 and
investigate the computational barriers in clustering for LrMM. Towards that
end, we consider a symmetric two-component LrMM as in [46]. It is a special case
of model (3) with K = 2, r1 = r2 = 1, M1 = λuv> and M2 = −M1 = −λuv>.
Here u ∈ Rd1 and v ∈ Rd2 have unit norms. The signal strength is λ > 0 and
separation strength is 2λ, i.e., the two quantities are at the same order. Then
the observations can be re-written as

Xi = s∗i (λuv>) + Ei, ∀i = 1, · · · , n, (15)
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where s∗i = 1 if Xi is sampled from N (M1, Id1 ⊗ Id2) and s∗i = −1 if Xi is
sampled from N (M2, Id1

⊗ Id2
). Note that the rank-one model (15) is no more

difficult than the general K-component case but it suffices for our purpose. The
null hypothesis Qn corresponds to the case λ = 0, i.e., all observations are pure
noise. Clearly, the difficulty level of distinguishing Qn and Pn is characterized by
signal strength λ in eq. (15). Conjecture 4.1 requires the calculation of ‖L≤Dn ‖2,
which is extremely difficult for generally fixed singular vectors u,v and deter-
ministic latent labels s∗. A prior distribution simplifies the calculation. Finally,
our null and alternative hypothesis are formally defined as follows.

Definition 4.2 (Null and alternative hypothesis).

• Under Qn, we observe n matrices X1, · · · ,Xn generated i.i.d. from (15)
with λ = 0. Equivalently, it means that each Xi has i.i.d. standard normal
entries.

• Under Pn := Pλ∗n , we observe n matrices X1, · · · ,Xn generated i.i.d. from
(15) with λ = λ∗, and moreover, each coordinate of u and v independently

uniformly take values from {±d−1/2
1 } and {±d−1/2

2 }, respectively, and the
entries of s∗ are independent Rademacher random variables, i.e., taking
±1 with equal probabilities.

Theorem 4.3. Consider Qn and Pn in Definition 4.2. If λ∗ = o(d1/2n−1/4) as
n→∞, then

∥∥L≤Dn ∥∥ = 1 + o(1).

The proof of Theorem 4.3 can be found in [46]. If Conjecture 4.1 is true,
Theorem 4.3 implies that Qn and Pλ∗n are statistically indistinguishable by
polynomial-time algorithms as long as the signal strength λ∗ = o(d1/2n−1/4).
We now establish the connection of testing the hypothesis to the clustering
problem under two-component symmetric LrMM (15).

For any fixed λ∗ > 0, define the parameter space of interest by

Ω̃λ∗ ≡ Ω̃(λ∗, d1, d2, n) :=
{

(M, s) : M = λuv>,u ∈ Rd1 ,v ∈ Rd2 , s ∈ {±1}n, |1>s| ≤ n/2, λ ≥ λ∗
}

By Chernoff bound, with probability at least 1 − e−c0n where c0 > 0 is an
absolute constant, the i.i.d. observations X1, · · · ,Xn generated by Pλ∗n satisfy
the rank-one LrMM (15) with parameters (M, s) ∈ Ω̃λ∗ . The following theorem
tells that if consistent clustering is possible for LrMM, so is for distinguishing
the hypothesis in Definition 4.2.

Theorem 4.4. Suppose there exists a clustering algorithm ŝcomp : Rd1×d2×n 7→
{±1}n for LrMM (15) with runtime poly(n, d) that is consistent under the se-

quence of signal strength
{
λ

(n)
∗
}
n≥1

in the sense that there exists a sequence

{(δn, ζn)}n≥1 → 0 such that for all large n,

sup
(M,s∗)∈Ω̃

λ
(n)
∗

P
(
n−1 · hc(ŝcomp, s

∗) > δn
)
≤ ζn (16)

If the signal strength satisfies λ
(n)
∗ ≥ C0(1+ε−2)1/2d1/2n−1/2 with some absolute

constant C0 > 0 and ε ∈ (0, 1), then there exists a test φn : Rd1×d2×n 7→ {0, 1}
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with runtime poly(n, d) that consistently distinguishes Pλ
(n)
∗
n from Qn so that

EQn [φn(X )] + sup
((1−ε)M,s∗)∈Ω̃

λ
(n)
∗

E(M,s∗)[1− φn(X )]→ 0, as n, d→∞.

Essentially, Theorem 4.4 only needs a signal strength λ∗ � d1/2n−1/2 to
successfully reduce a polynomial-time clustering algorithm to a polynomial-time
hypothesis test. Based on Conjecture 4.1, a combination of Theorem 4.3 and
Theorem 4.4 implies the following result, whose proof is straightfoward and
hence omitted.

Corollary 4.5. Suppose Conjecture 4.1 holds. If the signal strength λ
(n)
∗ =

o(d1/2n−1/4), then for any polynomial-time clustering algorithm ŝcomp, there ex-
ist absolute constants δ, ζ > 0 such that

sup
(M,s∗)∈Ω̃

λ
(n)
∗

P
(
n−1 · hc(ŝcomp, s

∗) > δ
)
≥ ζ

as n→∞.

It is worth pointing out that even though the signal strength λ∗ = o(d1/2n−1/4),
the separation strength ∆ = 2λ∗ can still be much larger than d1/2n−1/2 that is
required by Theorem 3.1. This suggests that if signal strength is not strong, con-
sistent clustering by polynomial-time algorithms is still impossible even though
the separation strength is very strong.

5. Relaxing the Signal Strength Condition

Our main theorem in Section 3 imposes a strong signal strength condition on
all the population center matrices, i.e., their smallest non-zero singular value
is lower bounded by O(1 + d1/2n−1/4). While evidences in Section 4 show that
this condition might be necessary for the two-component symmetric case if only
polynomial-time algorithms are sought, this condition appears flawed in the gen-
eral asymmetric case. This section aims to relax the signal strength condition in
the sense that one population center matrix is allowed to be arbitrarily smaller,
e.g., in spectral norm, than d1/2n−1/4.

Without loss of generality, we focus on the two-component LrMM, i.e., K = 2
in model (3), whose population center matrices are denoted by M1 and M2,
respectively. For narration simplicity, assume ‖M1‖F is large so that reliable
estimation is possible, and assume ‖M2‖F is small so that reliable estimation is
impossible. More exactly, the following assumption is imposed.

Assumption 5.1. There exists a large constant C > 1 such that

σr1(M1) ≥ C

(
κ0α

−1/2

√
d

n
+ α−1/2 d

1/2

n1/4
+ κ

1/2
0

)
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and

σ1(M2) ≤ C−1

(√
d

n
+ κ−1

0

d1/2

n1/4
+ α−1/2κ

−1/2
0

)
.

If κ0, α = O(1), Assumption 5.1 can be recasted as σr1(M1) ≥ C(d1/2n−1/4+
1) and σ1(M2) ≤ C−1(d1/2n−1/4 + 1). Note that Assumption 5.1 puts no lower
bound on σ1(M2). In the extreme case, σ1(M2) is allowed to be zero and consis-
tent estimation of M2 is unavailable even if the true labels are revealed. Denote
the separation distance

∆ := ‖M1 −M2‖F.

Assumption 5.1 already implies that ∆ ≥ (C/2)
(
d1/2n−1/4 + 1

)
if the ranks

r1, r2 are both upper bounded by O(1). Intuitively, although clustering shall
becomes easier as the constant C in Assumption 5.1 increases, this cannot be
deduced by Theorem 3.1 where the signal strength condition (12) fails.

Under Assumption 5.1, it is generally pointless to compute the center ma-

trix M̂2 by SVD in Lloyd’s algorithm since M2 cannot be reliably estimated.
Moreover, the SVD procedure complicates the subsequent theoretical analysis
of Lloyd’s algorithm. Similarly, the spectral initialization can be mis-leading if
a rank rU larger than r1 is adopted. For our purpose, we slightly modify the
low-rank Lloyd’s algorithm. Basically, only the top-r1 singular vectors are taken
during spectral initialization, i.e., effort is made only for estimating M1 whose
left and right singular vectors are denoted by U1 and V1, respectively. Instead

of estimating M2 via SVD, we opt to a trivial estimate by setting M̂
(t)
2 = 0. The

detailed steps are enumerated in Algorithm 3, whose theoretical performance is
guaranteed by Theorem 5.2.

Theorem 5.2. Let ŝ(t) be the output at t-th iteration by Algorithm 3. Suppose
Assumption 5.1 holds. If (κ2

0 ∨ κ0r1)−2αn→∞, ακ−1
0 ∆2 →∞ and√

r1

r2
· σr1(M1)

σ1(M2)
→∞, as n→∞

, then we have

n−1 · hc(ŝ(t−1), s∗) ≤ exp

(
−
(
1− o(1)

)∆2

8

)
+

1

2t

with probability at least 1−exp(−∆)−exp
(
−c0(d∧n)

)
for a small but absolute

constant c0 > 0.

Finally, we remark that the low-rankness assumption for M2 in Theorem 5.2
is not essential, which can be dropped by instead requiring

√
r1σr1(M1)/ ‖M2‖F →

∞.
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Algorithm 3 Low-rank Lloyd’s Algorithm under Relaxed SNR Assumption 5.1
(rlr-Lloyd)

Input: observations: X1, · · · ,Xn ∈ Rd1×d2 where Xi = Ms∗i
+ Ei and s∗i ∈ {1, 2}; or a

tensor X ∈ Rd1×d2×n by concatenating the matrix observations slice by slice, ranks r1, r2.

Spectral initialization:

(1). Obtain the estimated singular vectors Û1 and V̂1 by applying HOSVD to the tensor
X in mode-1 and mode-2 matricizations with rank r1.

(2). Project X onto the column space of Û1 and V̂1 by Ĝ := X ×1 Û1Û>1 ×2 V̂1V̂>1

(3). Apply K-means on the rows of Ĝ := M3(Ĝ) ∈ Rn×d1d2 and obtain the initial
clustering by

(ŝ(0), {M̂(0)
1 , M̂

(0)
2 }) := arg min

s∈[2]n;M1,M2∈Rd1×d2

n∑
i=1

∥∥[Ĝ]i· − vec(Msi )
∥∥2

for t = 1, . . . , T do
For each k = 1, 2:

M̂
(t)
k ← best rank-rk approximation of X̄k(ŝ(t−1)) :=

∑n
i=1 I

(
ŝ
(t−1)
i = k

)
Xi∑n

i=1 I
(
ŝ
(t−1)
i = k

)
Set M̂

(t)
2 ← 0 if σ1(M̂

(t)
2 ) < σ1(M̂

(t)
1 ); or set M̂

(t)
1 ← M̂

(t)
2 , M̂

(t)
2 ← 0 if σ1(M̂

(t)
2 ) >

σ1(M̂
(t)
1 ).

Re-label by setting, for each i ∈ [n]:

ŝ
(t)
i ← arg min

k∈[2]
‖Xi − M̂

(t)
k ‖

2
F

end for
Output:
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6. Extension to Sub-Gaussian Noise

Theorems in Section 3 rely on the assumption of Gaussian noise, which simplifies
our technical proofs. In this section, we establish similar results when the noise
has sub-Gaussian tails. More exactly, we assume the following condition.

Assumption 6.1. (Sub-Gaussian Tail) The noise matrix Ei has i.i.d. zero-
mean entries and unit variance, and for ∀M ∈ Rd1×d2 , the following probability
holds

P(〈M,Ei〉 ≥ t) ≤ e−t
2/(2σ2

sg·‖M‖
2
F), ∀t > 0,

where σsg > 0 is the sub-Gaussian constant.

Clearly, Assumption 6.1 implies that each entry of Ei is sub-Gaussian and has
a ψ2-norm bounded by O(σsg). Recall that the ψ2-norm of a random variable X
is defined by ‖X‖ψ2

:= inf{u > 0 : exp(X2/u2) ≤ 2}. Under sub-Gaussian noise,
the convergence of low-rank Lloyd’s algorithm is guaranteed by Theorem 6.2.

Theorem 6.2. Suppose Assumption 6.1 holds and d ≥ C0 logK for some ab-
solute constant C0 > 0. Assume that αn(Kκ2

0r
2)−1 →∞ as n→∞ and

(i) initial clustering error:

n−1 · hc(ŝ(0), s∗) = o

(
α

(κ0 ∨ γ2)γ2K

)
(17)

(ii) separation strength:
∆2/σ2

sg

α−1K2r
(
dr
n + 1

) →∞ (18)

(iii) signal strength:

λ

σsg
≥ C1

[
α−1/2K1/2

√
d

n
+ α−1K

√
hc(ŝ(0), s∗)

n
+ α−1/4 d

1/2

n1/4

]
(19)

for some absolute constant C1 > 0.

Let ŝ(t) bet the cluster labels at t-th iteration output by Algorithm 1. Then, for
all t ≥ 1, we have

n−1 · hc(ŝ(t), s) ≤ exp

(
−(1− o(1))

∆2

8σ2
sg

)
+

1

2t
(20)

with probability at least 1−exp(−∆)−exp(−c1(d∧n)) for some absolute constant
c1 > 0.

For our tensor-based initialization method, Algorithm 2 is still valid under
sub-Gaussian noise Assumption 6.1. Indeed, one can replace λ with λσ−1

sg and
∆ with ∆σ−1

sg , respectively, in Theorem 3.3, and a similar initial clustering error
can be derived.
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7. Clustering versus Estimation

[46] investigated the minimax optimal estimation of latent low-rank matrices
under two-component symmetric LrMM, which revealed multiple phase tran-
sitions and a statistical-to-computational gap. In this section, together with
Theorem 3.1 and 3.3, we discuss the differences between estimation and clus-
tering.

7.1. Example where clustering is more challenging

For simplicity, we consider the rank-one symmetric two-component LrMM (15)
with d1 = d2 = d, where the separation strength ∆ and signal strength λ
coincides up to a constant factor. The minimax rate of estimating M (up to a
sign flip), established in [46], is

inf
M̂

sup
(M,s∗)∈Ω̃λ

E min
η=±1

∥∥∥M̂− ηM∥∥∥
F
� min

{
1

λ

√
d

n
+

√
d

n
, λ

}
(21)

The above rate is achievable by the computationally NP-hard maximum likeli-
hood estimator with almost no constraint on signal strength and by a compu-
tationally fast spectral-aggregation estimator under the regime of strong signal
strength λ & d1/2n−1/4. For a fair comparison, we focus on this computationally
feasible regime. The phase transitions under this regime can be summarized as
in Table 2.

Sample size Signal strength Minimax optimal estimation error

d2 . n

√
d

n1/4 . λ . 1 1
λ

√
d
n

λ & 1
√

d
n

d2 � n λ &
√
d

n1/4

√
d
n

Table 2
Phase transition in minimax optimal estimation for two-component symmetric LrMM under

the regime of strong signal strength λ & d1/2n−1/4. See (21) and [46] for more details.

Without loss of generality, we assume the dimension d→∞ as n→∞. The
case d2 � n is referred to as the high-dimensional setting, and d2 . n is called

the low-dimensional setting. An estimator M̂ is said strongly consistent if the

relative estimation error ‖M̂−M‖F‖M‖−1
F approaches to zero in expectation as

n→∞. Table 2 tells that strongly consistent estimation M is always achievable
as long as the signal strength is greater d1/2n−1/4. A particularly interesting
regime is d1/2n−1/4 . λ . 1. For instance, when d2 = o(n), M can still be
consistently estimated even when the signal strength λ→ 0 as n→∞.

It is certainly not the case for clustering. Besides consistent clustering (see
definition in Theorem 4.4), we say a clustering algorithm is weakly efficient if
it can beat a random guess, but the mis-clustering error rate does not vanish
as n → ∞. When d2 = o(n), Theorem 3.4 dictates that even weakly efficient
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Sample size Signal strength Consistent estimation Weakly efficient clustering Consistent clustering

d2 . n

√
d

n1/4 . λ . 1 Possible Impossible Impossible

1 . λ� 1 Possible Possible Impossible

λ� 1 Possible Possible Possible

d2 � n λ &
√
d

n1/4 Possible Possible Possible

Table 3
The differences of phase transitions in estimation and clustering for two-component

symmetric LrMM under the regime of strong signal strength λ & d1/2n−1/4. Here d2 � n is
referred to as the high-dimensional setting, and d2 . n as the low-dimensional setting.

clustering is impossible, i.e., exp(−λ2/2) is at least 1/2, if the signal strength is
smaller than some absolute constant c0 > 0. However, the spectral aggregation
estimator [46] can still consistently estimate the population center matrix M
in the aforesaid scenario. Moreover, by Theorem 3.1, consistent clustering even
requires the signal strength λ → ∞, which is much more stringent than that
required by (strongly) consistent estimation.

The differences of phase transitions in estimation and clustering are enumer-
ated in Table 3. Basically, strongly consistent estimation is always possible
as long as λ & d1/2n−1/4. In contrast, weakly efficient clustering is possible
only when λ & 1 + d1/2n−1/4, and consistent clustering is possible only when
λ & d1/2n−1/4 and meanwhile λ� 1. Note that the gap between estimation and
clustering is present only under the low-dimensional setting n & d2. The gap
vanishes under the high-dimensional setting d2 � n, in which case the signal
strength condition λ & d1/2n−1/4 already implies λ� 1.

We collect these facts to convince that, at least for the two-component sym-
metric LrMM (15), clustering is intrinsically more challenging than estimation.
The same phenomenon also arises in GMM. See, e.g., [59].

7.2. Example where estimation is more challenging

While, generally, clustering is recognized as being more challenging than esti-
mation, there are examples where clustering is easier than estimation. Similarly
as in Section 5, consider the two-component LrMM with population center ma-
trices M1 and M2 so that

σr1(M1) ≥ C1

(
1 +

d1/2

n1/2
+
d1/2

n1/4

)
and σ1(M2) ≤ C−1

1 · d
1/2

n1/2

where C1 > 0 is a large constant and, without loss of generality, we assume
κ0, α, r1, r2 = O(1). Observe that√

r1

r2
· σr1(M1)

σ1(M2)
≥

{
C2

1n
1/4, if n ≤ d2;

C2
1 (n/d)1/2, if n > d2;

→∞, as n→∞

Moreover,

∆ := ‖M1 −M2‖F & C1

(
1 +

d1/2

n1/4

)
→∞
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if the constant C1 > 0 diverges to infinity. Therefore, by Theorem 5.2, if C1 →
∞, our Algorithm 3 consistently cluster all observations.

However, consistent estimation of the population center matrices is more
challenging. Even if all the latent labels are correctly identified, estimation of
M2 is still impossible because of its weak signal strength. Indeed, the low-rank
approximation to

X̄2(s∗) :=
1

n∗2

n∑
i=1

I (s∗i = 2) Xi

achieves the error rate (in expectation) O(d1/2n−1/2) and the relative error rate
(in expectation) diverges to infinity as C1 → ∞. Similarly, the trivial estimate
by a zero matrix attains the relative error rate 1 that never vanishes as n→∞.
Consequently, a strongly consistent estimate of M2 becomes impossible.

8. Discussions

8.1. Estimation of rU, rV, K and rk’s

Our tensor-based spectral initialization method requires an input of ranks rU,
rV and the number of clusters K, which are usually unknown in practice. Under
the decomposition (9), they constitute the Tucker ranks of tensor M. Several
approaches are available to estimate the Tucker ranks for tensor PCA model.
One typical approach [31, 6] is to check the scree plots [8] of M1(X ), M2(X )
and M3(X ), respectively. Under a suitable signal strength condition as in The-
orem 3.3, the scree plots of M1(X ) and M2(X ) shall serve a reliable estimate
of rU and rV, respectively. However, we note that it is statistically more effi-
cient to estimate K by, instead, taking the scree plot of M3(X ×1 Û> ×2 V̂>),

where Û and V̂ are obtained in step 1 of Algorithm 2. This additional spectral
projection promotes further noise reduction as in Algorithm 2. After obtaining
rU, rV and K, an initial clustering ŝ(0) can be attained by apply Algorithm 2.
Similarly, we then estimate the rank rk by the scree plot of the sample average
of matrix observations whose initial labels are k. It provides a valid estimate as
long as the initial clustering is sufficiently good. The aforementioned approach
works nicely in real-world data applications. See Section 9 for more details.

8.2. Matrix observation with categorical entries

Oftentimes, the matrix observations consist of categorical entries. For instance,
the Malaria parasite gene networks (see Section 9.2.3) have binary entries (Bernoulli
distribution); the 4D-scanning transmission electron microscopy [24] produces
count-type entries (Poisson distribution). Our algorithms are still applicable and
deliver appealing performance on, e.g., Malaria parasite gene networks dataset.
Unfortunately, our theory can not directly cover those cases, although the noise
are still sub-Gaussian. Without loss of generality, let us consider multi-layer
binary networks and assume Xi has Bernoulli entries. Then the entries of Xi
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have an equal variance only when they have the same expectation, reducing
the network to a trivial Erdős-Rényi graph. Nevertheless, equal noise variance
is crucial to establish Theorem 3.3. Moreover, the techniques for proving The-
orem 6.2 are likely sub-optimal since the sub-Gaussian constant σsg is usually
not sharp enough to characterize a Bernoulli random variable. We leave this to
future works.

9. Numerical Experiments and Real Data Applications

9.1. Numerical Experiments

This section presents the empirical performance of lr-Lloyd’s algorithm (Algo-
rithm 1) and its relaxed variant under weak SNR (Algorithm 3) referred to as
the rlr-Lloyd’s algorithm. Specifically, we focus on the algorithmic convergence
and final clustering error.

In the first simulation setting S1, we fix the dimension d1 = d2 = 50 and
sample size n = 200. The latent labels s∗i are generated i.i.d. from the model
(2) with equal mixing probabilities, i.e., πk = 1/K. All the presented results in
S1 are based on the average of 30 independent trials. We test the convergence
of Algorithm 1 under both Gaussian (S1-1) and Bernoulli (S1-2) noise.

In S1-1, we set K = 2, r1 = r2 = 2 and standard Gaussian noise. The
population center matrices M1 and M2 are generated in the following man-
ner. For each k = 1, 2, we independently generate a d1 × d2 matrix with
i.i.d. standard Gaussian entries and extract its top-2 left and right singular
vectors as Uk and Vk, respectively. The singular values are manually set as
Σk = diag{1.2λ, λ} for some fix λ > 0. Then the population center matrices
are constructed as Mk = UkΣkV

>
k . Our experiment tries four levels of signal

strength λ ∈ {1.9, 2.1, 2.3, 2.5}. For each λ, the population center matrices are
generated as above and the separation strength is recorded. The correspond-
ing separation strength are ∆ ∈ {4.22, 4.66, 5.11, 5.45}. At each level of signal
strength, the observations {Xi : i = 1, · · · , 200} are independently drawn from
(4) with the obtained center matrices M1 and M2. Here we focus on the con-
vergence behavior of Lloyd’s iterations of Algorithm 1, and thus a warm initial
clustering ŝ(0) is provided before hand. The same initial clustering is used for all
simulations and the initial clustering error is n−1hc(ŝ

(0), s∗) = 0.45, i.e., slightly
better than a random guess. Convergence of Algorithm 1 under four levels of
signal strength (or, correspondingly, separation strength) is displayed in the left
plot of Figure 1. The decreasing of log of clustering error is linear in first few
iterations, as expected by our Theorem 3.1. The algorithm converges fast and
the final clustering error is reflected by the separation strength ∆. It is worth
pointing out that Figure 1(a) also shows that Algorithm 1 converges faster when
∆ becomes larger. While this cannot be directly concluded from Theorem 3.1,
it can be easily verified by checking the proof.

In S1-2, we test the effectiveness of Algorithm 1 under non-Gaussian and
non-i.i.d. noise. In particular, we consider the mixture multi-layer stochastic



/Optimal Clustering of LrMM 26

block model (MMSBM) introduced in [31] 4. We set the number of clusters
K = 3. For each k = 1, 2, 3, the k-th SBM is associated with a connection prob-
ability matrix Bk ∈ [0, 1]K×K and a membership matrix Zk ∈ {0, 1}d×K , which
are set as Bk := p̄k ·IK+p̄k/2·(1K1>K−IK) with p̄k = p̄·k/K and Zk(i, :) = es∗i ,
respectively. Thus each SBM has three cluster of nodes and the population cen-
ter matrices are Mk = ZkBkZ

>
k ∈ [0, 1]d×d. Conditioned on the latent label s∗i ,

the i-th observation Xi is sampled from SBM(Zs∗i ,Bs∗i
), namely, Xi(j1, j2) ∼

Bernoulli(Ms∗i
(j1, j2)) and Xi(j2, j1) = Xi(j1, j2) for 1 ≤ j1 < j2 ≤ d. Note

that Xi is symmetric because the network is undirected. We manually set the
diagonal entries of Xi to zeros so that no self-loop is allowed in the observed net-
work. Clearly, the entry-wise variances of Xi are not necessarily equal. Under the
above MMSBM, the signal strength and separation strength are characterized
by sparsity level p̄. Four sparsity levels p̄ ∈ {0.05, 0.08, 0.10, 0.15} are studied so
that the corresponding separation strength are ∆ ∈ {0.75, 1.19, 1.46, 2.15}. Sim-
ilarly, a fixed good initial clustering ŝ(0) is used for all simulations and the initial
clustering error is n−1hc(ŝ

(0), s∗) = 0.3. Convergence behavior of Algorithm 1
is displayed in the right plot of Figure 1. Still, Lloyd’s iterations converges fast
and the final clustering error is decided by the separation strength ∆.

(a) Simulation S1-1: Log of clustering error (K = 2)
with ∆ varying under Gaussian noise.

(b) Simulation S1-2 Log of clustering error (K = 3)
with ∆ varying under Bernoulli noise (MMSBM).

Fig 1: (Convergence behavior of Algorithm 1) Log of clustering error with ∆
varying under two scenarios: LrMM with Gaussian noise and MMSBM with
Bernoulli noise.

In the second simulation setting S2, we aim to compare the final cluster-
ing error of vanilla Lloyd’s algorithm and our low-rank Lloyd’s algorithm. The
dimensions are varied at two cases d1 = d2 ∈ {50, 100}, sample size is set as
n ∈ {100, 200}, number of clusters K = 2 and ranks r1 = r2 = 3. The latent
labels are generated as in S1. For each d1 and n, the simulation is repeated for
100 times and their average clustering error rate is reported.

4We emphasize that our Theorem 6.2 is not directly applicable to MMSBM due to non-i.i.d.
noise.
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In S2-1, the population center matrices M1 and M2 are constructed such
that they share identical singular spaces. More exactly, we extract singular
vectors U1, V1 and singular value matrix Σ1 as is done in S1-1. Then the
population center matrices are set as M1 = U1Σ1V

>
1 and M2 = U1(Σ1 +

diag{∆/3,∆/3,∆/3})V>1 . Here the signal strength is fixed at λ = 10 and the
separation parameter is chosen from ∆ ∈ {1, 5, 10}. The final clustering error
and its standard error by four methods are reported in the upper half of Ta-
ble 4. Noted that the initialization of “vec-Lloyd” in [44] is attained by spectral
clustering on M3(X ). We observe that the clustering errors of four methods all
decrease as ∆ increases. However, lr-Lloyd initialized by Algorithm 2 achieves
a much smaller clustering error compared with other methods. This is due to
the fact that our proposed tensor-based spectral initialization is capable to cap-
ture the low-rank signal whereas both spectral clustering and naive K-means
on M3(X ) ignores the low-rank structure in the other two modes of M. As
a result, all the other three methods perform almost the same under current
setting. Lastly, the bold-font column in Table 4 confirms Theorem 3.1 in that
the clustering error achieved by TS-init initialized lr-Lloyd algorithm is only
determined by ∆ regardless of the dimension d1, d2 or the sample size n.

In S2-2, the singular vectors of M1 and M2 are generated exactly the same as
in S1-1. The singular values of M1 and M2 are set as Σ1 = diag(1.2λ, 1.1λ, λ)
and Σ2 = diag(0.36, 0.33, 0.30), respectively. Then σmin(M1) = λ and σ1(M2) =
0.36. Here λ is varied at {1.9, 2.2, 2.5} for the case d1 = d2 = 50 and {2.7, 3.0, 3.3}
for the case d1 = d2 = 100. Consequently, the signal strength of M2 is much
smaller than M1 that corresponds to the weak SNR setting in Section 5, and
we test the performance of the relaxed lr-Lloyd’s algorithm (Algorithm 3). The
results are reported in the lower half of Table 4. Clearly, rlr-Lloyd’s algorithm
outperforms the vanilla Lloyd’s algorithm (i.e., the vectorized version). In certain
cases, the vanilla Lloyd’s algorithm merely beats a random guess whereas the
rlr-Lloyd’s algorithm almost achieves zero clustering error. We also observe that
rlr-Lloyd’s algorithm still performs nicely if initialized by K-means on M3(X ).

9.2. Real Data Applications

We now demonstrate the merits of our proposed low-rank Lloyd’s (lr-Lloyd)
algorithm on several real-world datasets and compare with existing methods.

9.2.1. BHL dataset

The BHL (brain, heart and lung ) dataset5, which had been analyzed in [49],
consists of d1 = 1124 gene expression profiles of n = 27 brain, heart, or lung
tissues. Each tissue is measured repeatedly for d2 = 4 times and hence the
ith sample can be constructed as Xi ∈ R1124×4 for i = 1, · · · , 27. Our aim is to
correctly identify those Xi’s belonging to the same type of tissue, i.e., K = 3. We

5The dataset is publicly available at https://www.ncbi.nlm.nih.gov/sites/GDSbrowser?

acc=GDS1083.

https://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS1083
https://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS1083
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Setting d1 = d2 n λ ∆
vec-Lloyd

[44]
lr-Lloyd initialized by
TS-Init (Algorithm 2)

vec-Lloyd initialized by
K-means on M3(X )

lr-Lloyd initialized by
K-means on M3(X )

S2-1

50

100
10 1 0.461 (0.032) 0.401 (0.058) 0.462 (0.030) 0.459 (0.031)
10 5 0.459 (0.033) 0.163 (0.039) 0.456 (0.033) 0.452 (0.034)
10 10 0.458 (0.034) 0.066 (0.025) 0.441 (0.047) 0.433 (0.054)

200
10 1 0.475 (0.019) 0.398 (0.056) 0.469 (0.025) 0.466 (0.025)
10 5 0.473 (0.021) 0.152 (0.027) 0.462 (0.027) 0.450 (0.039)
10 10 0.471 (0.022) 0.063 (0.016) 0.437 (0.041) 0.380 (0.082)

100

100
10 1 0.461 (0.028) 0.391 (0.069) 0.460 (0.033) 0.461 (0.033)
10 5 0.461 (0.029) 0.157 (0.054) 0.455 (0.036) 0.455 (0.036)
10 10 0.460 (0.029) 0.063 (0.026) 0.458 (0.034) 0.456 (0.034)

200
10 1 0.468 (0.023) 0.390 (0.064) 0.469 (0.023) 0.467 (0.023)
10 5 0.468 (0.024) 0.147 (0.028) 0.469 (0.022) 0.465 (0.026)
10 10 0.467 (0.024) 0.062 (0.017) 0.459 (0.030) 0.451 (0.037)

Setting d1 = d2 n σmin(M1) ∆
vec-Lloyd

[44]
rlr-Lloyd

(Algorithm 3)
vec-Lloyd initialized by

K-means on M3(X )
rlr-Lloyd initialized by
K-means on M3(X )

S2-2

50

100
1.9 3.68 0.434 (0.052) 0.314 (0.138) 0.418 (0.066) 0.327 (0.129)
2.2 4.24 0.424 (0.061) 0.134 (0.125) 0.385 (0.079) 0.152 (0.138)
2.5 4.81 0.417 (0.068) 0.041 (0.051) 0.309 (0.103) 0.055 (0.091)

200
1.9 3.68 0.433 (0.052) 0.070 (0.020) 0.380 (0.070) 0.072 (0.046)
2.2 4.24 0.431 (0.054) 0.057 (0.018) 0.351 (0.077) 0.059 (0.048)
2.5 4.81 0.424 (0.057) 0.035 (0.015) 0.268 (0.088) 0.033 (0.014)

100

100
2.7 5.19 0.422 (0.056) 0.300 (0.169) 0.416 (0.057) 0.301 (0.164)
3 5.76 0.421 (0.059) 0.131 (0.164) 0.390 (0.077) 0.176 (0.181)

3.3 6.33 0.426 (0.053) 0.067 (0.139) 0.347 (0.086) 0.065 (0.130)

200
2.7 5.19 0.442 (0.040) 0.019 (0.010) 0.395 (0.071) 0.022 (0.037)
3 5.76 0.443 (0.041) 0.008 (0.006) 0.301 (0.089) 0.008 (0.007)

3.3 6.33 0.440 (0.043) 0.003 (0.004) 0.190 (0.069) 0.003 (0.004)

Table 4
Clustering error of lr-Lloyd (Algorithm 1) and rlr-Lloyd (Algorithm 3) compared with
vanilla Lloyd’s algorithm [44] on vectorized data (vec-Lloyd). The number in brackets

represents the standard error over 100 trials.

lr-Lloyd DEEM K-means SKM DTC TBM EM AFPF
Clustering error 3.70 7.41 11.11 11.11 18.52 11.11 11.11 11.11

Table 5
Clustering error on BHL dataset. SKM: sparse K-means [58]; DTC: dynamic tensor

clustering [53]; TBM: tensor block model (TBM) [57]; EM: standard EM implemented in
[49]; AFPF: adaptive pairwise fusion penalized clustering [21].

apply Algorithm 1 together with an initial clustering ŝ(0) obtained by Algorithm
2 with rU = rV = 1. These ranks are chosen based on the scree plots of M1(X )
and M2(X ). The final clustering error attained by lr-Lloyd’s algorithm is n−1 ·
hc(ŝ, s

∗) = 0.03704. As shown in Table 5, our lr-Lloyd’s algorithm performs the
best among all the competitors6 that are reported in [49].

The improvement can be attributed to two reasons. First, DEEM in [49] is
designed based on EM algorithm targeted at Gaussian probability distribution,
and hence they need to first perform multiple Kolmogorov-Smirnov tests to
drop the columns not following Gaussian distribution, which might lead to po-
tential information loss. In sharp contrast, their procedure is not necessary for
our method, as the low-rank Lloyd’s algorithm allows for sub-Gaussian noise.
Secondly, our algorithm is more suitable for the specific structure of the data.
Particularly, the population center matrices are expected to be rank-one as the
columns of Xi represent repeated measurements for the same sample. However,
such planted structure is under-exploited in [49] and others.

6Note that all results except lr-Lloyd are directly borrowed from [49], which use Xi’s after
dimension reduction to a size of either 20 × 4 or 30 × 4, and we only report the better one
here.



/Optimal Clustering of LrMM 29

9.2.2. EEG dataset

The EEG dataset7 has been extensively studied by various statistical models
[39, 67, 28, 29]. The goal is to inspect EEG correlations of genetic predisposition
to alcoholism. The data contains measurements which were sampled at d1 =
256 Hz for 1 second, from d2 = 64 electrodes placed on each scalp of n =
122 subjects. Each subject, either being alcoholic or not, completed 120 trials
under different stimuli. More detailed description of the dataset can be found in
[66]. For our application, we average all the trials for each subject under single
stimulus condition (S1) and two matched stimuli condition (S2), respectively,

and construct the data tensor as X (S1) ∈ R256×64×122 (or X (S2) ∈ R256×64×122)
after standardization. Thus each subject is associated with a 256×64 matrix, and
we aim to cluster these subjects into K = 2 groups, corresponding to alcholic
group and control group. We apply rlr-Lloyd’s algorithm (Algorithm 3) with
rU = rV = 3 and r1 = 2, r2 = 1. Here rU and rV are selected by the scree plot of
M1(X ) and M2(X ), and r1 and r2 are tuned by interpreting the final outcomes.
The clustering error of our method and competitors are shown in Table 6. It is
worth pointing out that our task of clustering is generally more challenging than
classification, which has been investigated on the EEG dataset [39, 67, 28, 29].
Those classification approaches often achieve lower classification error rates. As
a faithful comparison, our rlr-Lloyd’s algorithm enjoys a superior performance
to its competitors in terms of clustering error rate and time complexity.

Surprisingly, we note that the original lr-Lloyd’s algorithm (Algorithm 1 +
Algorithm 2) would not deliver a satisfactory result on this dataset. It can be
partially explained by Figure 2, which displays the average of all trials under
S2 for two groups. It is readily seen that the average matrix of control group
is comparatively close to pure noise, and hence the relaxed version of lr-Lloyd’s
algorithm can work reasonably well in this scenario.

rlr-Lloyd vec-Lloyd SKM DTC TBM
S1 39.34 42.62 44.26 45.08 43.44
S2 28.69 35.25 36.07 39.34 35.25

Table 6
Clustering error of EEG dataset under S1 and S2. Note that the methods vec-Lloyd and
SKM [58] refer to directly applying Lloyd’s algorithm and sparse K-means on vectorized

data, i.e., on rows of M3(X (S1)) or M3(X (S2)), whereas DTC[53] and TBM [57] are both
tensor-based clustering methods.

9.2.3. Malaria parasite genes networks dataset

We then consider the var genes networks of the human malaria parasite Plas-
modium falciparum constructed by [37] via mapping n = 9 highly variable re-
gions (HVRs) to a multi-layer network. Following the practice in [31], we focus

7The dataset is publicly available at https://archive.ics.uci.edu/ml/datasets/EEG+

Database.

https://archive.ics.uci.edu/ml/datasets/EEG+Database
https://archive.ics.uci.edu/ml/datasets/EEG+Database
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Fig 2: EEG dataset: average of matrix observations for alcoholic group (left)
and control group (right) under S2.

on d1 = d2 = 212 common nodes appearing on all 9 layers and obtain a multi-
layer network adjacency tensor X ∈ {0, 1}212×212×9 with each layer being the
associated adjacency matrix. Unfortunately, the method in [37] needs to dis-
card 3 out of 9 HVRs due to their extreme sparse structures, referring to region
{2, 3, 4} in Figure 3. This later had been remedied by the tensor-decomposition-
based method TWIST in [31]. In term of clustering all layers, we expect our
algorithm would have a comparable performance in contrast with the results in
[31]. Specifically, [31] obtain a hierarchical structure with 6 clusters of all lay-
ers by repeatedly clustering the embedding vectors. Following their practice, by
setting (rU, rV,K) = (15, 15, 6), we apply Algorithm 2 on X , and find that the
9 HVRs fall in to the following clusters: {1}, {2, 3, 4, 5}, {6}, {7}, {8}, {9}. The
result is exactly the same as that in [31] but our method avoid repeated cluster-
ing. We remark that our tensor-based spectral initialization already produces a
good initial clustering on this dataset, and thus further low-rank Lloyd’s itera-
tions seem unnecessary. In sharp contrast, it would lead to unsatisfactory result
if we directly apply K-means with K = 6 on the embedding matrix obtained by
TWIST. This further demonstrates the validity and flexibility of our proposed
lr-Lloyd’s algorithm.

9.2.4. UN comtrade trade flow networks dataset

In the last example, we consider the international commodity trade flow data in
2019 in terms of countries/regions and different types of commodities, collected
by [47] from UN comtrade Database8. Following the data processing procedure
in [47], we pick out top d1 = d2 = 48 countries/regions ranked by exports

and obtain a weighted adjacency tensor X̃ ∈ R48×48×97, where n = 97 layers

8The dataset is publicly available at https://comtrade.un.org.

https://comtrade.un.org
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(a) HVR1. (b) HVR2. (c) HVR3. (d) HVR4. (e) HVR5.

(f) HVR6. (g) HVR7. (h) HVR8. (i) HVR9.

Fig 3: Malaria parasite genes networks dataset: 9 highly variable regions (HVRs)
represented by their adjacency matrices [31]

represent different categories of commodities9. The entry X̃ (i1, i2, i3) indicates
the amount of exports from country i1 to country i2 in terms of commodity type
i3. To have a comparable magnitude across different entries, our data tensor
is obtained after transformation X = log(X̃ + 1). We emphasize that in [47]
the edges of X have to be further converted to binary under their framework,
which might cause undesirable information loss. We apply Algorithm 1 that is
initialized by Algorithm 2 with parameters (rU, rV,K) = (3, 3, 2) and (r1, r2) =
(2, 2). These choices produce most interpretable result as summarized in Table
7. It is intriguing to notice that cluster 1 mainly consists of products of low
durability including animal & vegetable products and part of foodstuffs, whereas
cluster 2 contains most industrial products that might indicate a trend of global
trading. These findings are consistent with [47].
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[43] Löffler, M., Zhang, A. Y. and Zhou, H. H. (2021). Optimality of
spectral clustering in the gaussian mixture model. The Annals of Statistics
49 2506–2530.

[44] Lu, Y. and Zhou, H. H. (2016). Statistical and computational guarantees
of lloyd’s algorithm and its variants. arXiv preprint arXiv:1612.02099.

[45] Luo, Y. and Zhang, A. R. (2022). Tensor clustering with planted struc-
tures: Statistical optimality and computational limits. The Annals of Statis-
tics 50 584–613.

[46] Lyu, Z. and Xia, D. (2022). Optimal Estimation and Computational Limit
of Low-rank Gaussian Mixtures. arXiv preprint arXiv:2201.09040.

[47] Lyu, Z., Xia, D. and Zhang, Y. (2021). Latent Space Model for Higher-
order Networks and Generalized Tensor Decomposition. arXiv preprint
arXiv:2106.16042.

[48] Mahajan, M., Nimbhorkar, P. and Varadarajan, K. (2009). The pla-



/Optimal Clustering of LrMM 35

nar k-means problem is NP-hard. In International workshop on algorithms
and computation 274–285. Springer.

[49] Mai, Q., Zhang, X., Pan, Y. and Deng, K. (2021). A doubly enhanced
em algorithm for model-based tensor clustering. Journal of the American
Statistical Association 1–15.

[50] Ndaoud, M. (2018). Sharp optimal recovery in the two-component Gaus-
sian mixture model. arXiv preprint arXiv:1812.08078.

[51] Richard, E. and Montanari, A. (2014). A statistical model for tensor
PCA. Advances in neural information processing systems 27.

[52] Stanley, N., Shai, S., Taylor, D. and Mucha, P. J. (2016). Clustering
network layers with the strata multilayer stochastic block model. IEEE
transactions on network science and engineering 3 95–105.

[53] Sun, W. W. and Li, L. (2019). Dynamic tensor clustering. Journal of the
American Statistical Association 114 1894–1907.

[54] Vempala, S. and Wang, G. (2004). A spectral algorithm for learning
mixture models. Journal of Computer and System Sciences 68 841–860.

[55] Vershynin, R. (2018). High-dimensional probability: An introduction with
applications in data science 47. Cambridge university press.

[56] Verzelen, N. and Arias-Castro, E. (2017). Detection and feature se-
lection in sparse mixture models. The Annals of Statistics 45 1920–1950.

[57] Wang, M. and Zeng, Y. (2019). Multiway clustering via tensor block
models. Advances in neural information processing systems 32.

[58] Witten, D. M. and Tibshirani, R. (2010). A framework for feature
selection in clustering. Journal of the American Statistical Association 105
713–726.

[59] Wu, Y. and Zhou, H. H. (2019). Randomly initialized EM algorithm
for two-component Gaussian mixture achieves near optimality in O(

√
n)

iterations. arXiv preprint arXiv:1908.10935.
[60] Xia, D. (2021). Normal approximation and confidence region of singular

subspaces. Electronic Journal of Statistics 15 3798–3851.
[61] Xia, D. and Yuan, M. (2021). Statistical inferences of linear forms for

noisy matrix completion. Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 83 58–77.

[62] Xia, D., Zhang, A. R. and Zhou, Y. (2022). Inference for low-rank
tensors—no need to debias. The Annals of Statistics 50 1220–1245.

[63] Xia, D. and Zhou, F. (2019). The sup-norm perturbation of hosvd and
low rank tensor denoising. The Journal of Machine Learning Research 20
2206–2247.

[64] Zhang, A. and Xia, D. (2018). Tensor SVD: Statistical and computational
limits. IEEE Transactions on Information Theory 64 7311–7338.

[65] Zhang, A. Y. and Zhou, H. H. (2022). Leave-one-out Singular Sub-
space Perturbation Analysis for Spectral Clustering. arXiv preprint
arXiv:2205.14855.

[66] Zhang, X. L., Begleiter, H., Porjesz, B., Wang, W. and Litke, A.
(1995). Event related potentials during object recognition tasks. Brain re-
search bulletin 38 531–538.



/Optimal Clustering of LrMM 36

[67] Zhou, H. and Li, L. (2014). Regularized matrix regression. Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 76 463–483.



/Optimal Clustering of LrMM 37

Supplementary Material

10. Proofs of Main Theorems

10.1. Proof of Theorem 3.1

Step 1: Notations and Good Initialization We need to introduce some
notations to simplify the presentation of our proof. Define the following loss
related to the parameter tensor M:

`(s, s∗) :=

n∑
i=1

∥∥Msi −Ms∗i

∥∥2

F

and the hamming loss with respect to the true label s∗ :

h(s, s∗) :=

n∑
i=1

I (si 6= s∗i )

A simple relation is that h(s, s∗) ≤ ∆−2 · `(s, s∗) due to the fact

n∑
i=1

‖Msi −Ms∗i
‖2F ≥

n∑
i=1

I (si 6= s∗i ) ∆2.

Note that, by definition the Hamming clustering error hc(ŝ
(0), s∗) =

∑n
i=1 I

(
π(s

(0)
i ) 6= s∗i

)
for some permutation π, we can always relabel our M1, · · · ,MK to Mπ(1), · · · ,Mπ(K)

after initialization. Therefore, without loss of generality we can assume π = Id
and hence h(ŝ(0), s∗) = hc(ŝ

(0), s∗). On the other hand, by eq. (10) we have

`(ŝ(0), s∗) ≤ γ2∆2hc(ŝ
(0), s∗) = o

(
αn∆2

(κ0 ∨ γ2)K

)
(22)

Note that (22) implies that `(ŝ(0), s∗) ≤ τ for some τ = o
(
(κ0 ∨ γ2)−1αn∆2/K

)
and hence ∆2 � (κ0 ∨ γ2)Kτ/(αn).

Step 2: Iterative Convergence We then analyze the convergence property
of low-rank Lloyd algorithm. Without loss of generality, given the labelling ŝ(t−1)

at the (t − 1)-th iteration, we investigate the behavior of ŝ(t), i.e., after one
iteration of Lloyd algorithm.

To simplify the presentation, the subsequent analysis is conditioned on the
following events, where C > 0 is some absolute constant.

Q1 =
⋃
k∈[K]

{∥∥∥∥∑n
i=1 I (s∗i = k) Ei∑n
i=1 I (s∗i = k)

∥∥∥∥ ≤ C
√

d

n∗k

}

Q2 =
⋃
I∈[n]

{∥∥∥∥∥ 1√
|I|

∑
i∈I

Ei

∥∥∥∥∥ ≤ C (√d+
√
n
)}

The following lemma dictates that Q1 ∩Q2 occurs with high probability.
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Lemma 10.1. There exists some absolute constants C0, c0 > 0 such that if
d ≥ C0 logK, then

P (Qc1 ∪Qc2) ≤ exp(−c0d)

Our goal is to establish the following relation between two sucessive iterations:

`(ŝ(t), s) ≤ 2n · exp

{
−
(
1− o(1)

)∆2

8

}
+

1

2
`(ŝ(t−1), s) (23)

and prove that it holds with high probability for all positive integer t.
Suppose for iteration t−1, h(ŝ(t−1), s∗) satisfies (10) and `(ŝ(t−1), s∗) satisfies

(22). By the definition of ŝ(t), we have for each i ∈ [n]:∥∥∥∥Xi − M̂
(t)

ŝ
(t)
i

∥∥∥∥2

F

≤
∥∥∥Xi − M̂

(t)
s∗i

∥∥∥2

F

Rearranging terms above, we obtain〈
Ei, M̂

(t)
s∗i
− M̂

(t)

ŝ
(t)
i

〉
≤ −1

2

∥∥∥Ms∗i
−M

ŝ
(t)
i

∥∥∥2

F
+R

(
ŝ

(t)
i ; ŝ(t−1)

)
(24)

where

R
(
a; ŝ(t−1)

)
:=

1

2

[∥∥∥Ms∗i
− M̂

(t)
s∗i

∥∥∥2

F
−
∥∥∥Ms∗i

− M̂(t)
a

∥∥∥2

F
+
∥∥Ms∗i

−Ma

∥∥2

F

]
Without loss of generality, suppose ŝ

(t)
i = a for some a ∈ [K]. Set δ = o(1) that

is to be determined later. The following fact is obvious.

I
(
ŝ

(t)
i = a

)
= I

(
ŝ

(t)
i = a

)
I
(〈

Ei, M̂
(t)
s∗i
− M̂(t)

a

〉
≤ −1

2

∥∥Ms∗i
−Ma

∥∥2

F
+R(a; ŝ(t−1))

)
≤ I

(〈
Ei,Ma −Ms∗i

〉
≥ 1− δ

2

∥∥Ms∗i
−Ma

∥∥2

F

)
+ I
(
ŝ

(t)
i = a

)
I
(〈

Ei,Ms∗i
− M̂

(t)
s∗i

〉
+
〈
Ei, M̂

(t)
a −Ma

〉
+R(a; ŝ(t−1)) ≥ δ

2

∥∥Ms∗i
−Ma

∥∥2

F

)
≤ I

(〈
Ei,Ma −Ms∗i

〉
≥ 1− δ

2

∥∥Ms∗i
−Ma

∥∥2

F

)
+ I
(
ŝ

(t)
i = a

)
I
(〈

Ei,Ms∗i
− M̂

(t)
s∗i

〉
+
〈
Ei, M̂

(t)
a −Ma

〉
≥ δ

4

∥∥Ms∗i
−Ma

∥∥2

F

)
+ I
(
ŝ

(t)
i = a

)
I
(
R(a; ŝ(t−1)) ≥ δ

4

∥∥Ms∗i
−Ma

∥∥2

F

)
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By the definition of `(ŝ(t), s∗), we have

`(ŝ(t), s∗) =

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
I
(
ŝ

(t)
i = a

)

≤
n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
I
(〈

Ei,Ma −Ms∗i

〉
≥ 1− δ

2

∥∥Ms∗i
−Ma

∥∥2

F

)

+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
I
(
ŝ

(t)
i = a

)
I
(〈

Ei,Ms∗i
− M̂

(t)
s∗i

〉
+
〈
Ei, M̂

(t)
a −Ma

〉
≥ δ

4

∥∥Ms∗i
−Ma

∥∥2

F

)

+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
I
(
ŝ

(t)
i = a

)
I
(
R(a; ŝ(t−1)) ≥ δ

4

∥∥Ms∗i
−Ma

∥∥2

F

)
=: ξerr + β1(s∗, ŝ(t)) + β2(s∗, ŝ(t))

where we define

ξerr :=

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
I
(〈

Ei,Ma −Ms∗i

〉
≥ 1− δ

2

∥∥Ms∗i
−Ma

∥∥2

F

)

and

β1(s∗, ŝ(t)) :=

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
I
(
ŝ

(t)
i 6= a

)
· I
(〈

Ei,Ms∗i
− M̂

(t)
s∗i

〉
+
〈
Ei, M̂

(t)
a −Ma

〉
≥ δ

4

∥∥Ms∗i
−Ma

∥∥2

F

)
and

β2(s∗, ŝ(t)) :=

n∑
i=1

∑
a∈[K]\{s∗i }

I
(
ŝ

(t)
i 6= a

)∥∥Ma −Ms∗i

∥∥2

F
I
(
R(a; ŝ(t−1)) ≥ δ

4

∥∥Ms∗i
−Ma

∥∥2

F

)

It suffices to bound ξerr, β1(s∗, ŝ(t)) and β2(s∗, ŝ(t)), respectively.

Step 2.1: Bounding ξerr. Let us begin with Eξerr. By definition,

Eξerr =

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
P
(〈

Ei,Ma −Ms∗i

〉
≥ 1− δ

2

∥∥Ms∗i
−Ma

∥∥2

F

)

Note that
〈
Ei,Ma −Ms∗i

〉
is normal distribution with mean zero and variance

‖Ma−Ms∗i
‖2F. The standard concentration inequality of normal random variable

yields

P
(〈

Ei,Ma −Ms∗i

〉
≥ 1− δ

2

∥∥Ms∗i
−Ma

∥∥2

F

)
≤ exp

(
− (1− δ)2

8

∥∥Ms∗i
−Ma

∥∥2

F

)
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Therefore,

Eξerr ≤
n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
exp

(
− (1− δ)2

8

∥∥Ms∗i
−Ma

∥∥2

F

)
.

Assume n� K, ∆2 � logK and let δ converge to 0 as slow as possible, we can
get

Eξerr ≤ n · exp

{
−
(
1− o(1)

)∆2

8

}
By Markov inequality,

P (ξerr ≥ exp(∆)Eξerr) ≤ exp(−∆)

We conclude that, with probability at least 1− exp(−∆),

ξerr ≤ exp(∆)Eξerr ≤ n · exp

{
−
(
1− o(1)

)∆2

8

}
Step 2.2: Bounding β1(s∗, ŝ(t)) By definition,

β1(s∗, ŝ(t)) =

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
I
(
ŝ

(t)
i 6= a

)
· I
(〈

Ei,Ms∗i
− M̂

(t)
s∗i

〉
≥ δ

8

∥∥Ms∗i
−Ma

∥∥2

F

)

+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
I
(
ŝ

(t)
i 6= a

)
· I
(〈

Ei, M̂
(t)
a −Ma

〉
≥ δ

8

∥∥Ms∗i
−Ma

∥∥2

F

)
=: β1,1(s∗, ŝ(t)) + β1,2(s∗, ŝ(t))

Without loss of generality, we only prove the upper bound of the second term
β1,2(s∗, ŝ(t)). Notice that the labels ŝ(t) depend on all the noise matrices {Ei}ni=1,

thus M̂
(t)
a is dependent on Ei. Delicate treatment is necessary to establish a

sharp upper bound for β1(s∗, ŝ(t)).

Recall the definition that M̂
(t)
a is computed by the best rank-ra approxima-

tion of X̄a(ŝ(t−1)) := (n
(t−1)
a )−1

∑n
i=1 I

(
ŝ

(t−1)
i = a

)
Xi with n

(t−1)
a :=

∑n
i=1 I

(
ŝ

(t−1)
i = a

)
.

Denote Û
(t)
a and V̂

(t)
a the left and right singular vectors of M̂

(t)
a . Then we

have M̂
(t)
a = Û

(t)
a (Û

(t)
a )>X̄a(ŝ(t−1))V̂

(t)
a (V̂

(t)
a )>. For notation simplicity, we

now drop the superscript (t) in Û
(t)
a , V̂

(t)
a and write Ûa, V̂a instead.

Now write

M̂(t)
a −Ma = ÛaÛ

>
a X̄a(ŝ(t−1))V̂aV̂

>
a −Ma

= ÛaÛ
>
a

∑n
i=1 I

(
ŝ

(t−1)
i = a

)
(Ms∗i

+ Ei)∑n
i=1 I

(
ŝ

(t−1)
i = a

)
 V̂aV̂

>
a −Ma
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Recall that n∗a =
∑n
i=1 I (s∗i = a). Denote

Ē∗a := (n∗a)−1
n∑
i=1

I (s∗i = a) Ei and Ē(t−1)
a := (n(t−1)

a )−1
n∑
i=1

I
(
ŝ

(t−1)
i = a

)
Ei

Then we can proceed as

M̂(t)
a −Ma = ÛaÛ

>
a

(
1

n
(t−1)
a

n∑
i=1

I
(
ŝ

(t−1)
i = a

)
Ms∗i

+ Ē(t−1)
a

)
V̂aV̂

>
a −Ma

= ÛaÛ
>
a

[
Ma +

1

n
(t−1)
a

n∑
i=1

I
(
ŝ

(t−1)
i = a

)
(Ms∗i

−Ma) + Ē∗a + (Ē(t−1)
a − Ē∗a)

]
V̂aV̂

>
a −Ma

= ÛaÛ
>
a

(
Ma + Ē∗a + ∆

(t−1)
M + ∆

(t−1)
E

)
V̂aV̂

>
a −Ma

where we’ve defined

∆
(t−1)
M :=

1

n
(t−1)
a

n∑
i=1

I
(
ŝ

(t−1)
i = a

)
(Ms∗i

−Ma) and ∆
(t−1)
E := Ē(t−1)

a − Ē∗a

For simplicity, we denote ∆(t−1) := Ē∗a + ∆
(t−1)
M + ∆

(t−1)
E and write

M̂(t)
a −Ma = ÛaÛ

>
a

(
Ma + ∆(t−1)

)
V̂aV̂

>
a −Ma (25)

Notice that since h(ŝ(t−1), s∗) satisfies (10), we have that

n(t−1)
a =

n∑
i=1

I
(
ŝ

(t−1)
i = a

)
≥

n∑
i=1

I (s∗i = a)−
n∑
i=1

I
(
ŝ

(t−1)
i 6= s∗i

)
≥ n∗a − h(ŝ(t−1), s∗) ≥ αn

K
− αn

8K
≥ 7αn

8K

The following lemma is useful whose proof is postponed to Section 11.

Lemma 10.2. Suppose that h(ŝ(t−1), s∗) satisfies (10). Then,

‖∆(t−1)
M ‖ ≤ 16K

7αn
ha(ŝ(t−1), s∗) ·min{κ0λ, γ∆}

where we define

ha(ŝ(t−1), s∗) :=

n∑
i=1

I
(
ŝ

(t−1)
i = a, s∗i 6= a

)
+

n∑
i=1

I
(
ŝ

(t−1)
i 6= a, s∗i = a

)
Moreover, under event Q1 ∩ Q2, there exist absolute constants C1, C2 > 0 such
that ∥∥Ē∗a∥∥ ≤ C1

√
dK

αn
and ‖∆(t−1)

E ‖ ≤ C2
K
√

(d+ n) · ha(ŝ(t−1), s∗)

αn
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By Lemma 10.2, we obtain, under Q1 ∩Q2, that∥∥∥∆(t−1)
∥∥∥ ≤ cλ+ C

(
α−1/2K1/2

√
d

n
+ α−1K

√
ha(ŝ(t−1), s∗)

n

)

Recall the condition σmin(Ma) ≥ λ > C
(
α−1/2K1/2(d/n)1/2 + α−1Kn−1/2 · h1/2

a (ŝ(t−1), s∗)
)

.

Together with the bound for ∆(t−1), we have

σmin(Ma) ≥ λ > 2
∥∥∥∆(t−1)

∥∥∥
provided that eq. (10) holds.

Continuing from eq. (25), we need a delicate representation formula for M̂
(t)
a −

Ma, which is guaranteed by the following lemma whose proof is deferred to
Section 11.

Lemma 10.3. For any rank-r matrix M ∈ Rd1×d2 with compact SVD UΣV>,
where U ∈ Od1,r and V ∈ Od2,r and Σ = diag(σ1, · · · , σr) with σ1 ≥ · · · ≥ σr >
0. Let ∆ be an arbitrary d1 × d2 perturbation matrix and X = M + ∆. Denote
Û ∈ Od1,r, V̂ ∈ Od2,r the top-r left and right singular vectors of X. Suppose
that σr > 3‖∆‖, then we have the following relation:[
ÛÛ> −UU> 0

0 V̂V̂> −VV>

]
=

[∑
k≥1 SU

M,k(∆) 0

0
∑
k≥1 SV

M,k(∆)

]
=
∑
k≥1

SM,k(∆)

Here the k-th order perturbation term SM,k(∆) is defined as

SM,k(∆) :=
∑

m:m1+···+mk+1=k

(−1)1+τ(m) ·P−m1∆∗P−m2∆∗ · · ·∆∗P−mk+1

where m = (m1, · · · ,mk+1) contains non-negative integers, τ(m) =
∑k+1
i=1 I(mi >

0) and

∆∗ :=

[
0 ∆

∆> 0

]
, P−k :=


(

0 UΣ−kV>

VΣ−kU> 0

)
if k is odd(

UΣ−kU> 0
0 VΣ−kV>

)
if k is even.

for all k ≥ 1. Specifically, P0 = P⊥ denotes the orthogonal spectral projector
defined by

P⊥ =

(
U⊥U>⊥ 0

0 V⊥V>⊥

)
By Lemma 10.3, we have the following decomposition

M̂(t)
a −Ma = ÛaÛ

>
a

(
Ma + ∆(t−1)

)
V̂aV̂

>
a −Ma

=
(
ÛaÛ

>
a −UaU

>
a

)
Ma + Ma

(
V̂aV̂

>
a −VaV

>
a

)
+
(
ÛaÛ

>
a −UaU

>
a

)
Ma

(
V̂aV̂

>
a −VaV

>
a

)
+ ÛaÛ

>
a ∆(t−1)V̂aV̂

>
a
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so that we can re-write

β1,2(s∗, ŝ(t)) ≤
n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,
(
ÛaÛ

>
a −UaU

>
a

)
Ma

〉
≥ δ

32

∥∥Ms∗i
−Ma

∥∥2

F

)

+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,Ma

(
V̂aV̂

>
a −VaV

>
a

)〉
≥ δ

32

∥∥Ms∗i
−Ma

∥∥2

F

)

+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,
(
ÛaÛ

>
a −UaU

>
a

)
Ma

(
V̂aV̂

>
a −VaV

>
a

)〉
≥ δ

32

∥∥Ms∗i
−Ma

∥∥2

F

)

+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei, ÛaÛ
>
a ∆(t−1)V̂aV̂

>
a

〉
≥ δ

32

∥∥Ms∗i
−Ma

∥∥2

F

)
(26)

It suffices to bound each term in the RHS of above equation.

Step 2.2.1: Treating the terms of
〈
Ei,
(
ÛaÛ

>
a −UaU

>
a

)
Ma

〉
. By Lemma 10.3,

we have 〈
Ei,
(
ÛaÛ

>
a −UaU

>
a

)
Ma

〉
=
∑
k≥1

〈
Ei,SUa

M,k(∆(t−1))Ma

〉
(27)

The RHS of (27) is the sum of infinite series. It turns out that delicate treatments
are only necessary for the leading two terms. Now we write

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,
(
ÛaÛ

>
a −UaU

>
a

)
Ma

〉
≥ δ

32

∥∥Ms∗i
−Ma

∥∥2

F

)

≤
n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,SUa

M,1(∆(t−1))Ma

〉
≥ δ

96

∥∥Ms∗i
−Ma

∥∥2

F

)

+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,SUa

M,2(∆(t−1))Ma

〉
≥ δ

96

∥∥Ms∗i
−Ma

∥∥2

F

)
(28)

+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I

〈Ei,
∑
k≥3

SUa

M,k(∆(t−1))Ma

〉
≥ δ

96

∥∥Ms∗i
−Ma

∥∥2

F


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The first and second perturbation terms SUa

M,1 and SUa

M,2 can be explicitly deter-
mined by Lemma 10.3. Indeed, we have〈

Ei,SUa

M,1(∆(t−1))Ma

〉
=
〈
Ei,Ua⊥U>a⊥∆(t−1)VaV

>
a

〉
=
〈
U>a⊥EiVa,U

>
a⊥

(
Ē∗a + ∆

(t−1)
M + ∆

(t−1)
E

)
Va

〉
=
〈
U>a⊥EiVa,U

>
a⊥Ē∗aVa

〉
+
〈
Ei,Ua⊥U>a⊥

(
∆

(t−1)
M + ∆

(t−1)
E

)
VaV

>
a

〉
=

1

n∗a
I (s∗i = a)

∥∥U>a⊥EiVa

∥∥2

F
+

〈
U>a⊥EiVa,U

>
a⊥

 1

n∗a

n∑
j 6=i

I
(
s∗j = a

)
Ej

Va

〉

+
〈
Ei,Ua⊥U>a⊥

(
∆

(t−1)
M + ∆

(t−1)
E

)
VaV

>
a

〉
We then bound the first term on RHS of eq. (28) by

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,SUa

M,1(∆(t−1))Ma

〉
≥ δ

96

∥∥Ms∗i
−Ma

∥∥2

F

)

≤
n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(

1

n∗a
I (s∗i = a)

∥∥U>a⊥EiVa

∥∥2

F
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F

)
(29)

+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I

〈U>a⊥EiVa,U
>
a⊥

 1

n∗a

n∑
j 6=i

I
(
s∗j = a

)
Ej

Va

〉
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F


+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,Ua⊥U>a⊥

(
∆

(t−1)
M + ∆

(t−1)
E

)
VaV

>
a

〉
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F

)

We bound the first two terms on RHS of eq. (29) by Markov inequality and thus

their expectation is needed. Since Ei has i.i.d. N(0, 1) entries,
∥∥U>a⊥EiVa

∥∥2

F
follows a Chi-squared distribution with degrees of freedom (d1 − ra)ra. By the
concentration inequality of Chi-squared random variable, we get

P
(∥∥U>a⊥EiVa

∥∥2

F
≥ (d1 − ra)ra + 2

√
u(d1 − ra)ra + 2u

)
≤ exp(−u)

for any u > 0. As a result, there exists an absolute constant c2 > 0 such that

P
(

1

n∗a

∥∥U>a⊥EiVa

∥∥2

F
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F

)
= P

(∥∥U>a⊥EiVa

∥∥2

F
≥ δn∗a

288

∥∥Ms∗i
−Ma

∥∥2

F

)
≤ exp

(
−c2

δαn

K

∥∥Ms∗i
−Ma

∥∥2

F

)
where the last inequality holds due to the condition ∆2 � α−1dKr/n and by
setting δ = o(1) in the way that it converges to 0 sufficiently slowly.

For the second term in RHS of eq. (29), due to the property of Gaussian
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distribution, we observe that

Ẽi := U>a⊥EiVa and Ẽ−i := U>a⊥

 n∑
j 6=i

I
(
s∗j = a

)
Ej

Va

are two independent matrices, hence
〈
Ẽi, Ẽ−i

〉∣∣Ẽi ∼ N
(
0, (n∗a−1)‖Ẽi‖2F

)
. Then

we can proceed as follows. There exists an absolute constant c3 > 0 such that
for any u > 0,

P

〈U>a⊥EiVa,U
>
a⊥

 n∑
j 6=i

I
(
s∗j = a

)
Ej

Va

〉
≥ δn∗a

288

∥∥Ms∗i
−Ma

∥∥2

F


≤ P

(〈
Ẽi, Ẽ−i

〉
≥ δn∗a

288

∥∥Ms∗i
−Ma

∥∥2

F

∣∣∣∣∣ ∥∥∥Ẽi

∥∥∥2

F
≤ (d1 − ra)ra + 2

√
u(d1 − ra)ra + 2u

)

· P
(∥∥∥Ẽi

∥∥∥2

F
≤ (d1 − ra)ra + 2

√
u(d1 − ra)ra + 2u

)
+ P

(∥∥∥Ẽi

∥∥∥2

F
≥ (d1 − ra)ra + 2

√
u(d1 − ra)ra + 2u

)

≤ exp

−c3 δ2αn
∥∥Ms∗i

−Ma

∥∥4

F

K
(
dr + 2

√
dru+ 2u

)
+ exp(−u)

It suffices to choose u = C2δ(αn/K)1/2
∥∥Ms∗i

−Ma

∥∥2

F
, then the above proba-

bility can be bounded as

P

〈U>a⊥EiVa,U
>
a⊥

 n∑
j 6=i

I
(
s∗j = a

)
Ej

Va

〉
≥ δn∗a

288

∥∥Ms∗i
−Ma

∥∥2

F


≤ exp

(
−c2

δ2αn
∥∥Ms∗i

−Ma

∥∥4

F

dKr

)
+ exp

(
−c2

δ
√
αn
∥∥Ms∗i

−Ma

∥∥2

F√
K

)

≤ 2 exp

(
−c2

δ
√
αn
∥∥Ms∗i

−Ma

∥∥2

F√
K

)

where the last inequality holds since ∆2 � α−1rdK/n, αn� K and by setting
δ → 0 sufficiently slow. Therefore, the expectation of the first two terms on RHS
of eq. (29) is bounded by

E
[ n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(

1

n∗a
I (s∗i = a)

∥∥U>a⊥EiVa

∥∥2

F
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F

)

+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I

〈U>a⊥EiVa,U
>
a⊥

 1

n∗a

n∑
j 6=i

I
(
s∗j = a

)
Ej

Va

〉
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F

]
≤ C2nK∆2 exp

(
−δ(αn/K)1/2∆2

)
≤ n exp

(
−c2δ(αn/K)1/2∆2

)
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Now the first two terms on RHS of eq. (29) can be bounded by Markov inequality.
We get, with probability at least 1− exp

(
− δ(αn/K)1/4∆

)
that

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(

1

n∗a
I (s∗i = a)

∥∥U>a⊥EiVa

∥∥2

F
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F

)

+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I

〈U>a⊥EiVa,U
>
a⊥

 1

n∗a

n∑
j 6=i

I
(
s∗j = a

)
Ej

Va

〉
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F


≤ n · exp

(
−δ(αn/K)1/2∆2

)
which holds as long as δ → 0 sufficiently slowly compared with αn/K →∞.

We now bound the third term on RHS of eq. (29). Denote Ξ
(t−1)
1 := Ua⊥U>a⊥

(
∆

(t−1)
M + ∆

(t−1)
E

)
VaV

>
a .

Then write
n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,Ξ
(t−1)
1

〉
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F

)

≤
n∑
i=1

∑
a∈[K]

∑
b∈[K]\{a}

I (s∗i = b) ‖Ma −Mb‖2F · I
(〈

Ei,Ξ
(t−1)
1

〉
≥ δ

288
‖Mb −Ma‖2F

)

≤C3

n∑
i=1

∑
a∈[K]

∑
b∈[K]\{a}

I (s∗i = b) ‖Ma −Mb‖2F ·
〈Ei,Ξ

(t−1)
1 〉2

δ2‖Mb −Ma‖4F

≤C3

∑
a∈[K]

∑
b∈[K]\{a}

‖Ξ(t−1)
1 ‖2 ·

∑n
i=1 I (s∗i = b) 〈Ei,Ξ

(t−1)
1 /‖Ξ(t−1)

1 ‖〉2

δ2‖Mb −Ma‖2F
(30)

The following lemma is needed whose proof is deferred to Section 11.

Lemma 10.4. There exist absolute constants c1, C1 > 0 such that, for any fixed
b ∈ [K] and d1, d2 and r, the following inequality holds with probability at least
1− exp(−c1dr):

sup
Ξ∈Rd1×d2 ,rank(Ξ)≤r

‖Ξ‖≤1

n∑
i=1

I (s∗i = b) 〈Ei,Ξ〉2 ≤ C1r(dr + n∗b)

We denote the event in Lemma 10.4 by Q3 and proceed by conditioning on
Q3. By Lemma 10.4 and eq. (30) we obtain that:

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,Ξ
(t−1)
1

〉
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F

)
(a)

≤C ′3
∑
a∈[K]

∑
b∈[K]\{a}

r(dr + n∗b)

δ2∆2

(
γ2K2

α2n2
∆2h2

a(ŝ(t−1), s∗) +
K2(d+ n)ha(ŝ(t−1), s∗)

α2n2

)
(b)

≤ 1

16
`(ŝ(t−1), s∗)
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where (a) holds due to Lemma 10.2 and (b) holds provided ∆2 � α−1K2r (dr/n+ 1)
and (10).
We then bound the second perturbation term, i.e., the second term on RHS of
eq. (28). Observe that〈

Ei,SUa

M,2(∆(t−1))Ma

〉
=
〈
Ei,Ua⊥U>a⊥∆(t−1)Va⊥V>a⊥∆(t−1)>UaΣ

−1
a V>a

〉
−
〈
Ei,Ua⊥U>a⊥∆(t−1)VaΣ

−1
a U>a ∆(t−1)VaV

>
a

〉
(31)

−
〈
Ei,UaΣ

−1
a V>a ∆(t−1)>Ua⊥U>a⊥∆(t−1)VaV

>
a

〉
Then write

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,SUa

M,2(∆(t−1))Ma

〉
≥ δ

96

∥∥Ms∗i
−Ma

∥∥2

F

)

≤
n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,Ua⊥U>a⊥∆(t−1)Va⊥V>a⊥∆(t−1)>UaΣ
−1
a V>a

〉
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F

)

+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,Ua⊥U>a⊥∆(t−1)VaΣ
−1
a U>a ∆(t−1)VaV

>
a

〉
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F

)

+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,UaΣ
−1
a V>a ∆(t−1)>Ua⊥U>a⊥∆(t−1)VaV

>
a

〉
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F

)
(32)

For the indicator function in the first term on the RHS of eq. (32), we further
have the decomposition

I
(〈

Ei,Ua⊥U>a⊥∆(t−1)Va⊥V>a⊥∆(t−1)>UaΣ
−1
a V>a

〉
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F

)
≤I
(〈

Ei,Ua⊥U>a⊥Ē∗aVa⊥V>a⊥Ē∗>a UaΣ
−1
a V>a

〉
≥ δ

1152

∥∥Ms∗i
−Ma

∥∥2

F

)
+I
(〈

Ei,Ua⊥U>a⊥(∆
(t−1)
M + ∆

(t−1)
E )Va⊥V>a⊥Ē∗>a UaΣ

−1
a V>a

〉
≥ δ

1152

∥∥Ms∗i
−Ma

∥∥2

F

)
+I
(〈

Ei,Ua⊥U>a⊥Ē∗aVa⊥V>a⊥(∆
(t−1)
M + ∆

(t−1)
E )>UaΣ

−1
a V>a

〉
≥ δ

1152

∥∥Ms∗i
−Ma

∥∥2

F

)
+I
(〈

Ei,Ua⊥U>a⊥(∆
(t−1)
M + ∆

(t−1)
E )Va⊥V>a⊥(∆

(t−1)
M + ∆

(t−1)
E )>UaΣ

−1
a V>a

〉
≥ δ

1152

∥∥Ms∗i
−Ma

∥∥2

F

)
(33)

We again calculate the expectation of the first term on RHS of eq. (33) to uti-
lize Markov inequality. Notice that

〈
Ei,Ua⊥U>a⊥Ē∗aVa⊥V>a⊥Ē∗>a UaΣ

−1
a V>a

〉
=〈

U>a⊥EiVa,U
>
a⊥Ē∗aVa⊥V>a⊥Ē∗>a UaΣ

−1
a

〉
and due the property of Gaussian ran-

dom matrices (see [55]), U>a⊥EiVa is independent of U>a⊥Ē∗aVa⊥V>a⊥Ē∗>a UaΣ
−1
a .
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Then we write I1 := U>a⊥Ē∗aVa⊥V>a⊥Ē∗>a UaΣ
−1
a and by the random matrix

theory, we have that for any u > 0

P
(〈

Ei,Ua⊥U>a⊥Ē∗aVa⊥V>a⊥Ē∗>a UaΣ
−1
a V>a

〉
≥ δ

1152

∥∥Ms∗i
−Ma

∥∥2

F

)
≤P

(〈
U>a⊥EiVa,I1

〉
≥ δ

1152

∥∥Ms∗i
−Ma

∥∥2

F

∣∣∣∣∣ ‖I1‖2F ≤
r

λ2

(
d+ u2

n∗a

)2
)

· P

(
‖I1‖2F ≤

r

λ2

(
d+ u2

n∗a

)2
)

+ exp(−u2)

≤ exp

(
−c4

δ2
∥∥Ms∗i

−Ma

∥∥4

F
λ2α2n2

rK2(d2 + u4)

)
+ exp(−u2)

for some absolute constant c4 > 0. Choosing u2 = C4δ
1/2(αn/K)1/2

∥∥Ms∗i
−Ma

∥∥2

F
we obtain

P
(〈

Ei,Ua⊥U>a⊥Ē∗aVa⊥V>a⊥Ē∗>a UaΣ
−1
a V>a

〉
≥ δ

1152

∥∥Ms∗i
−Ma

∥∥2

F

)
≤ exp

(
−c4

δ
∥∥Ms∗i

−Ma

∥∥2

F
αn

κ2
0Kr

2

)
+ exp

(
−c4

δ1/2
∥∥Ms∗i

−Ma

∥∥2

F

√
αn

√
K

)

where the last inequality holds as λ2 ≥ (1/4)·r−1κ−2
0 maxa,b∈[K],a 6=b ‖Ma −Mb‖2F,

λ2 ≥ dK/(αn), ∆2 � rdK/n, αn/K � κ2
0r

2 and by setting δ → 0 suffi-
ciently slow. Therefore, by Markov inequality, we get with probability at least
1− exp

(
− δ1/2(αn/K)1/4∆

)
− exp

(
− δ(κ0r)

−1(αn/K)1/2∆
)

that

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,Ua⊥U>a⊥Ē∗aVa⊥V>a⊥Ē∗>a UaΣ
−1
a V>a

〉
≥ δ

1152

∥∥Ms∗i
−Ma

∥∥2

F

)
≤ n ·

[
exp

(
−δ1/2(αn/K)1/2∆2

)
+ exp

(
−δ(κ0r)

−2(αn/K)∆2
)]

which holds as long as δ → 0 sufficiently slowly compared with αn/(Kκ2
0r

2)→
∞.
It suffices to consider the remaining terms on RHS of eq. (33). For the second
term of eq. (33), by Lemma 10.2 we have∥∥∥Ua⊥U>a⊥(∆

(t−1)
M + ∆

(t−1)
E )Va⊥V>a⊥Ē∗>a UaΣ

−1
a V>a

∥∥∥2

≤ C5
dK/(αn)

λ2

[
K

αn
∆2ha(ŝ(t−1), s∗) +

K2(d+ n)ha(ŝ(t−1), s∗)

α2n2

]
for some absolute constant C5 > 0, where we’ve used condition (10). Then
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Lemma 10.4 implies

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
·

I
(〈

Ei,Ua⊥U>a⊥(∆
(t−1)
M + ∆

(t−1)
E )Va⊥V>a⊥Ē∗>a UaΣ

−1
a V>a

〉
≥ δ

1152

∥∥Ms∗i
−Ma

∥∥2

F

)
≤ C5

K∑
a=1

K∑
b=1

r(dr + n)

δ2∆2

[
K

αn
∆2ha(ŝ(t−1), s∗) +

K2(d+ n)ha(ŝ(t−1), s∗)

α2n2

]
dK/(αn)

λ2

≤ 1

96
`(ŝ(t−1), s∗)

where the last inequality holds given ∆2 � α−1K2r (dr/n+ 1), λ2 ≥ dK/(αn).
The same bound holds for the third term of eq. (33). For the last term, by
Lemma 10.2, we obtain∥∥∥Ua⊥U>a⊥(∆

(t−1)
M + ∆

(t−1)
E )Va⊥V>a⊥(∆

(t−1)
M + ∆

(t−1)
E )>UaΣ

−1
a V>a

∥∥∥2

≤ C6
1

λ2

[
κ2

0γ
2K

αn
λ2∆2h4

a(ŝ(t−1), s∗) +
K3(d2 + n2)ha(ŝ(t−1), s∗)

α3n3

]
for some absolute constant C6 > 0. As a result, using (10)we have that

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F

· I
(〈

Ei,Ua⊥U>a⊥(∆
(t−1)
M + ∆

(t−1)
E )Va⊥V>a⊥(∆

(t−1)
M + ∆

(t−1)
E )>UaΣ

−1
a V>a

〉
≥ δ

1152

∥∥Ms∗i
−Ma

∥∥2

F

)
≤ C6

K∑
a=1

K∑
b=1

r(dr + n)

δ2∆2

1

λ2

[
K

αn
λ2∆2ha(ŝ(t−1), s∗) +

K3(d2 + n2)ha(ŝ(t−1), s∗)

α3n3

]
≤ 1

96
`(ŝ(t−1), s∗)

which holds for λ2 ≥ d/(αn), ∆2 � α−1K2r (dr/n+ 1).
We then consider the second term on the RHS of eq. (32), in which the indicator
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function admits

I
(〈

Ei,Ua⊥U>a⊥∆(t−1)VaΣ
−1
a U>a ∆(t−1)VaV

>
a

〉
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F

)
≤I
(〈

Ei,Ua⊥U>a⊥Ē∗aVaΣ
−1
a U>a Ē∗aVaV

>
a

〉
≥ δ

1152

∥∥Ms∗i
−Ma

∥∥2

F

)
+I
(〈

Ei,Ua⊥U>a⊥

(
∆

(t−1)
M + ∆

(t−1)
E

)
VaΣ

−1
a U>a Ē∗aVaV

>
a

〉
≥ δ

1152

∥∥Ms∗i
−Ma

∥∥2

F

)
+I
(〈

Ei,Ua⊥U>a⊥Ē∗aVaΣ
−1
a U>a

(
∆

(t−1)
M + ∆

(t−1)
E

)
VaV

>
a

〉
≥ δ

1152

∥∥Ms∗i
−Ma

∥∥2

F

)
+I
(〈

Ei,Ua⊥U>a⊥

(
∆

(t−1)
M + ∆

(t−1)
E

)
VaΣ

−1
a U>a

(
∆

(t−1)
M + ∆

(t−1)
E

)
VaV

>
a

〉
≥ δ

1152

∥∥Ms∗i
−Ma

∥∥2

F

)
(34)

The last three terms on RHS of (34) can be bounded exactly the same as those
of (33), and we only need to treat the first term using Markov inequality. Then
write

〈
Ei,Ua⊥U>a⊥Ē∗aVaΣ

−1
a U>a Ē∗aVaV

>
a

〉
=

〈
U>a⊥EiVa,U

>
a⊥

 1

n∗a

∑
j 6=i

I
(
s∗j = a

)
Ei

VaΣ
−1
a U>a Ē∗aVa

〉

+

〈
U>a⊥EiVa,U

>
a⊥

(
1

n∗a
I (s∗i = a) Ei

)
VaΣ

−1
a U>a Ē∗aVa

〉
The bound for the first term above is the same as the first term of (33) and
therefore we only consider the second term. By random matrix theory, there
exists some absolute constant C7 > 0 such that for any u > 0:

P

(〈
U>a⊥EiVa,U

>
a⊥

(
1

n∗a
I (s∗i = a) Ei

)
VaΣ

−1
a U>a Ē∗aVa

〉
≥ C7

r

λn∗a

(
d+ u2

)√d+ u2

n∗a

)
≤ exp

(
−u2

)
The we can choose u2 = c5δ(αn/K)1/3

∥∥Ms∗i
−Ma

∥∥2

F
to obtain

C7
r

λn∗a

(
d+ u2

)√d+ u2

n∗a
≤C ′7

(
r

λ

(
dK

αn

)3/2

+
δ3/2rK

∥∥Ms∗i
−Ma

∥∥3

F

λαn

)
≤δ
∥∥Ms∗i

−Ma

∥∥2

F

where the last inequality is due to λ ≥ d/(αn), λ ≥ (1/2)·r−1/2κ−1
0

∥∥Ms∗i
−Ma

∥∥
F

,

∆2 � α−1K3/2dr/n and αn/K � κ0r
3/2. Hence we obtain that

P
(〈

U>a⊥EiVa,U
>
a⊥

(
1

n∗a
I (s∗i = a) Ei

)
VaΣ

−1
a U>a Ē∗aVa

〉
≥ δ

2304

∥∥Ms∗i
−Ma

∥∥2

F

)
≤ exp

(
−c5

δ
∥∥Ms∗i

−Ma

∥∥2

F
(αn)1/3

K1/3

)
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By Markov inequality, we get with probability at least 1−exp
(
−δ(αn/K)1/6∆

)
that
n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
·

I
(〈

U>a⊥EiVa,U
>
a⊥

(
1

n∗a
I (s∗i = a) Ei

)
VaΣ

−1
a U>a Ē∗aVa

〉
≥ δ

2304

∥∥Ms∗i
−Ma

∥∥2

F

)
≤ n · exp

(
−δ(αn/K)1/3∆2

)
It remains to consider the indicator function in the second term on the RHS of
eq. (32), which reads

I
(〈

Ei,UaΣ
−1
a V>a ∆(t−1)>Ua⊥U>a⊥∆(t−1)VaV

>
a

〉
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F

)
≤I
(〈

Ei,UaΣ
−1
a V>a Ē∗>a Ua⊥U>a⊥Ē∗aVaV

>
a

〉
≥ δ

1152

∥∥Ms∗i
−Ma

∥∥2

F

)
+I
(〈

Ei,UaΣ
−1
a V>a (∆

(t−1)
M + ∆

(t−1)
E )>Ua⊥U>a⊥Ē∗aVaV

>
a

〉
≥ δ

1152

∥∥Ms∗i
−Ma

∥∥2

F

)
+I
(〈

Ei,UaΣ
−1
a V>a Ē∗>a Ua⊥U>a⊥(∆

(t−1)
M + ∆

(t−1)
E )VaV

>
a

〉
≥ δ

1152

∥∥Ms∗i
−Ma

∥∥2

F

)
+I
(〈

Ei,UaΣ
−1
a V>a (∆

(t−1)
M + ∆

(t−1)
E )>Ua⊥U>a⊥(∆

(t−1)
M + ∆

(t−1)
E )VaV

>
a

〉
≥ δ

1152

∥∥Ms∗i
−Ma

∥∥2

F

)
(35)

The treatment, as can be readily seen, is essentially the same as (33).
It suffices to bound the high-order perturbation term, i.e., the last term on RHS
of eq. (28). Write

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I

〈Ei,
∑
k≥3

SUa

M,k(∆(t−1))Ma

〉
≥ δ

96

∥∥Ms∗i
−Ma

∥∥2

F


≤

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I

〈Ei,
∑
k≥3

SUa

M,k(Ē∗a)Ma

〉
≥ δ

96

∥∥Ms∗i
−Ma

∥∥2

F


+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(
〈Ei,Ξ2〉 ≥

δ

96

∥∥Ms∗i
−Ma

∥∥2

F

)
(36)

where Ξ2 :=
∑
k≥3 S

Ua

M,k(Ē∗a + ∆
(t−1)
M + ∆

(t−1)
E )Ma −

∑
k≥3 S

Ua

M,k(Ē∗a)Ma. By
random matrix theory, the first term of on RHS of eq. (36) can be directly
bounded such that for any u > 0, there exists some absolute constant C8 > 0
with

P

〈Ei,
∑
k≥3

SUa

M,k(Ē∗a)Ma

〉
≥ C8

r

λ2

√
d+ u2

(√
d+ u2

n∗a

)3
 ≤ exp

(
−u2

)
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Choosing u2 = c6δ(αn/K)1/4
∥∥Ms∗i

−Ma

∥∥2

F
for some absolute constant c6 > 0,

we have that

C8
r

λ2

√
d+ u2

(√
d+ u2

n∗a

)3

≤ C ′8

(
rd2K3/2

λ2α3/2n3/2
+
δ2rK

∥∥Ms∗i
−Ma

∥∥4

F

λ2αn

)
≤ δ

∥∥Ms∗i
−Ma

∥∥2

F

where last inequality is due to λ2 ≥ d/
√
αn, λ2 ≥ (1/4) ·r−1κ−2

0

∥∥Ms∗i
−Ma

∥∥2

F
,

∆2 � α−1K3/2dr/n and αn/K � κ2
0r

2. Hence we obtain that

P

〈Ei,
∑
k≥3

SUa

M,k(Ē∗a)Ma

〉
≥ δ

192

∥∥Ms∗i
−Ma

∥∥2

F

 ≤ exp

(
−c6

δ
∥∥Ms∗i

−Ma

∥∥2

F
(αn)1/4

K1/4

)

By Markov’s inequality, we have with probability greater than 1 − exp
(
−

δ(αn/K)1/8∆
)

that

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I

〈Ei,
∑
k≥3

SUa

M,k(Ē∗a)Ma

〉
≥ δ

96

∥∥Ms∗i
−Ma

∥∥2

F


≤ n · exp

(
−δ(αn/K)1/4∆2

)
For the second term on RHS of eq. (36), by carefully inspecting the perturbation
term defined in Lemma 10.3 we obtain, there exists some absolute constant
C9 > 0 such that the following bound holds:

‖Ξ2‖2 =

∥∥∥∥∥∥
∑
k≥3

SUa

M,k(Ē∗a + ∆
(t−1)
M + ∆

(t−1)
E )Ma −

∑
k≥3

SUa

M,k(Ē∗a)Ma

∥∥∥∥∥∥
2

≤C9
1

λ4

[
κ4

0γ
2K6

α6n6
λ4∆2h6

a(ŝ(t−1), s∗) +
K6(d3 + n3)h3

a(ŝ(t−1), s∗)

α6n6

+

(
dK

αn

)2(
γ2K2

α2n2
∆2h2

a(ŝ(t−1), s∗) +
K2(d+ n)ha(ŝ(t−1), s∗)

α2n2

)]
Using (10), λ2 ≥ d/(αn) and ∆2 � α−1K2r (dr/n+ 1)., we have that

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(
〈Ei,Ξ2〉 ≥

δ

96

∥∥Ms∗i
−Ma

∥∥2

F

)

≤C9

K∑
a=1

K∑
b=1

r(dr + n)

δ2∆2

1

λ4

[
κ4

0γ
2K6

α6n6
λ4∆2h6

a(ŝ(t−1), s∗) +
K6(d3 + n3)h3

a(ŝ(t−1), s∗)

α6n6

+

(
dK

αn

)2(
γ2K2

α2n2
∆2h2

a(ŝ(t−1), s∗) +
K2(d+ n)ha(ŝ(t−1), s∗)

α2n2

)]

≤ 1

64
`(ŝ(t−1), s∗)
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Step 2.2.2: Treating the terms of
〈
Ei,Ma

(
V̂aV̂

>
a −VaV

>
a

)〉
. By symmetry, we

can bound
〈
Ei,Ma

(
V̂aV̂

>
a −VaV

>
a

)〉
the same way as

〈
Ei,
(
ÛaÛ

>
a −UaU

>
a

)
Ma

〉
and hence the proof is omitted.

Step 2.2.3: Treating the terms of
〈
Ei,
(
ÛaÛ

>
a −UaU

>
a

)
Ma

(
V̂aV̂

>
a −VaV

>
a

)〉
.

By Lemma 10.3, we obtain that

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,
(
ÛaÛ

>
a −UaU

>
a

)
Ma

(
V̂aV̂

>
a −VaV

>
a

)〉
≥ δ

32

∥∥Ms∗i
−Ma

∥∥2

F

)

≤
n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,SUa

M,1(∆(t−1))MaSVa

M,1(∆(t−1))
〉
≥ δ

128

∥∥Ms∗i
−Ma

∥∥2

F

)

+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I

〈Ei,SUa

M,1(∆(t−1))Ma

∑
k≥2

SVa

M,k(∆(t−1))

〉
≥ δ

128

∥∥Ms∗i
−Ma

∥∥2

F


+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I

〈Ei,
∑
k≥2

SUa

M,k(∆(t−1))MaSVa

M,1(∆(t−1))

〉
≥ δ

128

∥∥Ms∗i
−Ma

∥∥2

F


+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I

〈Ei,
∑
k≥2

SUa

M,k(∆(t−1))Ma

∑
k≥2

SVa

M,k(∆(t−1))

〉
≥ δ

128

∥∥Ms∗i
−Ma

∥∥2

F


(37)

Since
〈
Ei,SUa

M,1(∆(t−1))MaSVa

M,1(∆(t−1))
〉

=
〈
Ei,Ua⊥U>a⊥∆(t−1)VaΣ

−1
a U>a ∆(t−1)Va⊥V>a⊥

〉
,

hence we can treat the first term on RHS of eq. (37) the same as the first term
on the RHS of eq. (32). Moreever, since〈

Ei,SUa

M,1(∆(t−1))Ma

∑
k≥2

SVa

M,k(∆(t−1))

〉

=

〈
Ei,Ua⊥U>a⊥Ē∗aVaV

>
a

∑
k≥2

SVa

M,k(Ē∗a)

〉
+

〈
Ei,Ua⊥U>a⊥Ē∗aVaV

>
a

∑
k≥2

(
SVa

M,k(∆(t−1))− SVa

M,k(Ē∗a)
)〉

+

〈
Ei,Ua⊥U>a⊥(∆

(t−1)
M + ∆

(t−1)
E )VaV

>
a

∑
k≥2

SVa

M,k(∆
(t−1)
M + ∆

(t−1)
E )

〉

From the above decomposition, it can be easily recognized that the above term is

analogous to the last term on RHS of eq. (28), i.e.,
〈
Ei,
∑
k≥3 S

Ua

M,k(∆(t−1))Ma

〉
.

By symmetry, the term
〈
Ei,
∑
k≥2 S

Ua

M,k(∆(t−1))MaSVa

M,1(∆(t−1))
〉

can be bounded

in a similar fashion and the details are omitted.
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It remains to consider the last term on RHS of eq. (37). Observe that

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I

〈Ei,
∑
k≥2

SUa

M,k(∆(t−1))Ma

∑
k≥2

SVa

M,k(∆(t−1))

〉
≥ δ

128

∥∥Ms∗i
−Ma

∥∥2

F


≤

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F

[
I

〈Ei,
∑
k≥2

SUa

M,k(Ē∗a)Ma

∑
k≥2

SVa

M,k(Ē∗a)

〉
≥ δ

512

∥∥Ms∗i
−Ma

∥∥2

F


+I

〈Ei,
∑
k≥2

SUa

M,k(Ē∗a)Ma

∑
k≥2

(
SVa

M,k(∆(t−1))− SVa

M,k(Ē∗a)
)〉
≥ δ

512

∥∥Ms∗i
−Ma

∥∥2

F


+I

〈Ei,
∑
k≥2

(
SUa

M,k(∆(t−1))− SUa

M,k(Ē∗a)
)

Ma

∑
k≥2

SVa

M,k(Ē∗a)

〉
≥ δ

512

∥∥Ms∗i
−Ma

∥∥2

F


+I

〈Ei,
∑
k≥2

(
SUa

M,k(∆(t−1))− SUa

M,k(Ē∗a)
)

Ma

∑
k≥2

(
SVa

M,k(∆(t−1))− SVa

M,k(Ē∗a)
)〉
≥ δ

512

∥∥Ms∗i
−Ma

∥∥2

F

]
(38)

We then bound the expectation of the first term inside the bracket on RHS of
eq. (38). By random matrix theory, there exists some absolute constant C10 > 0
such that for any u > 0:

P

〈Ei,
∑
k≥2

SUa

M,k(Ē∗a)Ma

∑
k≥2

SVa

M,k(Ē∗a)

〉
≥ C10

r

λ3

√
d+ u2

(√
d+ u2

n∗a

)4
 ≤ exp

(
−u2

)
Choosing u2 = c7δ(n/K)1/5

∥∥Ms∗i
−Ma

∥∥2

F
for some absolute constant c7 > 0,

we have that

C10
r

λ3

√
d+ u2

(√
d+ u2

n∗a

)4

≤ C ′10

(
rd5/2K2

λ3α2n2
+
δ5/2rK3/2

∥∥Ms∗i
−Ma

∥∥5

F

λ3α3/2n3/2

)
≤ δ

∥∥Ms∗i
−Ma

∥∥2

F

where we’ve used λ2 ≥ d/
√
αn and λ ≥ (1/2) · r−1/2κ−1

0

∥∥Ms∗i
−Ma

∥∥
F

, ∆2 �
α−1K2dr/n and αn/K � κ2

0r
5/3. Hence we obtain that

P

〈Ei,
∑
k≥2

SUa

M,k(Ē∗a)Ma

∑
k≥2

SVa

M,k(Ē∗a)

〉
≥ δ

512

∥∥Ms∗i
−Ma

∥∥2

F

 ≤ exp

(
−c7

δ
∥∥Ms∗i

−Ma

∥∥2

F
α1/5n1/5

K1/5

)
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By Markov’s inequality, we have with probability greater than 1 − exp
(
−

δ(αn/K)1/10∆
)

that

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I

〈Ei,
∑
k≥3

SUa

M,k(Ē∗a)Ma

〉
≥ δ

512

∥∥Ms∗i
−Ma

∥∥2

F


≤ n · exp

(
−δ(αn/K)1/5∆2

)
For the last three terms inside the bracket on RHS of eq. (38), we have that∥∥∥∥∥∥

∑
k≥2

SUa

M,k(Ē∗a)Ma

∑
k≥2

(
SVa

M,k(∆(t−1))− SVa

M,k(Ē∗a)
)∥∥∥∥∥∥

2

+

∥∥∥∥∥∥
∑
k≥2

(
SUa

M,k(∆(t−1))− SUa

M,k(Ē∗a)
)

Ma

∑
k≥2

SVa

M,k(Ē∗a)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑
k≥2

(
SVa

M,k(∆(t−1))− SVa

M,k(Ē∗a)
)

Ma

∑
k≥2

(
SVa

M,k(∆(t−1))− SVa

M,k(Ē∗a)
)∥∥∥∥∥∥

2

≤C11
1

λ6

[
κ6

0γ
2K8

α8n8
λ6∆2h8

a(ŝ(t−1), s∗) +
K8(d4 + n4)h4

a(ŝ(t−1), s∗)

α8n8

+

(
dK

αn

)3(
γ2K2

α2n2
∆2h2

a(ŝ(t−1), s∗) +
K2(d+ n)ha(ŝ(t−1), s∗)

α2n2

)]
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for some absolute constant C11 > 0. As a result, using (10) we obtain

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F

·

[
I

〈Ei,
∑
k≥2

SUa

M,k(Ē∗a)Ma

∑
k≥2

(
SVa

M,k(∆(t−1))− SVa

M,k(Ē∗a)
)〉
≥ δ

512

∥∥Ms∗i
−Ma

∥∥2

F


+I

〈Ei,
∑
k≥2

(
SUa

M,k(∆(t−1))− SUa

M,k(Ē∗a)
)

Ma

∑
k≥2

SVa

M,k(Ē∗a)

〉
≥ δ

512

∥∥Ms∗i
−Ma

∥∥2

F


+I

〈Ei,
∑
k≥2

(
SUa

M,k(∆(t−1))− SUa

M,k(Ē∗a)
)

Ma

∑
k≥2

(
SVa

M,k(∆(t−1))− SVa

M,k(Ē∗a)
)〉
≥ δ

512

∥∥Ms∗i
−Ma

∥∥2

F

]

≤C11

K∑
a=1

K∑
b=1

r(dr + n)

δ2∆2

1

λ6

[
κ6

0γ
2K8

α8n8
λ6∆2h8

a(ŝ(t−1), s∗) +
K8(d4 + n4)h4

a(ŝ(t−1), s∗)

α8n8

+

(
dK

αn

)3(
γ2K2

α2n2
∆2h2

a(ŝ(t−1), s∗) +
K2(d+ n)ha(ŝ(t−1), s∗)

α2n2

)]

≤ 1

64
`(ŝ(t−1), s∗)

where the last inequality holds for λ2 ≥ Kd/(αn) and ∆2 � α−1K2r (dr/n+ 1).

Step 2.2.4: Treating the terms of
〈
Ei, ÛaÛ

>
a ∆(t−1)V̂aV̂

>
a

〉
. The following de-

composition is obvious:〈
Ei, ÛaÛ

>
a ∆(t−1)V̂aV̂

>
a

〉
=
〈
Ei,UaU

>
a (Ē∗a + ∆

(t−1)
M + ∆

(t−1)
E )VaV

>
a

〉
+
〈
Ei,
(
ÛaÛ

>
a −UaU

>
a

)
(Ē∗a + ∆

(t−1)
M + ∆

(t−1)
E )VaV

>
a

〉
+
〈
Ei,UaU

>
a (Ē∗a + ∆

(t−1)
M + ∆

(t−1)
E )

(
V̂aV̂

>
a −VaV

>
a

)〉
+
〈
Ei,
(
ÛaÛ

>
a −UaU

>
a

)
(Ē∗a + ∆

(t−1)
M + ∆

(t−1)
E )

(
V̂aV̂

>
a −VaV

>
a

)〉
(39)

The first term above, i.e.,
〈
Ei,UaU

>
a (Ē∗a + ∆

(t−1)
M + ∆

(t−1)
E )VaV

>
a

〉
, is essen-

tially the same as
〈
Ei,SUa

M,1(∆(t−1))Ma

〉
. For the second term of eq. (39), we

further have〈
Ei,
(
ÛaÛ

>
a −UaU

>
a

)
(Ē∗a + ∆

(t−1)
M + ∆

(t−1)
E )VaV

>
a

〉
=
〈
Ei,SUa

M,1(∆(t−1))(Ē∗a + ∆
(t−1)
M + ∆

(t−1)
E )VaV

>
a

〉
+

〈
Ei,
∑
k≥2

SUa

M,k(∆(t−1))(Ē∗a + ∆
(t−1)
M + ∆

(t−1)
E )VaV

>
a

〉
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Note that〈
Ei,SUa

M,1(∆(t−1))(Ē∗a + ∆
(t−1)
M + ∆

(t−1)
E )VaV

>
a

〉
=
〈
Ei,Ua⊥U>a⊥(Ē∗a + ∆

(t−1)
M + ∆

(t−1)
E )VaΣ

−1
a U>a (Ē∗a + ∆

(t−1)
M + ∆

(t−1)
E )VaV

>
a

〉
+
〈
Ei,UaΣ

−1
a V>a (Ē∗a + ∆

(t−1)
M + ∆

(t−1)
E )>Ua⊥U>a⊥(Ē∗a + ∆

(t−1)
M + ∆

(t−1)
E )VaV

>
a

〉
which can be decomposed of the same structure as the first term of eq. (31). On
the other hand, we observe that〈

Ei,
∑
k≥2

SUa

M,k(∆)(Ē∗a + ∆M + ∆E)VaV
>
a

〉

=

〈
Ei,
∑
k≥2

SUa

M,k

(
Ē∗a + ∆M + ∆E

)
Ē∗aVaV

>
a

〉
+

〈
Ei,
∑
k≥2

SUa

M,k

(
Ē∗a + ∆M + ∆E

)
(∆M + ∆E)VaV

>
a

〉

which can be treated in the same manner as the last term on RHS of eq. (28). By

symmetry, we can similarly treat the term
〈
Ei,UaU

>
a (Ē∗a + ∆M + ∆E)

(
V̂aV̂

>
a −VaV

>
a

)〉
.

It suffices to consider the last term of eq. (39):〈
Ei,
(
ÛaÛ

>
a −UaU

>
a

)(
Ē∗a + ∆

(t−1)
M + ∆

(t−1)
E

)(
V̂aV̂

>
a −VaV

>
a

)〉
=
〈
Ei,SUa

M,1(∆(t−1))
(
Ē∗a + ∆

(t−1)
M + ∆

(t−1)
E

)
SVa

M,1(∆(t−1))
〉

+

〈
Ei,SUa

M,1(∆(t−1))
(
Ē∗a + ∆

(t−1)
M + ∆

(t−1)
E

)∑
k≥2

SVa

M,k(∆(t−1))

〉

+

〈
Ei,
∑
k≥2

SUa

M,k(∆(t−1))
(
Ē∗a + ∆

(t−1)
M + ∆

(t−1)
E

)
SVa

M,1(∆(t−1))

〉

+

〈
Ei,
∑
k≥2

SUa

M,k(∆(t−1))
(
Ē∗a + ∆

(t−1)
M + ∆

(t−1)
E

)∑
k≥2

SVa

M,k(∆(t−1))

〉

Again, the first term above is analogous to the last term on RHS of eq. (28) and

the second and third term are analogous to the term
〈
Ei,
∑
k≥2 S

Ua

M,k(∆(t−1))Ma

∑
k≥2 S

Va

M,k(∆(t−1))
〉

.

It remains to consider the last term above, for which we have a further decom-
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position:〈
Ei,
∑
k≥2

SUa

M,k(∆(t−1))
(
Ē∗a + ∆

(t−1)
M + ∆

(t−1)
E

)∑
k≥2

SVa

M,k(∆(t−1))

〉

=

〈
Ei,
∑
k≥2

SUa

M,k(Ē∗a)Ē∗a
∑
k≥2

SVa

M,k(Ē∗a)

〉
+

〈
Ei,
∑
k≥2

SUa

M,k(Ē∗a)
(

∆
(t−1)
M + ∆

(t−1)
E

)∑
k≥2

SVa

M,k(Ē∗a)

〉

+

〈
Ei,
∑
k≥2

(
SUa

M,k(∆(t−1))− SUa

M,k(Ē∗a)
)(

Ē∗a + ∆
(t−1)
M + ∆

(t−1)
E

)∑
k≥2

SVa

M,k(Ē∗a)

〉

+

〈
Ei,
∑
k≥2

SUa

M,k(Ē∗a)
(
Ē∗a + ∆

(t−1)
M + ∆

(t−1)
E

)∑
k≥2

(
SVa

M,k(∆(t−1))− SVa

M,k(Ē∗a)
)〉

+

〈
Ei,
∑
k≥2

(
SUa

M,k(∆(t−1))− SUa

M,k(Ē∗a)
)(

Ē∗a + ∆
(t−1)
M + ∆

(t−1)
E

)∑
k≥2

(
SVa

M,k(∆(t−1))− SVa

M,k(Ē∗a)
)〉

(40)

For the first term above, by random matrix theory, there exists some absolute
constant C12 > 0 such that for any u > 0:

P

〈Ei,
∑
k≥2

SUa

M,k(Ē∗a)Ē∗a
∑
k≥2

SVa

M,k(Ē∗a)

〉
≥ C12

r

λ4

√
d+ u2

(√
d+ u2

n∗a

)5
 ≤ exp

(
−u2

)
Choosing u2 = c8δ(αn/K)1/6

∥∥Ms∗i
−Ma

∥∥2

F
for some absolute constant c8 > 0,

we have that

C12
r

λ4

√
d+ u2

(√
d+ u2

n∗a

)5

≤ C ′12

(
rd3K5/2

λ4α5/2n5/2
+
δ3rK2

∥∥Ms∗i
−Ma

∥∥6

F

λ4α2n2

)
≤ δ

∥∥Ms∗i
−Ma

∥∥2

F

where we’ve used λ2 ≥ d/
√
αn and λ ≥ (1/2) · r−1/2κ−1

0

∥∥Ms∗i
−Ma

∥∥
F

, ∆2 �
K5/2dr/(αn)3/2 and αn/K � κ2

0r
3/2. Hence we obtain that

P

〈Ei,
∑
k≥2

SUa

M,k(Ē∗a)Ma

∑
k≥2

SVa

M,k(Ē∗a)

〉
≥ δ

512

∥∥Ms∗i
−Ma

∥∥2

F

 ≤ exp

(
−c7

δ
∥∥Ms∗i

−Ma

∥∥2

F
α1/5n1/5

K1/5

)

By Markov’s inequality, we have with probability greater than 1 − exp
(
−

δ(αn/K)1/12∆
)

that

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
·I

〈Ei,
∑
k≥2

SUa

M,k(Ē∗a)Ē∗a
∑
k≥2

SVa

M,k(Ē∗a)

〉
≥ δ

2560

∥∥Ms∗i
−Ma

∥∥2

F


≤ n · exp

(
−δ(αn/K)1/6∆2

)
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For the last four terms on RHS of eq. (40), there exists some absolute constant
C12 > 0 such that

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
·

[
I

〈Ei,
∑
k≥2

SUa

M,k(Ē∗a)
(

∆
(t−1)
M + ∆

(t−1)
E

)∑
k≥2

SVa

M,k(Ē∗a)

〉
≥ δ

2560

∥∥Ms∗i
−Ma

∥∥2

F


+ I

〈Ei,
∑
k≥2

(
SUa

M,k(∆(t−1))− SUa

M,k(Ē∗a)
)

∆(t−1)
∑
k≥2

SVa

M,k(Ē∗a)

〉
≥ δ

2560

∥∥Ms∗i
−Ma

∥∥2

F


+ I

〈Ei,
∑
k≥2

SUa

M,k(Ē∗a)∆(t−1)
∑
k≥2

(
SVa

M,k(∆(t−1))− SVa

M,k(Ē∗a)
)〉
≥ δ

2560

∥∥Ms∗i
−Ma

∥∥2

F


+ I

〈Ei,
∑
k≥2

(
SUa

M,k(∆(t−1))− SUa

M,k(Ē∗a)
)

∆(t−1)
∑
k≥2

(
SVa

M,k(∆(t−1))− SVa

M,k(Ē∗a)
)〉
≥ δ

2560

∥∥Ms∗i
−Ma

∥∥2

F

]

≤ C13

K∑
a=1

K∑
b=1

r(dr + n)

δ2∆2

1

λ8

[
κ8

0γ
2K10

α10n10
λ8∆2h10

a (ŝ(t−1), s∗) +
K10(d5 + n5)h5

a(ŝ(t−1), s∗)

α10n10

+

(
dK

αn

)4(
γ2K2

α2n2
∆2h2

a(ŝ(t−1), s∗) +
K2(d+ n)ha(ŝ(t−1), s∗)

α2n2

)]

≤ 1

1024
`(ŝ(t−1), s∗)

save that λ2 ≥ Kd/(αn), ∆2 � α−1K2r (dr/n+ 1) and (10) holds.
So far we finish the analysis of β1,2(s∗, ŝ(t)) and by symmetry the term β1,1(s∗, ŝ(t))
can be handled in a similar way.

Step 2.3: Bounding β2(s∗, ŝ(t)). Recall the definition ofR(a; ŝ(t−1)), we have
that

β2(s∗, ŝ(t)) =

n∑
i=1

∑
a∈[K]\{s∗i }

I
(
ŝ

(t)
i 6= a

)∥∥Ma −Ms∗i

∥∥2

F
I
(
R(a; ŝ(t−1)) ≥ δ

4

∥∥Ms∗i
−Ma

∥∥2

F

)

≤
n∑
i=1

∑
a∈[K]\{s∗i }

I
(
ŝ

(t)
i 6= a

)∥∥Ma −Ms∗i

∥∥2

F
I
(

1

2

∥∥∥Ms∗i
− M̂

(t)
s∗i

∥∥∥2

F
≥ δ

12

∥∥Ms∗i
−Ma

∥∥2

F

)

+

n∑
i=1

∑
a∈[K]\{s∗i }

I
(
ŝ

(t)
i 6= a

)∥∥Ma −Ms∗i

∥∥2

F
I
(

1

2

∥∥∥Ma − M̂(t)
a

∥∥∥2

F
≥ δ

12

∥∥Ms∗i
−Ma

∥∥2

F

)

+

n∑
i=1

∑
a∈[K]\{s∗i }

I
(
ŝ

(t)
i 6= a

)∥∥Ma −Ms∗i

∥∥2

F
I
(∥∥Ms∗i

−Ma

∥∥
F

∥∥∥Ma − M̂(t)
a

∥∥∥
F
≥ δ

12

∥∥Ms∗i
−Ma

∥∥2

F

)
(41)
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We need to bound three terms on RHS of eq. (41) separately. It follows that for
some absolute constant C14 > 0:∥∥∥Ms∗i

− M̂
(t)
s∗i

∥∥∥2

F
≤ C14

(
γ2K2

α2n2
∆2h2

s∗i
(ŝ(t−1), s∗) +

K2(d+ n)hs∗i (ŝ(t−1), s∗)

α2n2
+
dK

αn

)
Then for the first term on RHS of eq. (41), there exists some absolute constants
C15 > 0 :
n∑
i=1

∑
a∈[K]\{s∗i }

I
(
ŝ

(t)
i = a

)∥∥Ma −Ms∗i

∥∥2

F
I
(

1

2

∥∥∥Ms∗i
− M̂

(t)
s∗i

∥∥∥2

F
≥ δ

12

∥∥Ms∗i
−Ma

∥∥2

F

)

≤ C15

n∑
i=1

I
(
ŝ

(t)
i 6= s∗i

)
max

a∈[K]\{s∗i }

γ4K4

α4n4 ∆4h4
s∗i

(ŝ(t−1), s∗) +
K4(d2+n2)h2

s∗
i

(̂s(t−1),s∗)

α4n4 + d2K2

α2n2

δ2
∥∥Ms∗i

−Ma

∥∥2

F

≤ C15 · h(ŝ(t), s∗) ·
maxb∈[K]

(
γ4K4

α4n4 ∆4h4
b(ŝ

(t−1), s∗) +
K4(d2+n2)h2

b (̂s
(t−1),s∗)

α4n4 + d2K2

α2n2

)
δ2∆2

≤ 1

6
`(ŝ(t), s∗)

where in the last inequality we’ve used ∆2 � τK/(αn), ∆2 � α−1K (d/n+ 1)
and `(ŝ(t−1), s∗) ≤ τ . Similarly, we can bound the second term on RHS of eq.
(41) as

n∑
i=1

∑
a∈[K]\{s∗i }

I
(
ŝ

(t)
i = a

)∥∥Ma −Ms∗i

∥∥2

F
I
(

1

2

∥∥∥Ma − M̂(t)
a

∥∥∥2

F
≥ δ

12

∥∥Ms∗i
−Ma

∥∥2

F

)
≤ 1

24
`(ŝ(t), s∗)

It remains to consider the last term on RHS of eq. (41), which has the following
bound for some absolute constant C16 > 0:∥∥Ms∗i

−Ma

∥∥
F

∥∥∥Ma − M̂(t)
a

∥∥∥
F

≤C16

∥∥Ms∗i
−Ma

∥∥
F

γK
αn

∆hs∗i (ŝ(t−1), s∗) +
K
√

(d+ n)hs∗i (ŝ(t−1), s∗)

αn
+

√
dK

αn


Hence we can obtain that for some absolute constant C17 > 0:
n∑
i=1

∑
a∈[K]\{s∗i }

I
(
ŝ

(t)
i = a

)∥∥Ma −Ms∗i

∥∥2

F
I
(∥∥Ms∗i

−Ma

∥∥
F

∥∥∥Ma − M̂(t)
a

∥∥∥
F
≥ δ

12

∥∥Ms∗i
−Ma

∥∥2

F

)

≤ C17

n∑
i=1

I
(
ŝ

(t)
i 6= s∗i

)
max

a∈[K]\{s∗i }

γ2K2

α2n2 ∆2h2
s∗i

(ŝ(t−1), s∗) +
K2(d+n)hs∗

i
(̂s(t−1),s∗)

α2n2 + dK
αn

δ2

≤ C17 · h(ŝ(t), s∗) ·
maxb∈[K]

(
γ2K2

α2n2 ∆2h2
b(ŝ

(t−1), s∗) + K2(d+n)hb (̂s
(t−1),s∗)

α2n2 + dK
αn

)
δ2

≤ 1

6
`(ŝ(t), s∗)



/Optimal Clustering of LrMM 61

provided that ∆2 � τK/(αn), ∆2 � α−1K (d/n+ 1) and `(ŝ(t−1), s∗) ≤ τ .

Step 3: Obtaining contraction property. Collecting all pieces, we arrive
at with probability at least 1− exp(−∆):

`(ŝ(t), s∗) ≤ n exp

(
−(1− o(1))

∆2

8

)
+

1

4
`(s∗, ŝ(t−1)) +

1

2
`(s∗, ŝ(t))

as αn/(Kκ2
0r

2) → ∞. As a consequence, we obtain the contraction property
(23).
To finish the proof, we use a mathematical induction step, which essentially re-
quires the initialization conditions (10) and (22) hold. Notice that `(s∗, ŝ(t)) ≤
2n exp

(
−(1− o(1))∆2

8

)
+ `(s∗, ŝ(t−1))/2 ≤ τ as long as ∆2 � log(τ/n). More-

over, we also have

h(s∗, ŝ(t)) ≤ ∆−2`(s∗, ŝ(t)) ≤ τ

∆2
= o

(
n

K
· α

κ0 ∨ γ2

)
Hence the condition `(s∗, ŝ(t)) ≤ τ and h(s∗, ŝ(t)) ≤ (κ0 ∨ γ2)−1αn/8K hold for
all t ≥ 0 and hence (23) holds for all t ≥ 1. Using the relation h(s∗, ŝ(t)) ≤
∆−2`(s∗, ŝ(t)) and the condition ∆2 � κ2

0Kτ/(αn), with probability greater
than 1− exp(−∆), for each t ≥ 0 we have that

n−1 · h(ŝ(t), s) ≤ exp

(
−(1− o(1))

∆2

8

)
+ 2−t

The proof is completed by applying a union bound accounting for the events
Q1,Q2,Q3.

10.2. Proof of Theorem 3.3

We first characterize the error of Û and V̂ and without loss of generality, we
only consider Û. Following the same argument in the proof of Theorem 1 in [64],
one can obtain that there exists some absolute constant c0, C0 > 0 such that if
σmin(M1(M)) ≥ C0(drU)1/2n1/4, then with probability at least 1−exp(−c0(n∧
d)): ∥∥∥sin Θ(Û,U∗)

∥∥∥
F
≤
C(drU)1/2

[
σmin(M1(M)) + (dn)1/2

]
σ2

min(M1(M))
≤ 1

4
√

2

We need the following lemma to relate σmin(M1(M)) to λ.

Lemma 10.5. For j ∈ {1, 2}, σmin(Mj(M)) ≥ κ−1
j (Kr)−1/2

√
nλ

By Lemma 10.5 and rU ≤ Kr, it suffices to recast the condition as λ ≥
C0κ1rKd

1/2n−1/4. Combined with the bound for V̂, we conclude that if λ ≥
C0(κ1 ∨ κ2)rKd1/2n−1/4, then with probability at least 1− exp(−c0(n ∧ d)):

max
{∥∥∥sin Θ(Û,U∗)

∥∥∥
F
,
∥∥∥sin Θ(V̂,V∗)

∥∥∥
F

}
≤ 1

4
√

2
(42)
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Denote the above event by Q0,1 and we proceed by conditioning on Q0,1.

We then analyze the performance of spectral clustering based on Ĝ = X ×1

ÛÛ> ×2 V̂V̂>. Our proof is based on the proof for Lemma 4.2 in [43] with

slight modification. Let G := M×1 ÛÛ> ×2 V̂V̂> denote the signal part of Ĝ
(also G := M3(G)) and M = [vec(M̂

ŝ
(0)
1

), · · · , vec(M̂
ŝ
(0)
n

)]> ∈ Rn×d1d2 denote

the corresponding k-means solution. We claim the following lemma, whose proof
is deferred to Section 11.

Lemma 10.6. Suppose Q0,1 holds. Then we have the following facts:

(I) M, the k-means solution, is close G, i.e., there exists some absolute con-
stants c0, C0 > 0 such that with probability at least 1− exp(−c0d):

‖M−G‖F ≤ C0

√
K
(√

dKr + n
)

(II) The rows of G belonging to different clusters is well-separated, i.e.∥∥G ×3 (e>i − e>j )
∥∥

F
≥ ∆

2

for any i, j ∈ [n], s∗i 6= s∗j .

We proceed by conditioning on Q0,2 := {(II) holds}. Define the following set

S =

{
i ∈ [n] : ‖[M]i· − [G]i·‖ ≥

∆

4

}
Then by construction we have

|S| ≤
‖M−G‖2F

(∆/4)2
≤ αn

2K

where the last inequality is due to the condition ∆2 ≥ 32C2
0α
−1K2 (dKr/n+ 1).

We claim that all indices in Sc are correctly clustered. To see this, let

Nk = {i ∈ [n] : s∗i = k, i ∈ Sc}

The following two facts hold:

• For each k ∈ [K], |Nk| ≥ n∗k − |S| ≥ αn/(2K) > 0
• For each pair a, b ∈ [K], a 6= b, there cannot exist some i ∈ Na and j ∈ Nb

such that ŝ
(0)
i = ŝ

(0)
j . Otherwise we have M̂

ŝ
(0)
i

= M̂
ŝ
(0)
j

and it follows that

‖[G]i· − [G]j·‖ ≤ ‖[G]i· − [M]i·‖+ ‖[M]i· − [M]j·‖+ ‖[M]j· − [G]j·‖

<
∆

2

which contradicts (II).
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The above two facts imply that sets {ŝ(0)
i : i ∈ Nk} are disjoint for all k ∈ [K].

Therefore, there exists a permutation π such that
∑n
i=1 I

(
ŝ

(0)
i 6= π(s∗i )

)
= 0,

i.e., indices in Sc are correctly clustered. As a consequence,

n−1 · hc(ŝ(0), s∗) ≤ n−1 · |S| ≤ 16C2
0K

∆2

(
dKr

n
+ 1

)
The proof is completed by taking union bound over Qc0 := Qc0,1

⋃
Qc0,2.

10.3. Proof of Theorem 3.4

We essentially follow a similar argument of [17]. Without loss of generality we
assume ‖M1 −M2‖F = ∆. Consider the s∗ ∈ [K]n such that n∗1 ≤ n∗2 ≤
· · · ≤ n∗K and n∗1 = n∗2 = bαn/Kc. For every k ∈ [K], we can choose a subset

Nk ⊂ {i ∈ [n] : s∗i = k} with cardinality dn∗k − αn
4K2 e. And let N =

⋃K
k=1 Nk

denote the collection of samples in Nk’s. Define the following parameter space
for s:

S∗ = {s ∈ [K]n : si = s∗i for i ∈ N}
For any two s, s′ ∈ S∗ such that s 6= s′, we have

1

n

n∑
i=1

I(si 6= s′i) ≤
K

n

αn

4K2
=

α

4K

Meanwhile, for any permutation π 6= Id from [K] to [K], we have

1

n

n∑
i=1

I(π(si) 6= s′i) ≥
K

n

(αn
K
− αn

4K2

)
≥ 3α

4K

Therefore, we conclude that hc(s, s
′) = h(s, s′) =

∑n
i=1 I(si 6= s′i) for any s, s′ ∈

S∗. Define the parameter space

Ω(d1, d2, n,K, α) =
{

({Mk}Kk=1, s) : Mk ∈ Rd1×d2 , rank(Mk) = rk,∀k ∈ [K], s ∈ [K]n,

min
k∈[K]

|{i ∈ [n] : si = k}| ≥ αn/K,min
a6=b
‖Ma −Mb‖F ≥ ∆

}
and

Ω0(d1, d2, n,K, α) =
{

({Mk}Kk=1, s) : Mk ∈ Rd1×d2 , rank(Mk) = rk,∀k ∈ [K], s ∈ S∗,

min
k∈[K]

|{i ∈ [n] : si = k}| ≥ αn/K,min
a 6=b
‖Ma −Mb‖F ≥ ∆

}
Since Ω0 ⊂ Ω, we have

inf
ŝ

sup
Ω

Ehc(ŝ, s) ≥ inf
ŝ

sup
Ω0

Ehc(ŝ, s) ≥ inf
ŝ

1

|S∗|
∑
s∈S∗

Ehc(ŝ, s) ≥
∑
i∈Nc

inf
ŝi

1

|S∗|
∑
s∈S∗

P(ŝi 6= si)

(43)
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where we consider a uniform prior on S∗ and hence the second inequality holds as
minimax risk is lower bounded by Bayes risk, and the last inequality holds since
the infimum can be taken over all ŝ such that ŝi = s∗i for i ∈ N. Then it suffices
to consider inf ŝi

1
|S∗|

∑
s∈S∗ P(ŝi 6= si) for i ∈ Nc. Without loss generality, we

assume 1 ∈ Nc and for any k ∈ [K] we denote S∗k = {s ∈ S∗ : s1 = k}. It’s

obvious that S∗ =
⋃K
k=1 S∗k and S∗a

⋂
S∗b = φ for a 6= b. In addition, by the

definition of such partition, for any a 6= b ∈ [K] and s ∈ S∗a, there exists a
unique s′ ∈ S∗b such that si = s′i for all i 6= 1, which implies that |S∗a| = |S∗b | for
all a, b ∈ [K]. Then we have

inf
ŝ1

1

|S∗|
∑
s∈S∗

P(ŝ1 6= s1) = inf
ŝ1

1

|S∗|
1

K − 1

∑
a<b

∑
s∈S∗a

P(ŝ1 6= a) +
∑
s∈S∗b

P(ŝ1 6= b)


≥ 1

K(K − 1)

∑
a<b

inf
ŝ1

 1

|S∗a|
∑
s∈S∗a

P(ŝ1 6= a) +
1

|S∗b |
∑
s∈S∗b

P(ŝ1 6= b)


≥ 1

K(K − 1)
inf
ŝ1

 1

|S∗1 |
∑
s∈S∗1

P(ŝ1 6= 1) +
1

|S∗2 |
∑
s∈S∗2

P(ŝ1 6= 2)


≥ 1

K(K − 1)

1

|S∗−1|
∑

s−1∈S∗−1

inf
ŝ1

(
Ps=(1,s−1)(ŝ1 6= 1) + Ps=(2,s−1)(ŝ1 6= 2)

)
≥ 1

K(K − 1)
inf
ŝ1

(
P
H

(1)
0

(ŝ1 = 2) + P
H

(1)
1

(ŝ1 = 1)
)

(44)

where S∗−1 is the collection of the subvectors in S∗ excluding the first coordinate,
and we define a simple hypothesis testing for each i ∈ [n]:

H
(i)
0 : si = 1 vs. H

(i)
1 : si = 2

Hence in (44), we have the form of Type-I error + Type-II error of the above test.
Notice that |{i ∈ [n] : s∗i = k}\Nk| ≥ bαn/(4K2)c and hence |Nc| ≥ c0αn/K
for some constant c0 > 0. Combining this with (43), (44), we proceed that

inf
ŝ

sup
Ω

Ehc(ŝ, s) ≥ c0
αn

K3

1

|Nc|
∑
i∈Nc

inf
ŝi

(
P
H

(l)
0

(ŝi = 2) + P
H

(l)
1

(ŝi = 1)
)

According to the Neyman-Pearson lemma, for each i ∈ [n], the optimal test of

H
(l)
0 vs. H

(l)
1 is given by the likelihood ratio test with threshold 1. Let p0(Xi)

and p1(Xi) denote the likelihood of Xi under H0 and H1, respectively. Then
p1(Xi)
p0(Xi)

=
exp(‖Xi−M1‖2F/2)

exp(‖Xi−M2‖2F/2)
and hence the infimum is achieved by ŝi = arg mink∈{1,2} ‖Xi −Mk‖2F.
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Therefore,

inf
ŝi

(
1

2
P
H

(l)
0

(ŝi = 2) +
1

2
P
H

(l)
1

(ŝi = 1)

)
=

1

2

(
P
(
‖M1 + Ei −M2‖2F ≤ ‖Ei‖2F

)
+ P

(
‖M2 + Ei −M1‖2F ≤ ‖Ei‖2F

))
=

1

2

(
P
(

1

2
‖M1 −M2‖2F ≤ 〈M2 −M1,Ei〉

)
+ P

(
1

2
‖M1 −M2‖2F ≤ 〈M1 −M2,Ei〉

))
Notice that 〈M2 −M1,Ei〉

d
= 〈M1 −M2,Ei〉

d
= N (0, σ2 ‖M1 −M2‖2F), we can

proceed as

inf
ŝi

(
1

2
P
H

(l)
0

(ŝi = 2) +
1

2
P
H

(l)
1

(ŝi = 1)

)
≥ σ√

2π ‖M1 −M2‖F
exp

(
−
‖M1 −M2‖2F

8σ2

)

where the inequality holds as ‖M1 −M2‖F /σ ≥ 1. Hence we conclude that

inf
ŝ

sup
Ω

En−1 · hc(ŝ, s) ≥ exp

(
− ∆2

8σ2
− C log

∆K

ασ

)
= exp

(
−(1 + o(1))

∆2

8σ2

)
provided that ∆2

σ2 log(K/α) →∞.

10.4. Proof of Theorem 4.4

Suppose we are given the data {Xi}ni=1 generated by eq:rank-one-model with

((1−ε)M, s∗) ∈ Ω̃
λ

(n)
∗

for any ε ∈ (0, 1]. We utilize the sample splitting trick, sim-

ilar to that in Theorem 2.4 in [42], to generate two independent copies {X(1)
i }ni=1

and {X(2)
i }ni=1 by

X
(1)
i =

Xi + ε−1Ẽi√
1 + ε−2

, X
(2)
i =

Xi − εẼi√
1 + ε2

for i = 1, · · · , n where {Ẽi}ni=1 are Gaussian noise matrices independent of

{Ei}ni=1. As a consequence, we have X
(1)
i =

s∗iM√
1+ε−2

+ E
(1)
i and X

(2)
i =

s∗iM√
1+ε2

+

E
(2)
i with E

(1)
i = Ei+ε

−1Ẽi√
1+ε−2

and E
(2)
i = Ei−εẼi√

1+ε2
. Due to the property of Gaussian,

{E(1)
i }ni=1 and {E(2)

i }ni=1 are independent. We define the following test statistic:

Tn =

∥∥∥∥∥
n∑
i=1

ŝiX
(1)
i

n

∥∥∥∥∥
where (ŝ1, · · · , ŝn) = ŝcomp(X (2)) with X (2) being the data tensor by stacking{

X
(2)
i

}n
i=1

. By construction, {ŝi}ni=1 is independent of
{

E
(1)
i

}n
i=1

and hence
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∑n
i=1

ŝiE
(1)
i

n

d
=
∑n
i=1

E
(1)
i

n . Under H0, with probability at least 1− exp(−d):

Tn =

∥∥∥∥∥
n∑
i=1

ŝiX
(1)
i

n

∥∥∥∥∥ ≤ C0

2

√
d

n

for some absolute constant C0 > 0. Under H1, we have ((1 + ε2)−1/2M, s∗) ∈
Ω̃
λ

(n)
∗

since (1− ε) ≤ (1 + ε2)−1/2. By (16) we have that with probability greater

than 1− ζn:
n−1 · hc(ŝcomp, s

∗) ≤ δn (45)

Without loss of generality we assume hc(ŝcomp, s
∗) = h(ŝcomp, s

∗). Hence we can
obtain with probability at least 1− ζn − exp(−d):

Tn ≥

∥∥∥∥∥
n∑
i=1

ŝis
∗
i

n
√

1 + ε−2
M

∥∥∥∥∥−
∥∥∥∥∥
n∑
i=1

ŝiE
(1)
i

n

∥∥∥∥∥
≥ λ

(n)
∗ (1− 2n−1h(ŝcomp, s

∗))√
1 + ε−2

− C0

2

√
d

n

>
C0

2

√
d

n

where we’ve used (45) and λ
(n)
∗ > C0(1− 2δn)−1

√
1 + ε−2d1/2n−1/2 in the last

inequality. Then the test φn can be defined as

φn(X ) =

{
1 if Tn > C0

√
d
n ,

0 otherwise.

It turns out that

EQn [φn(X )] + sup
((1−ε)M,s∗)∈Ω̃

λ
(n)
∗

E(M,s∗)[1− φn(X )] ≤ ζn + exp(−d)

Notice that computing Tn requires only poly(d, n) and the proof is completed
by setting n, d→∞.

10.5. Proof of Theorem 5.2

Theorem 5.2 can be obtained by modifying the proofs of Theorem 3.3 and
Theorem 3.1, and hence we only sketch the necessary modifications here. For
notational simplicity, we denote the smallest non-trivial singular value of M1 as
λ1 and the condition number of M1 as κ0. We use C and c to represent generic
absolute constants, whose actual values may vary in different formulas.
We consider the spectral initialization in Algorithm 3. Denote the following
decomposition of tensor M = M1 + M2, where for k ∈ [2], the i-th slice of
Mk is defined as [Mk]··i = I(s∗i = k)Mk. It turns out that U1 is the leading-r1
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left singular vectors of M1(M1) and V1 is the leading-r1 left singular vectors of

M2(M1). We first show that Û1 and V̂1 are close to U1 and V1, respectively.

Without loss of generality, we only consider Û1. A key observation is that Û1

is also the leading-r1 left eigenvectors M1(X )M>
1 (X ). Then write

M1(X )M>
1 (X ) = M1(M)M>

1 (M) + M1(M)M>
1 (E) + M1(E)M>

1 (M) + M1(E)M>
1 (E)

= M1(M1)M>
1 (M1) + M1(M1)M>

1 (M2) + M1(M2)M>
1 (M1)

+ M1(M2)M>
1 (M2) + [M1(M1) + M1(M2)] M>

1 (E)

+ M1(E) [M1(M1) + M1(M2)]
>

+ M1(E)M>
1 (E) (46)

We are going to bound each term on RHS of eq. (46). The first term M1(M1)M>
1 (M1)

is the signal part and we have

σmin(M1(M1)M>
1 (M1)) = σr1(M1(M1)M>

1 (M1)) ≥ n∗1λ2
1

For the 2nd, 3rd and 4th term of (46), we can have∥∥M1(M1)M>
1 (M2) + M1(M2)M>

1 (M1)
∥∥ ≤ 2κ0

√
n∗1n

∗
2λ1 ‖M2‖∥∥M1(M2)M>

1 (M2)
∥∥ ≤ n∗2 ‖M2‖2

The 5th and 6th term of eq. (46) can be together bounded as∥∥∥[M1(M1) + M1(M2)] M>
1 (E) + M1(E) [M1(M1) + M1(M2)]

>
∥∥∥ ≤ C (κ0

√
n∗1λ1 +

√
n∗2 ‖M2‖

)√
d

with probability at least 1 − exp(−cd), for some absolute constant c, C > 0.
Lastly, we notice that E

(
M1(E)M>

1 (E)
)

= nd2Id1
, then by [33], with probabil-

ity at least 1− exp(−d) we have∥∥M1(E)M>
1 (E)− nd2Id1

∥∥ ≤ C√nd
Note that n∗2/n

∗
1 ≤ 2(1 − α/2)/α ≤ 2α−1. Collecting all pieces above, if λ1 ≥

κ0α
−1/2 ‖M2‖ and

λ1 ≥ C

(
κ0α

−1/2

√
d

n
+ α−1/2 d

1/2

n1/4

)
for some large constant C > 0, which is satisfied by Assumption 5.1, then

with probability greater than 1 − exp(−cd) we can have
∥∥∥Û1Û

>
1 −U1U

>
1

∥∥∥ ≤
1/4. Using same analysis on V̂1, we can conclude with probability at least
1− exp(−cd):

max
{∥∥∥Û1Û

>
1 −U1U

>
1

∥∥∥ ,∥∥∥V̂1V̂
>
1 −V1V

>
1

∥∥∥} ≤ 1

6
(47)

Define Ĝ = X ×1 Û1Û
>
1 ×2 V̂1V̂

>
1 , G := M ×1 Û1Û

>
1 ×2 V̂1V̂

>
1 (also G :=

M3(G)) and M := [vec(M̂
ŝ
(0)
1

), · · · , vec(M̂
ŝ
(0)
n

)]> ∈ Rn×d1d2 . We can have the

following lemma, which is an analogue to Lemma 10.6.
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Lemma 10.7. Suppose (47) holds. Then we have the following facts:

(I) M, the k-means solution, is close G, i.e., there exists some absolute con-
stants c0, C0 > 0 such that with probability at least 1− exp(−c0d):

‖M−G‖F ≤ C0

(√
dr1 + n

)
(II) The rows of G belonging to different clusters is well-separated, i.e.∥∥G ×3 (e>i − e>j )

∥∥
F
≥ ∆

2

for any i, j ∈ [n], s∗i 6= s∗j .

Following the almost identical argument in the proof of Theorem 3.3 but re-
placing Û with Û1 and V̂ with V̂1, then under Assumption 5.1, with probability
at least 1− exp(−c(n ∧ d)) we have

n−1 · hc(ŝ(0), s∗) ≤ C

∆2

(
dr1

n
+ 1

)
= o

(
α

κ0

)
(48)

if ∆2 � κ0α
−1 (dr1/n+ 1). Note that Assumption 5.1 and the condition in

Theorem 5.2 already imply that

∆2 ≥ Cα−1

(
κ2

0

dr1

n
+
dr1√
n

)
Then if n/κ2

0 → ∞ and α∆2/κ0 → ∞, the condition ∆2 � κ0α
−1 (dr1/n+ 1)

automatically holds and we have the following holds with probability at least
1− exp(−c(n ∧ d)):

`(ŝ(0), s∗) ≤ ∆2hc(ŝ
(0), s∗) = o

(
αn∆2

κ0

)
which is an analogue to (22).
We then consider the iterative convergence of Algorithm 3. Following the same
argument of Step 2 in the proof of Theorem 3.1 line by line and adopting the
same notation therein, we have the following inequality:

`(ŝ(t), s∗) ≤ ξerr + β1(s∗, ŝ(t)) + β2(s∗, ŝ(t))

We can bound ξerr the same as Step 2.1 in the proof of Theorem 3.1. To bound
β1(s∗, ŝ(t)), it turns out that, by symmetry, we only need to bound

β1,2(s∗, ŝ(t)) :=

n∑
i=1

‖M1 −M2‖2F I
(
ŝ

(t)
i 6= 1

)
· I
(〈

Ei, M̂
(t)
1 −M1

〉
≥ δ

8
‖M2 −M1‖2F

)

+

n∑
i=1

‖M2 −M1‖2F I
(
ŝ

(t)
i 6= 2

)
· I
(〈

Ei, M̂
(t)
2 −M2

〉
≥ δ

8
‖M1 −M2‖2F

)
(49)
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The argument in Step 2.2 in the proof of Theorem 3.1 can be directly applied

to the analysis of M̂1 −M1, i.e., the first term on RHS of eq. (49), whereas it

fails for M̂2−M2 since σmin(M2) can be arbitrarily close to 0 and Lemma 10.3
no longer holds. Observe that

M̂
(t)
2 = Û2Û

>
2

(
1

n
(t−1)
2

n∑
i=1

I
(
ŝ

(t−1)
i = 2

)
Ms∗i

+ Ē
(t−1)
2

)
V̂2V̂

>
2

= Û2Û
>
2

[
M2 +

1

n
(t−1)
a

n∑
i=1

I
(
ŝ

(t−1)
i = 2

)
(Ms∗i

−M2) + Ē∗2 + (Ē
(t−1)
2 − Ē∗2)

]
V̂2V̂

>
2

= Û2Û
>
2

(
M2 + Ē∗2 + ∆

(t−1)
M + ∆

(t−1)
E

)
V̂2V̂

>
2

where

∆
(t−1)
M =

1

n
(t−1)
2

n∑
i=1

I
(
ŝ

(t−1)
i = 2

)
(Ms∗i

−M2) and ∆
(t−1)
E = Ē

(t−1)
2 − Ē∗2

Notice that since h(ŝ(t−1), s∗) satisfies (48), we have n
(t−1)
2 ≥ 7αn/16. Lemma

10.2 implies that under event Q1 ∩Q2, we have∥∥∥M̂(t)
2

∥∥∥ ≤ (1 + c) ‖M2‖+ C

(
α−1/2

√
d

n
+ α−1

√
h(ŝ(t−1), s∗)

n

)

≤ c

(
α−1/2

√
d

n
+ κ−1

0

d1/2

n1/4
+ α−1/2κ

−1/2
0

)
where the second inequality is due to Assumption 5.1. On the other hand, under
event Q1 ∩Q2 and Assumption 5.1 we also have∥∥∥M̂(t)

1

∥∥∥ ≥ (1− c) ‖M1‖ − c

(
α−1/2

√
d

n
+ α−1/2κ

−1/2
0

)
>
∥∥∥M̂(t)

2

∥∥∥
By taking a union bound overQ1∩Q2, we conclude that with probability at least

1− exp(−cd) we have
∥∥∥M̂(t)

2

∥∥∥ < ∥∥∥M̂(t)
1

∥∥∥ and hence we set M̂
(t)
2 = 0 afterwards.

Then for the second term on RHS of eq. (49), we have

P
(〈

Ei, M̂
(t)
2 −M2

〉
≥ δ

8
‖M1 −M2‖2F

)
= P

(
〈Ei,−M2〉 ≥

δ

8
‖M1 −M2‖2F

)
≤ exp

(
−
δ2 ‖M1 −M2‖4F

128 ‖M2‖2F

)
≤ exp

(
−c λ2

1r1

‖M2‖2 r2

δ2 ‖M1 −M2‖2F

)
where the last inequality is due to Assumption 5.1. Hence the expecatation can
be bounded as

E
[ n∑
i=1

‖M2 −M1‖2F I
(
ŝ

(t)
i 6= 2

)
· I
(〈

Ei, M̂
(t)
2 −M2

〉
≥ δ

8
‖M1 −M2‖2F

)]
≤ n∆2 exp

[
−cδ2r1r

−1
2 (λ1/ ‖M2‖)2

∆2
]
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By Markov inequality, with probability at least 1−exp
[
−δ
(√

r1/r2λ1/ ‖M2‖
)

∆
]

we get

n∑
i=1

‖M2 −M1‖2F I
(
ŝ

(t)
i 6= 2

)
· I
(〈

Ei, M̂
(t)
2 −M2

〉
≥ δ

8
‖M1 −M2‖2F

)
≤ n · exp

(
−δ(αn/K)1/2∆2

)
≤ n · exp

[
−δ2r1r

−1
2 (λ1/ ‖M2‖)2

∆2
]

which holds as long as δ → 0 sufficiently slowly compared with λ2
1r1r

−1
2 / ‖M2‖2 →

∞.
It remains to consider β2(s∗, ŝ(t)). Observe that

β2(s∗, ŝ(t)) ≤
n∑
i=1

∑
a∈[2]\{s∗i }

I
(
ŝ

(t)
i 6= a

)∥∥Ma −Ms∗i

∥∥2

F
I
(

1

2

∥∥∥Ms∗i
− M̂

(t)
s∗i

∥∥∥2

F
≥ δ

12

∥∥Ms∗i
−Ma

∥∥2

F

)

+

n∑
i=1

∑
a∈[2]\{s∗i }

I
(
ŝ

(t)
i 6= a

)∥∥Ma −Ms∗i

∥∥2

F
I
(

1

2

∥∥∥Ms∗i
− M̂(t)

a

∥∥∥2

F
≥ δ

12

∥∥Ms∗i
−Ma

∥∥2

F

)

+

n∑
i=1

∑
a∈[2]\{s∗i }

I
(
ŝ

(t)
i 6= a

)∥∥Ma −Ms∗i

∥∥2

F
I
(∥∥Ms∗i

−Ma

∥∥
F

∥∥∥Ma − M̂(t)
a

∥∥∥
F
≥ δ

12

∥∥Ms∗i
−Ma

∥∥2

F

)
(50)

The first term on RHS of eq. (50) can be written as

n∑
i=1

∑
a∈[2]\{s∗i }

I
(
ŝ

(t)
i 6= a

)∥∥Ma −Ms∗i

∥∥2

F
I
(

1

2

∥∥∥Ms∗i
− M̂

(t)
s∗i

∥∥∥2

F
≥ δ

12

∥∥Ms∗i
−Ma

∥∥2

F

)

=

n∑
i=1

I
(
ŝ

(t)
i 6= 1

)
‖M1 −M2‖2F I

(
1

2

∥∥∥M2 − M̂
(t)
2

∥∥∥2

F
≥ δ

12
‖M2 −M1‖2F

)

+

n∑
i=1

I
(
ŝ

(t)
i 6= 2

)
‖M2 −M1‖2F I

(
1

2

∥∥∥M1 − M̂
(t)
1

∥∥∥2

F
≥ δ

12
‖M1 −M2‖2F

)
(51)

The second term of (51) can be bounded the same way as that in Step 2.3 of

the proof of Theorem 3.1. Note that
∥∥∥M2 − M̂

(t)
2

∥∥∥2

F
= ‖M2‖2F ≤ r2 ‖M2‖2 =

o(r1λ
2
1) = o

(
‖M1 −M2‖2F

)
and hence the first term of (51) vanishes by setting

δ slowly converging to 0. It suffices to consider the last term on RHS of eq. (50).
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Observe that

n∑
i=1

∑
a∈[2]\{s∗i }

I
(
ŝ

(t)
i 6= a

)∥∥Ma −Ms∗i

∥∥2

F
I
(∥∥Ms∗i

−Ma

∥∥
F

∥∥∥Ma − M̂(t)
a

∥∥∥
F
≥ δ

12

∥∥Ms∗i
−Ma

∥∥2

F

)

=

n∑
i=1

I
(
ŝ

(t)
i 6= 1

)
‖M1 −M2‖2F I

(
‖M2 −M1‖F

∥∥∥M1 − M̂
(t)
1

∥∥∥
F
≥ δ

12
‖M2 −M1‖2F

)

+

n∑
i=1

I
(
ŝ

(t)
i 6= 2

)
‖M2 −M1‖2F I

(
‖M1 −M2‖F

∥∥∥M2 − M̂
(t)
2

∥∥∥
F
≥ δ

12
‖M1 −M2‖2F

)
(52)

The first term of (52) can be bounded the same way as that in Step 2.3 of

the proof of Theorem 3.1, and the second term vanishes as
∥∥∥M2 − M̂

(t)
2

∥∥∥
F

=

‖M2‖F = o (‖M1 −M2‖F).
By following the remaining proofs of Theorem 3.1, we can finish the proof of
Theorem 5.2.

10.6. Proof of Theorem 6.2

The outline of proof is based on the proof of Theorem 3.1, except that some
delicate treatments are necessary when noise are sub-Gaussian.

Step 1: Good initialization. Following the same argument in the proof of
Theorem 3.1 and by condition (17), we obtain the initial clustering error

`(ŝ(0), s∗) ≤ γ2∆2hc(ŝ
(0), s∗) = o

(
αn∆2

(κ0 ∨ γ2)K

)
(53)

which is analogous to (22).

Step 2: Iterative convergence. Similarly, define the following two events:

Q1 :=
⋃
k∈[K]

{∥∥∥∥∑n
i=1 I (s∗i = k) Ei∑n
i=1 I (s∗i = k)

∥∥∥∥ ≤ C
√

d

n∗k

}

and

Q2 :=
⋃
I⊂[n]

{∥∥∥∥∥ 1√
|I|

∑
i∈I

Ei

∥∥∥∥∥ ≤ C(√d+
√
n
)}

where C > 0 is some constant depending only on σsg. Following the same argu-
ment as in the proof Lemma 10.1, we get P(Qc

1∪Qc
2) ≤ exp(−c0d) if d ≥ C0 logK

with some absolute constants c0, C0 > 0.
Thus we obtain

`(ŝ(t), s∗) ≤ ξerr + β1(s∗, ŝ(t)) + β2(s∗, ŝ(t))
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where

ξerr :=

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
I
(〈

Ei,Ma −Ms∗i

〉
≥ 1− δ

2

∥∥Ms∗i
−Ma

∥∥2

F

)
and

β1(s∗, ŝ(t)) :=

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
I
(
ŝ

(t)
i 6= a

)
· I
(〈

Ei,Ms∗i
− M̂

(t)
s∗i

〉
+
〈
Ei, M̂

(t)
a −Ma

〉
≥ δ

4

∥∥Ms∗i
−Ma

∥∥2

F

)
and

β2(s∗, ŝ(t)) :=

n∑
i=1

∑
a∈[K]\{s∗i }

I
(
ŝ

(t)
i 6= a

)∥∥Ma −Ms∗i

∥∥2

F
I
(
R(a; ŝ(t−1)) ≥ δ

4

∥∥Ms∗i
−Ma

∥∥2

F

)

Step 2.1: Bounding ξerr. Suppose Assumption 6.1 holds, n � K, ∆2 �
logK and let δ converge to 0 slowly, we conclude that, with probability at least
1− exp(−∆),

ξerr ≤ n · exp

{
−
(
1− o(1)

)
· ∆2

8σ2
sg

}
Step 2.2: Bounding β1(s∗, ŝ(t)). As in the proof of Theorem 3.1, we write

β1(s∗, ŝ(t)) = β1,1(s∗, ŝ(t)) + β1,2(s∗, ŝ(t))

where we only focus on β1,2(s∗, ŝ(t)) defined as

β1,2(s∗, ŝ(t)) :=

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
I
(
ŝ

(t)
i 6= a

)
·I
(〈

Ei, M̂
(t)
a −Ma

〉
≥ δ

8

∥∥Ms∗i
−Ma

∥∥2

F

)
which can be bounded as

β1,2(s∗, ŝ(t)) ≤
n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,
(
ÛaÛ

>
a −UaU

>
a

)
Ma

〉
≥ δ

32

∥∥Ms∗i
−Ma

∥∥2

F

)

+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,Ma

(
V̂aV̂

>
a −VaV

>
a

)〉
≥ δ

32

∥∥Ms∗i
−Ma

∥∥2

F

)

+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,
(
ÛaÛ

>
a −UaU

>
a

)
Ma

(
V̂aV̂

>
a −VaV

>
a

)〉
≥ δ

32

∥∥Ms∗i
−Ma

∥∥2

F

)

+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei, ÛaÛ
>
a ∆(t−1)V̂aV̂

>
a

〉
≥ δ

32

∥∥Ms∗i
−Ma

∥∥2

F

)
(54)
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Step 2.2.1: Treating the terms of
〈
Ei,
(
ÛaÛ

>
a − UaU

>
a

)
Ma

〉
. Similarly, we

write

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,
(
ÛaÛ

>
a −UaU

>
a

)
Ma

〉
≥ δ

32

∥∥Ms∗i
−Ma

∥∥2

F

)

≤
n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,SUa

M,1(∆(t−1))Ma

〉
≥ δ

96

∥∥Ms∗i
−Ma

∥∥2

F

)

+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,SUa

M,2(∆(t−1))Ma

〉
≥ δ

96

∥∥Ms∗i
−Ma

∥∥2

F

)
(55)

+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I

〈Ei,
∑
k≥3

SUa

M,k(∆(t−1))Ma

〉
≥ δ

96

∥∥Ms∗i
−Ma

∥∥2

F


Again, we bound the first term on RHS of (55) by〈

Ei,SUa

M,1(∆(t−1))Ma

〉
=
〈
Ei,Ua⊥U>a⊥∆(t−1)VaV

>
a

〉
=
〈
U>a⊥EiVa,U

>
a⊥

(
Ē∗a + ∆

(t−1)
M + ∆

(t−1)
E

)
Va

〉
=
〈
U>a⊥EiVa,U

>
a⊥Ē∗aVa

〉
+
〈
Ei,Ua⊥U>a⊥

(
∆

(t−1)
M + ∆

(t−1)
E

)
VaV

>
a

〉
=

1

n∗a
I (s∗i = a)

∥∥U>a⊥EiVa

∥∥2

F
+

〈
U>a⊥EiVa,U

>
a⊥

 1

n∗a

n∑
j 6=i

I
(
s∗j = a

)
Ej

Va

〉

+
〈
Ei,Ua⊥U>a⊥

(
∆

(t−1)
M + ∆

(t−1)
E

)
VaV

>
a

〉
We then bound the first term on RHS of eq. (28) by

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,SUa

M,1(∆(t−1))Ma

〉
≥ δ

96

∥∥Ms∗i
−Ma

∥∥2

F

)

≤
n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(

1

n∗a
I (s∗i = a)

∥∥U>a⊥EiVa

∥∥2

F
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F

)
(56)

+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I

〈U>a⊥EiVa,U
>
a⊥

 1

n∗a

n∑
j 6=i

I
(
s∗j = a

)
Ej

Va

〉
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F


+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,Ua⊥U>a⊥

(
∆

(t−1)
M + ∆

(t−1)
E

)
VaV

>
a

〉
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F

)

We bound the first two terms on RHS of eq. (56) by Markov inequality and
thus their expectation is needed. Note the entries of Ei are i.i.d with zero
mean, unit variance, and sub-Gaussian constant bounded by O(σsg). Clearly,
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‖U>a⊥EiVa‖F ≤ r
1/2
a ‖Ei‖. By the standard concentration property of sub-

Gaussian random matrix (e.g., [55, Theorem 4.4.5]), there exist absolute con-
stants c1, C1 > 0 such that

P
(
‖Ei‖ ≥ C1σsg(d

1/2 + u1/2)
)
≤ e−c1u, ∀u > 0.

Therefore, we get

P
(

1

n∗a
‖U>a⊥EiVa‖2F ≥

δ

288
‖Ms∗i

−Ma‖2F
)
≤ P

(
ra
n∗a
‖Ei‖2 ≥

δ

288
‖Ms∗i

−Ma‖2F
)

≤ exp

(
− c1

δαn

σ2
sgK
· ‖Ms∗i

−Ma‖2F
)

which holds if ∆2 � α−1σ2
sgrdK/n and by setting δ → 0 sufficiently slowly.

The second term in RHS of (56) can be dealt with as in the proof of Theo-
rem 3.1 due to the independence between Ei and

∑
j 6=i Ej . Thus, we get

P
(〈

U>a⊥EiVa, U>a⊥

( n∑
j 6=i

I
(
s∗j = a

)
Ej

)
Va

〉
≥ δn∗a

288
‖Ms∗i

−Ma‖2F
)

≤ 2 exp

(
− c2

δ
√
αn‖Ms∗i

−Ma‖2F
σ2
sg

√
K

)
if ∆2 � α−1σ2

sgrdK/n, αn� K and setting δ → 0 sufficiently slowly. Therefore,
we can bound the expectation of the first two terms on RHS of (56), and by
Markov inequality, we get with probability at least 1−exp

(
−δ(αn/K)1/4∆σ−1

sg

)
that

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(

1

n∗a
I (s∗i = a)

∥∥U>a⊥EiVa

∥∥2

F
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F

)

+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I

〈U>a⊥EiVa,U
>
a⊥

 1

n∗a

n∑
j 6=i

I
(
s∗j = a

)
Ej

Va

〉
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F


≤n · exp

(
− δ(αn/K)1/2∆2σ−2

sg

)
The third term on RHS of (56) can be handled in the same way as in the proof
of Theorem 3.1 since Lemma 10.4 does not rely on Gaussian assumption. Recall
the event Q3 defined after Lemma 10.4. On the event Q3, we get

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,Ua⊥U>a⊥

(
∆

(t−1)
M + ∆

(t−1)
E

)
VaV

>
a

〉
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F

)

≤ 1

16
`(ŝ(t−1), s∗)

as long as ∆2 � α−1σ2
sgK

2r(rdn−1 + 1).
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We then bound the second term on RHS of (55), i.e., the one involving
SUa

M,2(∆(t−1)). Write

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,SUa

M,2(∆(t−1))Ma

〉
≥ δ

96

∥∥Ms∗i
−Ma

∥∥2

F

)

≤
n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,Ua⊥U>a⊥∆(t−1)Va⊥V>a⊥∆(t−1)>UaΣ
−1
a V>a

〉
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F

)

+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,Ua⊥U>a⊥∆(t−1)VaΣ
−1
a U>a ∆(t−1)VaV

>
a

〉
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F

)

+

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,UaΣ
−1
a V>a ∆(t−1)>Ua⊥U>a⊥∆(t−1)VaV

>
a

〉
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F

)
(57)

For the indicator function in the first term on the RHS of eq. (57), we further
have the decomposition

I
(〈

Ei,Ua⊥U>a⊥∆(t−1)Va⊥V>a⊥∆(t−1)>UaΣ
−1
a V>a

〉
≥ δ

288

∥∥Ms∗i
−Ma

∥∥2

F

)
≤I
(〈

Ei,Ua⊥U>a⊥Ē∗aVa⊥V>a⊥Ē∗>a UaΣ
−1
a V>a

〉
≥ δ

1152

∥∥Ms∗i
−Ma

∥∥2

F

)
+I
(〈

Ei,Ua⊥U>a⊥(∆
(t−1)
M + ∆

(t−1)
E )Va⊥V>a⊥Ē∗>a UaΣ

−1
a V>a

〉
≥ δ

1152

∥∥Ms∗i
−Ma

∥∥2

F

)
+I
(〈

Ei,Ua⊥U>a⊥Ē∗aVa⊥V>a⊥(∆
(t−1)
M + ∆

(t−1)
E )>UaΣ

−1
a V>a

〉
≥ δ

1152

∥∥Ms∗i
−Ma

∥∥2

F

)
+I
(〈

Ei,Ua⊥U>a⊥(∆
(t−1)
M + ∆

(t−1)
E )Va⊥V>a⊥(∆

(t−1)
M + ∆

(t−1)
E )>UaΣ

−1
a V>a

〉
≥ δ

1152

∥∥Ms∗i
−Ma

∥∥2

F

)
(58)

Similarly, we bound the expectation of the first term on the RHS of (58). Denote

Ē−i :=
1

n∗a

n∑
j 6=i

I
(
s∗j = a

)
Ej so that Ē∗a = Ē−i +

Ei

n∗a
· I (s∗i = a)
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The first term on RHS of (58) has an expectation bounded by

P
(〈

Ei,Ua⊥U>a⊥Ē∗aVa⊥V>a⊥Ē∗>a UaΣ
−1
a V>a

〉
≥ δ

1152

∥∥Ms∗i
−Ma

∥∥2

F

)
≤P
(〈

Ei,Ua⊥U>a⊥Ē−iVa⊥V>a⊥Ē>−iUaΣ
−1
a V>a

〉
≥ δ

4608

∥∥Ms∗i
−Ma

∥∥2

F

)
+P
(〈

Ei,Ua⊥U>a⊥

(Ei

n∗a
· I (s∗i = a)

)
Va⊥V>a⊥Ē>−iUaΣ

−1
a V>a

〉
≥ δ

4608

∥∥Ms∗i
−Ma

∥∥2

F

)
+P
(〈

Ei,Ua⊥U>a⊥Ē−iVa⊥V>a⊥

(E>i
n∗a
· I (s∗i = a)

)
UaΣ

−1
a V>a

〉
≥ δ

4608

∥∥Ms∗i
−Ma

∥∥2

F

)
+P
(〈

Ei,Ua⊥U>a⊥

(Ei

n∗a
· I (s∗i = a)

)
Va⊥V>a⊥

(E>i
n∗a
· I (s∗i = a)

)
UaΣ

−1
a V>a

〉
≥ δ

4608

∥∥Ms∗i
−Ma

∥∥2

F

)
(59)

Note that the first three terms of eq. (59) can be bounded as in the proof of
Theorem 3.1 due to the independence between Ei and Ē−i after decoupling. We
obtain

P
(〈

Ei,Ua⊥U>a⊥Ē−iVa⊥V>a⊥Ē>−iUaΣ
−1
a V>a

〉
≥ δ

4608

∥∥Ms∗i
−Ma

∥∥2

F

)
+P
(〈

Ei,Ua⊥U>a⊥

(Ei

n∗a
· I (s∗i = a)

)
Va⊥V>a⊥Ē>−iUaΣ

−1
a V>a

〉
≥ δ

4608

∥∥Ms∗i
−Ma

∥∥2

F

)
+P
(〈

Ei,Ua⊥U>a⊥Ē−iVa⊥V>a⊥

(E>i
n∗a
· I (s∗i = a)

)
UaΣ

−1
a V>a

〉
≥ δ

4608

∥∥Ms∗i
−Ma

∥∥2

F

)
≤3 exp

(
− c

δ
∥∥Ms∗i

−Ma

∥∥2

F
αn/K

κ2
0r

2σ2
sg

)
+ 3 exp

(
− c

δ1/2
∥∥Ms∗i

−Ma

∥∥2

F

√
αn/K

σ2
sg

)
where we’ve used λ2 ≥ (1/4)·r−1κ−2

0 maxa,b∈[K],a6=b ‖Ma −Mb‖2F, λ2 ≥ α−1σ2
sgdK/n,

∆2 � α−1σ2
sgrdK/n, αn/K � κ2

0r
2 and set δ → 0 sufficiently slowly. The last

term of eq. (59) can be handled as

P
(〈

Ei,Ua⊥U>a⊥

(Ei

n∗a
· I (s∗i = a)

)
Va⊥V>a⊥

(E>i
n∗a
· I (s∗i = a)

)
UaΣ

−1
a V>a

〉
≥ δ

4608

∥∥Ms∗i
−Ma

∥∥2

F

)
(a)

≤P
(

r

(n∗a)3/2
σ3
sgd+

κ0r
3/2

(n∗a)3/2
δ3
∥∥Ms∗i

−Ma

∥∥2

F
≥ cδ

∥∥Ms∗i
−Ma

∥∥2

F

)
+ exp

(
− c

δ2
∥∥Ms∗i

−Ma

∥∥2

F
(αn)1/3

σ2
sgK

1/3

)
(b)
= exp

(
− c

δ2
∥∥Ms∗i

−Ma

∥∥2

F
(αn)1/3

σ2
sgK

1/3

)
where (a) holds if λ2 ≥ (1/4)·r−1κ−2

0 maxa,b∈[K],a 6=b ‖Ma −Mb‖2F and (b) holds

provided that λ ≥ α−1/2σsg
√
dK/n ∆2 � α−1σ2

sgrdK/n, αn/K ≥ κ
2/3
0 r and

by setting δ → 0 sufficiently slowly. Therefore, by Markov inequality, we get with
probability at least 1−exp

(
−δ2(αn/K)1/6∆σ−1

sg

)
−exp

(
−δ(κ0r)

−1(αn/K)1/2∆σ−1
sg

)
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that

n∑
i=1

∑
a∈[K]\{s∗i }

∥∥Ma −Ms∗i

∥∥2

F
· I
(〈

Ei,Ua⊥U>a⊥Ē∗aVa⊥V>a⊥Ē∗>a UaΣ
−1
a V>a

〉
≥ δ

1152

∥∥Ms∗i
−Ma

∥∥2

F

)
≤n · exp

(
− δ2(αn/K)1/3∆2σ−2

sg

)
+ exp

(
− δ(κ0r)

−2(αn/K)∆2σ−2
sg

)
The remaining three terms on RHS of (58) can be handled in the same way as
(34) which does not rely on Gaussian assumption.
The proof for the last two terms on RHS of eq. (57) the last term on RHS of
eq. (55) remains untouched as the proof of Theorem 3.1 and hence omitted.
Finally, we can mimic the proof of Theorem 3.1 line by line starting from Step
2.2.2 till the end, which completes the proof of Theorem 6.2.

11. Proof of Technical Lemmas

11.1. Proof of Lemma 3.2

By definition we have that

U>U =


Ir1 U>1 U2 · · · U>1 UK

U>2 U1 Ir2 · · · U>2 UK

...
...

. . .
...

U>KU1 U>KU2 · · · IrK


and W>W = diag(n∗1, · · · , n∗K). Hence we have

W>W ⊗V>V =


n∗1U>U 0 · · · 0

0 n∗2U>U · · · 0
...

...
. . .

...
0 0 · · · n∗KU>U


Simple calculations give that

M1(M)M>
1 (M) = UM1(S)(W>W ⊗V>V)M>

1 (S)U>

= U · diag(n∗1Σ2
1, · · · , n∗KΣ2

K) ·U>

As a result, we obtain

σ1(M1(M)M>
1 (M)) ≤ σ2

1(U) · max
1≤k≤K

n∗kσ
2
max(Σk)

σrU(M1(M)M>
1 (M)) ≥ σ2

rU(U) · min
1≤k≤K

n∗kσ
2
min(Σk)

Hence we conclude that

κ1 =

√
σ1(M1(M)M>

1 (M))

σrU(M1(M)M>
1 (M))

≤ κ0κ(U) ·

√
n∗max

n∗min
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Similarly we can prove that M2(M)M>
2 (M) = V·diag(n∗1Σ2

1, · · · , n∗KΣ2
K)·V>

and κ1 ≤ κ0κ(U) · (n∗max/n
∗
min)

1/2.
If rU = rV = r1, by min-max principle for singular values we have

σmin(U) = σr1(U) = max
S⊂Rn,dim(S)=r1

min
x∈S,‖x‖=1

∥∥∥∥∥∥∥
U>1 x

...
U>Kx


∥∥∥∥∥∥∥ ≥ max

S⊂Rn,dim(S)=r1
min

x∈S,‖x‖=1

∥∥U>1 x∥∥ = σmin(U1) = 1

and

σmax(U) = max
x∈Rn,‖x‖=1

∥∥∥∥∥∥∥
U>1 x

...
U>Kx


∥∥∥∥∥∥∥ ≤

√√√√ K∑
k=1

max
x∈Rn,‖x‖=1

∥∥U>k x∥∥ =
√
K

Therefore, we have κ(U) ≤ K1/2 and similarly κ(V) ≤ K1/2, from which we
can conclude that max{κ1, κ2} ≤ κ0(K2/α)1/2.
If rU = rV = r̊ and Uk’s are mutually orthogonal, then U,V has orthonormal
columns and κ(U) = κ(V) = 1. Hence we have max{κ1, κ2} ≤ κ0(K/α)1/2.

11.2. Proof of Lemma 10.1

Note that for fixed k ∈ [K], we have
∑n
i=1 I(s∗i=k)Ei∑n
i=1 I(s∗i=k)

has i.i.d. sub-gaussian entries

with mean zero and variance (n∗k)−1. By random matrix theory there exists some
absolute constants c, C > 0 such that

P

(∥∥∥∥∑n
i=1 I (s∗i = k) Ei∑n
i=1 I (s∗i = k)

∥∥∥∥ ≥ C
√

d

n∗k

)
≤ exp(−cd)

Applying a union bound gives

P(Qc1) = P

(
K⋃
k=1

{∥∥∥∥∑n
i=1 I (s∗i = k) Ei∑n
i=1 I (s∗i = k)

∥∥∥∥ ≥ C
√

d

n∗k

})
≤ K exp(−cd) ≤ exp(−c0d)

for some absolute constant c0 > 0, provided that d & logK. To prove the tail
bound for Q2, consider fixed set I ⊆ [n], we have for any t > 0:

P

(∥∥∥∥∥ 1√
|I|

∑
i∈I

Ei

∥∥∥∥∥ ≤ C (√d+ t
))
≤ 2 exp(−t2)

Applying a union bound gives

P(Qc2) = P

 ⋃
I⊆[n]

{∥∥∥∥∥ 1√
|I|

∑
i∈I

Ei

∥∥∥∥∥ ≤ C (√d+ t
)} ≤ 2 exp(−t2 + n)

By choosing t = C
√
n we obtain the desired result.
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11.3. Proof of Lemma 10.2

By definition,
∥∥∥∆

(t−1)
M

∥∥∥ can be bounded by

∥∥∥∆
(t−1)
M

∥∥∥ =

∥∥∥∥∥ 1

n
(t−1)
a

n∑
i=1

I
(
ŝ

(t−1)
i = a

)
(Ms∗i

−Ma)

∥∥∥∥∥
=

∥∥∥∥∥ 1

n
(t−1)
a

n∑
i=1

I
(
ŝ

(t−1)
i = a, s∗i 6= a

)
(Ms∗i

−Ma)

∥∥∥∥∥
≤ 8K

7αn

n∑
i=1

I
(
ŝ

(t−1)
i = a, s∗i 6= a

)∥∥Ms∗i
−Ma

∥∥
≤ 16κ0K

7αn
· λ · ha(ŝ(t−1), s∗)

where we’ve used ha(ŝ(t−1), s∗) ≤
∑
a∈[K] ha(ŝ(t−1), s∗) = h(ŝ(t−1), s∗) and the

condition (10). An alternative bound for
∥∥∥∆

(t−1)
M

∥∥∥:

∥∥∥∆
(t−1)
M

∥∥∥ ≤ 8K

7αn

n∑
i=1

I
(
ŝ

(t−1)
i = a, s∗i 6= a

)∥∥Ms∗i
−Ma

∥∥ ≤ 16γK

αn
·∆ · ha(ŝ(t−1), s∗)

In other words, we have the following bound for ∆
(t−1)
M that will be utilized

repeatedly later:∥∥∥∆
(t−1)
M

∥∥∥ ≤ 16K

αn
ha(ŝ(t−1), s∗) ·min{κ0λ, γ∆} (60)

Moreover, under Q1 we have

∥∥Ē∗a∥∥ .

√
d

n∗a
.

√
dK

αn
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and it remains to bound
∥∥∥∆

(t−1)
E

∥∥∥. Note that

∥∥∥∆
(t−1)
E

∥∥∥ =

∥∥∥∥∥ 1

n
(t−1)
a

n∑
i=1

I
(
ŝ

(t−1)
i = a

)
Ei −

1

n∗a

n∑
i=1

I (s∗i = a) Ei

∥∥∥∥∥
≤

∥∥∥∥∥ 1

n
(t−1)
a

n∑
i=1

[
I
(
ŝ

(t−1)
i = a

)
− I (s∗i = a)

]
Ei

∥∥∥∥∥+

∥∥∥∥∥n∗a − n(t−1)
a

n
(t−1)
a n∗a

n∑
i=1

I (s∗i = a) Ei

∥∥∥∥∥
≤

∥∥∥∥∥ 1

n
(t−1)
a

n∑
i=1

I
(
ŝ

(t−1)
i = a, s∗i 6= a

)
Ei

∥∥∥∥∥+

∥∥∥∥∥ 1

n
(t−1)
a

n∑
i=1

I
(
ŝ

(t−1)
i 6= a, s∗i = a

)
Ei

∥∥∥∥∥
+

1

n
(t−1)
a

·

∣∣∣∣∣
n∑
i=1

I
(
s∗i = a, ŝ

(t−1)
i 6= a

)∣∣∣∣∣
∥∥∥∥∥ 1

n∗a

n∑
i=1

I (s∗i = a) Ei

∥∥∥∥∥
+

1

n
(t−1)
a

·

∣∣∣∣∣
n∑
i=1

I
(
s∗i 6= a, ŝ

(t−1)
i = a

)∣∣∣∣∣
∥∥∥∥∥ 1

n∗a

n∑
i=1

I (s∗i = a) Ei

∥∥∥∥∥
(a)

.
K
√

(d+ n)ha(ŝ(t−1), s∗)

αn
+
K

n
ha(ŝ(t−1), s∗)

√
dK

αn
(b)

.
K
√

(d+ n)ha(ŝ(t−1), s∗)

αn

where in (a) we’ve used the fact that Q2 holds and (b) is due to that fact that
ha(ŝ(t−1), s∗) . αn/K.

11.4. Proof of Lemma 10.3

The conclusion directly follows from dilation, i.e., define

X∗ :=

[
0 X

X> 0

]
, M∗ :=

[
0 M

M> 0

]
, ∆∗ :=

[
0 ∆

∆> 0

]
and applying Theorem 1 in [60].

11.5. Proof of Lemma 10.4

To decouple the potential dependency of Ei and Ξ, we consider an ε-net N ε
d1,d2,r

for {Ξ ∈ Rd1×d2 : rank(Ξ) ≤ r, ‖Ξ‖ ≤ 1}. A standard ε-net argument, e.g.,
Lemma 7 in [64], would give the following cardinality bound:

|N ε
d1,d2,r| ≤

(
4 + ε

ε

)(d1+d2)r
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Now we consider any fixed X ∈ N ε
d1,d2,r

and denote its compact SVD as LΛR>,

then vec(L>EiR)
d
= N (0, Ir∗2) with r∗ := rank(X) ≤ r. We have that

n∑
i=1

I (s∗i = b) 〈Ei,X〉2 =

n∑
i=1

I (s∗i = b)
〈
L>EiR,Λ

〉2
= vec>(Λ)

(
n∑
i=1

I (s∗i = b) vec
(
L>EiR

)
vec>

(
L>EiR

))
vec(Λ)

≤ r

∥∥∥∥∥
n∑
i=1

I (s∗i = b) vec
(
L>EiR

)
vec>

(
L>EiR

)∥∥∥∥∥
Using a standard argument via concentration inequality for χ2, we can obtain
for any t > 0 that

P

(∥∥∥∥∥
n∑
i=1

I (s∗i = b) vec
(
L>EiR

)
vec>

(
L>EiR

)∥∥∥∥∥ ≥ C(n∗b + r2 + t)

)
≤ exp(−ct)

for some absolute constants c, C > 0. As a result, we have that

P

 sup
Ξ∈Rd1×d2 ,rank(Ξ)≤r

‖Ξ‖≤1

n∑
i=1

I (s∗i = b) 〈Ei,Ξ〉2 ≥ Cr(n∗b + r2 + t)


≤ P

(
sup

X∈N εd1,d2,r

n∑
i=1

I (s∗i = b) 〈Ei,X〉2 ≥ C ′(n∗b + r2 + t)

)
≤ Cdr exp(−ct)

where C ′ > 0 is some absolute constant depending only on ε. The proof is
completed by choosing t = Cdr for some large constant C > 0.

11.6. Proof of Lemma 10.5

Without loss of generality we only proof j = 1. It follows that

σ2
min(M1(M)) ≥ κ−2

1 ‖M1(M)‖2 ≥ κ−2
1 r−1

U

K∑
k=1

nk ‖Mk‖2F

≥ κ−2
1 r−1

U nλ2 ≥ κ−2
1 (Kr)−1nλ2

where the last inequality is due to rU ≤
∑K
k=1 rk ≤ Kr.

11.7. Proof of Lemma 10.6

We first prove (I). By definition of k-means

‖M−G‖F ≤
∥∥∥M− Ĝ

∥∥∥
F

+
∥∥∥Ĝ−G

∥∥∥
F
≤ 2

∥∥∥Ĝ−G
∥∥∥

F
≤ 2
√

2K
∥∥∥Ĝ−G

∥∥∥
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It suffices to notice that there exists some absolute constant c, C > 0 such that∥∥∥Ĝ−G
∥∥∥ =

∥∥∥M3(X ×1 ÛÛ> ×2 V̂V̂> −M×1 ÛÛ> ×2 V̂V̂>)
∥∥∥

=
∥∥∥M3(E)(V̂V̂> ⊗ ÛÛ>)

∥∥∥ =
∥∥∥M3(E)(V̂ ⊗ Û)

∥∥∥
≤ C

(√
d(rU + rV) +

√
n
)

where the last inequality holds with probability at least 1−exp(−cd) by Lemma
5 in [64]. Hence there exists some C0 > 0, and with probability at least 1 −
exp(−cd) we have

‖M−G‖F ≤ C0

√
K
(√

dKr + n
)

for some absolute constant C0 > 0. It remains to prove (II). By definition of G,
we obtain∥∥G ×3 (e>i − e>j )

∥∥
F

=
∥∥∥[M×3 (e>i − e>j )

]
×1 ÛÛ> ×2 V̂V̂>

∥∥∥
F

≥
∥∥[M×3 (e>i − e>j )

]
×1 UU> ×2 VV>

∥∥
F
−
∥∥∥[M×3 (e>i − e>j )

]
×1 (ÛÛ> −UU>)×2 VV>

∥∥∥
F

−
∥∥∥[M×3 (e>i − e>j )

]
×1 ÛÛ> ×2 (V̂V̂> −VV>)

∥∥∥
F

≥ ∆− ∆

4
− ∆

4
≥ ∆

2

where we’ve used the fact thatQ0 holds and the equivalence between
√

2 ‖sin Θ(U1,U2)‖F
and projection distance

∥∥U1U
>
1 −U2U

>
2

∥∥
F

.
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11.8. Proof of Lemma 10.7

The proof of (I) is identical to that in the proof of Lemma 10.6 and hence we
only show (II). By definition of G, we obtain∥∥G ×3 (e>i − e>j )

∥∥
F

=
∥∥∥[M×3 (e>i − e>j )

]
×1 Û1Û

>
1 ×2 V̂1V̂

>
1

∥∥∥
F

≥
∥∥[M1 ×3 (e>i − e>j )

]
×1 U1U

>
1 ×2 V1V

>
1

∥∥
F

−
∥∥∥[M1 ×3 (e>i − e>j )

]
×1 (Û1Û

>
1 −U1U

>
1 )×2 V1V

>
1

∥∥∥
F

−
∥∥∥[M1 ×3 (e>i − e>j )

]
×1 Û1Û

>
1 ×2 (V̂1V̂

>
1 −V1V

>
1 )
∥∥∥

F

−
∥∥∥[M2 ×3 (e>i − e>j )

]
×1 Û1Û

>
1 ×2 V̂1V̂

>
1

∥∥∥
F

(a)

≥ ‖M1‖F −
‖M1‖F

6
−
‖M1‖F

6
− ‖M2‖F

(b)

≥ 5

9
‖M1‖F ≥

∆

2

where in (a) we’ve used (47), (b) and (c) are due to the facts that ‖M1‖F ≥
9 ‖M2‖F and ∆ = ‖M1 −M2‖F ≤ 10/9 · ‖M1‖F, by properly choosing the ab-
solute constant C in Assumption 5.1 and the proof is therefore completed.
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