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Abstract

To advance understanding of the spatiotemporal variability of the streamflow in the

Pearl River Basin (PRB), we used the Soil and Water Assessment Tool model to simu-

late the water fluxes from 2010 to 2020 and to identify the underlying controlling

mechanisms. The streamflow in the PRB is highly variable and controlled by complex

land surface processes and atmospheric impacts over the heterogeneous terrain.

Two key factors primarily govern the streamflow: (1) the location of the active pre-

cipitation zone, which is determined by the interaction between the monsoon path

and uplifting effect of the terrain, and (2) the redistributions resulting from land use

and soil characteristics. We observe distinct patterns in the different water fluxes

across the different regions. Specifically, surface flow exhibits the highest activity

within the precipitation zone. Lateral flow and actual evapotranspiration (AET) have

the greatest intensity in the forests and in agricultural regions, respectively, and the

aquifer flow is more active in areas with coarse soil textures. The land surface pro-

cesses of the AET and aquifer retention significantly govern the temporal variability

of the streamflow, contributing to the precipitation and streamflow being out of

phase in the PRB. Based on the underlying mechanisms driving streamflow variability,

we classify the PRB into three substreams: a drought-prone upstream, a hydrologi-

cally active midstream, and a typhoon-affected downstream, and each substream

exhibits distinct spatiotemporal characteristics of streamflow. We find that the time

series and probability distributions of the streamflow at different tributaries within

each substream are similar. Each probability distribution is multimodal and can be

decomposed into three unimodal distributions representing dry, transitional, and wet

conditions. Specifically, the PRB features a large and steep dry mode, a flat transi-

tional mode, and a short wet mode.
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1 | INTRODUCTION

The water cycle is crucial in linking the atmosphere-land-ocean con-

tinuum, promoting sustainable environment, and ensuring water secu-

rity (Dai et al., 2018; Veettil & Mishra, 2016). Investigation of large

watersheds in monsoon-affected regions is of importance, as they

exemplify the characteristics of the monsoon areas that span 25% of

the Earth's surface. The spatiotemporal variability of hydrological pro-

cesses and the underlying mechanisms that regulate the terrestrial

water cycle can be complex and not well understood. This lack of

understanding hinders effective water resource management and the

maintenance of societal well-being (Wu & Xu, 2006; Yamamoto

et al., 2019).

Large watersheds are highly heterogeneous, and different parts of

basins can exhibit distinct hydrological characteristics across multiple

river systems. Previous investigations have commonly relied on topog-

raphy to delineate subregions within watersheds (Niu, 2010;

PRWRC, 2021). While this method recognizes the fundamental role of

topography in shaping river networks and water movement, the

method often neglects the spatial patterns of other influences, such as

precipitation, land use, and soil, which also contribute to hydrological

variability. Regionalization based on cluster analysis is an alternate tech-

nique for classifying a river basin into various subregions. It is based on

the distribution of a specific controlling variable, such as extreme pre-

cipitation, drought, or flood events, rather than considering a holistic

hydrological perspective (Liu et al., 2021; Yang et al., 2010; Zhang

et al., 2012; Zhou et al., 2021). A more effective approach for addres-

sing hydrological heterogeneity is regionalization based on a combina-

tion of multiple water components (Knoben et al., 2018; Niu

et al., 2017). This method enables the identification of dominant factors

that control regional hydrology more effectively. However, it requires

abundant high-resolution datasets of hydrological processes.

In contrast to their spatial features, the temporal dynamics of

streamflow have been extensively studied using gauge observations,

revealing various timescale variabilities such as interannual trends,

seasonal variations, and extreme events (Niu et al., 2014; Niu

et al., 2017; Zhang et al., 2014). However, these studies primarily

relied on scatter point observations, limiting their ability to compre-

hensively capture streamflow patterns at large spatial scales and to

characterize the connections between streams (Yu et al., 2018). These

connections are crucial for maintaining ecosystem integrity and for

managing water quality. On the other hand, probability distribution

functions (PDFs), such as the normal, log-normal, and gamma distribu-

tions, are valuable tools for assessing streamflow temporal dynamics

(Niu et al., 2015; Shukla & Wood, 2008; Zhang et al., 2009). However,

in regions with complex climate zones and land surfaces, these tradi-

tional PDFs might not capture the streamflow behaviour adequately

due to the presence of multiple peaks resulting from the interactions

of multiple factors affecting runoff generation (Niu, 2010). Recently,

multimodality theory has emerged as a promising approach for fitting

complex distributions and has potential for investigating streamflow

with high temporal variability (Bell et al., 2004; Lee et al., 2012;

Shanyavskiy & Soldatenkov, 2019).

High variability in the terrestrial water cycle results from the com-

prehensive effects of regional atmospheric forcing, terrain topogra-

phy, land use, and soil properties (Ribolzi et al., 2018). Precipitation

has substantial spatial and temporal variability, especially in large

monsoon zones characterized by distinct wet and dry seasons. Topog-

raphy, including elevation, distance to the sea, and mountains, affects

runoff generation and river routing (Wu et al., 2021). Mountains, for

example, often lead to substantial changes in the magnitude of local

precipitation and eventually contribute to the spatial heterogeneity of

the streamflow. The discharge response depends on the topographic

characteristics of a watershed. For instance, fan-shaped basins typi-

cally exhibit a quick response of streamflow to precipitation, and

broad and flat basins often exhibit the opposite behaviour (Niu, 2010;

Wang et al., 2018).

Land surface properties, such as land use, significantly alter pre-

cipitation pathways through various processes, including canopy inter-

ception, infiltration, and evapotranspiration. Forests and agricultural

lands, characterized by extensive leaf coverage, exhibit high evapo-

transpiration rates, leading to a greater soil water retention (Yan

et al., 2018; Yang et al., 2018). Conversely, urban and barren areas

promote increased runoff due to impervious surfaces (Giri

et al., 2018), while floodplain wetlands contribute to flood mitigation

and groundwater replenishment (Bullock & Acreman, 2003).

Soil property is another factor critical for water movement

through infiltration and recharge (Gao et al., 2021). A wide range of

soil properties, including soil bulk density, porosity, and particle com-

position, can directly influence water movement and moisture dynam-

ics in the soil profile (Deng et al., 2018). For instance, permeable

sandy soils often increase rainwater infiltration and groundwater con-

tribution (Ribolzi et al., 2018). However, it remains unknown which

soil property is dominant in regulating water fluxes (Lin, 2012). Fur-

thermore, soil properties vary substantially in space, contributing to

the spatial variability of hydrological processes (Bossa et al., 2012).

Understanding the spatiotemporal characteristics of streamflow

and the complex interactions between atmospheric forcing and land

surface properties remains a challenge. Fortunately, process-based

hydrological models provide a viable solution to address this challenge

(Arnold et al., 2012; Bieger et al., 2017). These models explicitly simu-

late critical processes within the terrestrial water cycle, making it pos-

sible to quantify the variability of multiple water fluxes and explore

the underlying mechanisms (Fu et al., 2019; Ly et al., 2019). One of

the most effective hydrological models is the soil and water assess-

ment tool (SWAT), which is flexible in the spatial resolution of simula-

tion units, making it suitable for watershed-scale streamflow,

sediment transport, and nutrient cycling studies (Arnold et al., 1998).

In this study, we conducted a comprehensive investigation into

the hydrological processes of the Pearl River Basin (PRB), which is

characterized by a subtropical monsoon climate and diverse land-

scapes. Our study aims to achieve the following objectives: (1) investi-

gate the spatiotemporal characteristics of key water fluxes that

control the streamflow in the basin, (2) evaluate the interactive

impacts of atmosphere-land surface properties on the water cycle in

the PRB, and (3) identify land surface processes that regulate
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hydrological variability across the heterogeneous nature of subre-

gions. To the best of our knowledge, this study represents the first

systematic analysis of the spatiotemporal characteristics of stream-

flow controlled by highly variable surface processes and atmospheric

impacts in the PRB.

2 | METHODS

2.1 | Study area

The Pearl River has an average discharge of 9631 m3/s and is the

second-largest river in China in terms of annual streamflow. This

water system consists of three main rivers: the West, North, and East

Rivers, and they merge into the Pearl River Delta (PRD) and flow into

the Pearl River Estuary. The Pearl River covers an area of

4.4 � 105 km2 in southern China and has a typical subtropical mon-

soon climate (Figure 1a). The basin receives annual precipitation rang-

ing from 1200 to 2200 mm/year, with the wet season (April–

September) accounting for nearly 80% of the total precipitation

(PRWRC, 2021). The annual temperature varies between 14 and

22�C. The PRB has distinct geographic features, including the Yungui

Plateau in the northwestern region of the basin, mountains in the

northern parts, and plains in the coastal regions. It is home to

124 million people and provides essential societal, ecological, and eco-

nomic services to the Guangdong-Hong Kong-Macao Greater Bay

Area (GBA). Studying the streamflow characteristics and underlying

controlling mechanisms in the basin is critical for understanding the

F IGURE 1 Location and topography of the Pearl River Basin, and (b) locations of hydrological stations and large reservoirs.
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frequent extreme floods and droughts in the region and the freshwa-

ter discharge into the adjacent coastal ocean.

2.2 | The SWAT model

2.2.1 | Model description

We utilized the SWAT model (SWAT+ version) to simulate and study

the hydrological processes in the PRB. The model employs Hydrologi-

cal Response Units (HRUs) as the computation unit, which account for

the heterogeneity of landscapes based on a combination of terrain,

soil, land use, and management (Arnold et al., 2012; Wu et al., 2023).

The model is composed of two phases: a land phase based on HRUs,

and a stream phase simulating water movements in channels. The sim-

ulations are conducted on a daily scale. The simulation of key water

fluxes in SWAT is summarized in Equations (1)–(3) and depicted in

Figure 2.

Qtot ¼QsurþQlatþQaqu, ð1Þ

QsurþQlat ¼Precip�AET�Perc�ΔSw, ð2Þ

Qaqu ¼Rchrg�Revap�Seepdeep�ΔAqstor, ð3Þ

where Qtot, Qsur, Qlat, and Qaqu represent the total flow, surface flow,

lateral flow, and aquifer flow, respectively. Precip denotes precipita-

tion, and Perc stands for percolation from the root zone into the

vadose zone. Rchrg, Revap, and Seepdeep represent water entering

the aquifer from the root zone, re-evaporation from the shallow aqui-

fer into the overlying root zone, and seepage from the shallow to the

deep aquifer, respectively. Furthermore, ΔSW and ΔAqstor represent

the changes in water storage in the root zone and shallow aquifer,

respectively. All the terms are in millimetre (mm) units. More details of

SWAT+ can be found in Bieger et al. (2017).

2.2.2 | Datasets for SWAT simulation

Table 1 lists all the datasets we used in this study to drive the SWAT

model and perform validation and uncertainty analysis of the simula-

tions. We utilized soil, topography, and land use maps collected from

the National Cryosphere Desert Data Center to set up the model. For

weather data, we employed the meteorological dataset AgrEra5,

which spans from January 2007 to December 2020 and is downscaled

from the hourly ECMWF ERA5 data to a spatial resolution of 0.1�. To

assess the quality of this dataset, we compared it with 53 NOAA

weather stations and two reanalysis datasets: CFSR and CMADS for

the PRB between 2008 and 2014. This period corresponds to a time

when all four datasets are available.

Our findings reveal that AgrEra5 outperforms other reanalysis

datasets when integrated with our SWAT model, as evidenced by its

highest correlation coefficient (r), deterministic coefficient (R2), and

the lowest root mean square error (RMSE) for most meteorological

parameters, except for wind speed (Table S1 and Figure S1). Regard-

ing solar radiation, given the limited availability of observations, we

compared the meteorological reanalysis datasets with the ISCCP, a

global surface solar radiation dataset. AgrEra5 shows superior perfor-

mance in both temporal (R2 = 0.87, RMSE = 1.8) and spatial patterns

(Figures S2 and S3), outperforming CFSR and CMADS. However, it is

important to note a particular limitation concerning the precipitation

data: after removing zero values and missing observations, AgrEra5

F IGURE 2 Schematic of the soil
and water assessment tool (SWAT)
model representing hydrological
processes and pathways within one
Hydrological Response Unit (HRU).
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has a low R2 and a high RMSE (0.31 and 12.56, respectively). More-

over, when compared with the Global Precipitation Measurement

dataset, AgrEra5 underestimates precipitation in the coastal regions

of Guangdong province (Figure S4). These results indicate the credibil-

ity of AgrEra5 as a reliable resource for hydrological studies in the

PRB; however, they also highlight its limitations.

To calibrate and validate the model, we obtained daily streamflow

data from 19-gauge stations spanning the years 2010–2020, ensuring

comprehensive representation of each mainstream of the Pearl River

with at least one station (Figure 1b). These data were sourced from

the China Hydrological Yearbook. However, it should be noted that

the streamflow patterns at five upstream stations are affected by

large reservoirs. To demonstrate the significant impact of these reser-

voirs, we calculated the residence time, defined as the reservoir's

water storage capacity divided by its annual discharge. The residence

time for the five hydrological stations is all above 0.3 years (Table S2).

The study area comprised five land use types and 45 soil types,

and we assumed static land use and soil properties throughout the

study period. We delineated HRUs using thresholds of 17% for land

use, 14% for soil, and 18% for slope. Additionally, we merged small

HRUs into larger ones with similar landscape features. These thresh-

old values are based on our model assessment and aim to maintain a

balance between computation costs and model resolution. Further-

more, we verified that the defined land use and soil of HRUs were

consistent with the corresponding raster file. Overall, the model com-

prises 201 subbasins and 4679 HRUs.

2.2.3 | Model calibration and validation

We utilized periods of 3 years (2007–2009), 5 years (2010–2014),

and 6 years (2015–2020) for model spin-up, calibration, and valida-

tion, respectively. During the calibration and validation processes, we

utilized data from three control gauge stations: Gaoyao on the West

River, Shijiao on the North River, and Boluo on the East River, respec-

tively (Figure 1). These stations were chosen as control points because

they are located at the confluence of rivers in the lower reaches of

the PRD plain, which forms a network of interconnected rivers. More-

over, these stations are positioned away from the tidal effects of the

Pearl River Estuary. In addition to the main calibration and validation

at these three stations, we further evaluated the model simulations

using data from an additional 16 hydrological stations (Figure 1b). To

evaluate the performance of the baseflow simulation, we used the

baseflow separation method proposed by Eckhardt (2005) to derive

baseflow from the time series of streamflow observations and

simulations.

To calibrate and validate the model, we selected three common

metrics evaluation (Moriasi et al., 2007), including RMSE-observations

standard deviation ratio (RSR), Nash-Sutcliffe efficiency (NSE), and

percent bias (Pbias) (Equation S1). We identified the sensitive parame-

ters from the literature (Ren et al., 2022; Shuler et al., 2020; Zeiger

et al., 2021; Zhang et al., 2020) and evaluated their sensitivity to

streamflow patterns using the SWAT+ Toolbox, a tool for sensitivity

analyses and calibration. After filtering the parameters, we manually

adjusted them (Table 2) to align with the streamflow patterns, such as

baseflow and peaks, so that the total flow matched observations

within the criteria of the three metrics (Table S3).

2.3 | Statistical analysis of streamflow

2.3.1 | Temporal patterns of streamflow PDFs

We used the multimodality of PDFs to describe the combination of

subordinate normal distributions for the temporal pattern in the

streamflow. We employed curve fitting analysis to decompose a mul-

timodal streamflow PDF into three subordinate normal PDFs:

P¼
X3
i¼1

Piffiffiffiffiffiffiffiffiffi
2πσi

p exp � S�Si
2σi

� �2
" #

�100%, ð4Þ

where S and P are the streamflow value (m3/s) and corresponding nor-

malized probability (%), respectively, and Pi , Si, and σi are the repre-

sentative probability (%), centre streamflow value (m3/s), and standard

deviation of the ith unimodal PDF (m3/s), respectively. Because their

central values increase in sequence, we interpreted the three PDFs as

dry, transitional, and wet modes.

To judge the quality of the fit, we used the sum of errors (SE)

between the raw (Sraw,i) and fitted data (Sfit,i):

SE ¼
Xn
i¼1

j Sfit,i�Sraw,i j �100%: ð5Þ

2.3.2 | Analysis of streamflow characteristics

The basin analysis, based on spatial patterns of water fluxes, revealed

the division of the PRB into three distinct subregions, referred to as

“substreams”: the upstream region (longitude 102� to 106.5�E), mid-

stream region (106.5� to 111� E), and downstream region (111�–

116�E) (Figure 1a). We conducted an in-depth analysis of the spatio-

temporal characteristics of the streamflow within these substreams.

We utilized the Strahler stream system (Strahler, 1957) to identify

the orders of the river channels in the watershed. This system con-

cisely represents river networks by assigning a hierarchy to the

streams that starts from the outermost tributary (order = 1) to the

mainstream (highest order) (Sah & Das, 2017; Tarboton et al., 1991).

The total number of channels was 461 in the PRB, with 195, 152,

60, 41, and 13 channels of orders 1–5, respectively.

In addition, we calculated the runoff coefficient η, representing

the ratio of runoff to precipitation, as an indicator of water retention

on the land surface. In assessing the spatial/temporal variability of the

flow, we employed the coefficient of variation (cv) as a measure of

data dispersion around the mean value, which is defined as the ratio

of the standard deviation σ to the mean μ, expressed as cv = σ/μ.
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3 | RESULTS

3.1 | Model performance

Figure 3 illustrates the alignment between our simulated streamflow

and observed data at the three control stations, effectively capturing

temporal variability. During the calibrations, the daily and monthly

NSE for the sum of the three stations scores were 0.58 and 0.82,

respectively, while validation scores improved to 0.62 and 0.88

(Table 3). The daily and monthly RSR during the calibration period

were 0.65 and 0.42, with a marginal improvement during validation to

0.63 and 0.35. Additionally, Pbias for daily and monthly flows

remained below 12%, indicating accurate simulations. The baseflow

coefficients were comparable, if not superior, to those for total flow.

All of them met or exceeded the ‘satisfactory’ criteria according to

Moriasi et al. (2007)'s performance criteria.

In addition, we evaluated 14 individual normal stations, referring

to Tables S4 and S5, and to Figures S5 and S6. On a daily scale for

total flow, eight stations met ‘satisfactory’ performance standards.

Regarding baseflow, 12 stations met the ‘satisfactory’ standards, with

two stations being rated as ‘very good’. Monthly evaluations dis-

played a marked improvement, with six stations rated ‘very good’ for

total flow and five for baseflow. We also analysed the five stations

influenced by large reservoirs on an annual scale (Table S6; Figures S7

and S8), all of which achieved a ‘satisfactory’ performance or higher

for total flow. The baseflow coefficients at these stations mirrored

those for total flow. Overall, these metrics demonstrate the reliability

of the streamflow simulations for our hydrological study.

3.2 | Spatial patterns of water fluxes

Figure 4 illustrates the significant spatial variability of each water flux

in the PRB. Precipitation is unevenly distributed across the basin, with

the highest amounts (2400 mm/year) occurring in the midstream and

decreasing to around 1200 mm/year in the upstream subregion

(Figure 4d). On average, 45% of the total precipitation (1810 mm/

year) eventually becomes streamflow, and the remaining is mainly

consumed by actual evapotranspiration (AET) (52%). The different

flow components, including surface flow, lateral flow, and aquifer flow

(Equation 1), contribute 24%, 37%, and 39% to the total streamflow,

respectively. Surface flow is active in areas with high precipitation,

particularly in the midstream region, where values reach up to

500 mm/year and extend towards the delta downstream (Figure 4a).

TABLE 2 Calibrated parameters in the soil and water assessment tool.

Parameter File Level Calibrated Range Default Description

perco hydrology.hyd HRU 0.97 0–1 1 Percolation coefficient

latq_co hydrology.hyd HRU 40 – 1 Plant ET curve number coefficient

cn3_swf hydrology.hyd HRU 0.4 0–1 0 Soil water at cn3

alpha_bf aquifer.aqu Subbasin 0.005 0–1 0.048 Alpha factor for groundwater recession curve

dorm_hr parameters.bsn Basin 3 0–24 0 Time threshold used to define dormancy

F IGURE 3 Simulated and observed streamflow at the three control gauge stations: (a,d) Gaoyao, (b,e) Shijiao, and (c,f) Boluo stations on a
daily (left panels) and monthly (right panels) basis for the calibration (2010–2014) and validation (2015–2020) periods. Obs (solid lines) and Sim
(dashed lines) refer to observations and simulated results, respectively.
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In contrast, surface flow is less than 100 mm/year in the inland

upstream subregion. Lateral flow is active in the northern part of the

PRB, with values exceeding 600 mm/year, but it is relatively inactive

in the coastal downstream, where it remains below 100 mm/year

(Figure 4b). The active zone of the aquifer flow is in the mid-south

part of the midstream subregion (Figure 4c). Overall, the spatial pat-

tern of the total flow, contributed by the surface and baseflows,

closely resembles the spatial pattern of the precipitation (Figure 4d,f),

indicating the precipitation predominantly contributes to the stream-

flow in the basin.

AET is most active in the southern areas of the midstream region,

suggesting a joint influence of solar radiation and regional land use

(Figure 4e). The annual water fluxes through percolation and ground-

water recharge display a pattern like that of the aquifer flow

(Figure 4c,g,h), indicating strong retention of water from the root zone

into the aquifer layer. The soil water changes in Equation (2) and other

residual terms in Equation (3), such as re-evaporation, seepage to the

deep aquifer, and aquifer storage change, are minor terms, with values

within ±80 mm/year.

In summary (Figure 4i), the upstream, located in the Yungui Pla-

teau, has low streamflow and is a relatively hydrologically dry subre-

gion. The midstream subregion is hydrologically active, where high

values of multiple water fluxes intersect, including precipitation, AET,

surface, lateral flow, and aquifer flow. The downstream subregion is

F IGURE 4 Spatial distributions of key water fluxes: (a) surface flow (Qsur), (b) lateral flow (Qlat), (c) aquifer flow (Qaqu), (d) precipitation (Precip),
(e) actual evapotranspiration (AET), (f) total flow (Qtot), (g) percolation (Perc), (h) recharge to shallow aquifer (Rchrg), and (i) summary of active
zones. Coloured polygons correspond to the active zones of water fluxes in subplots (a)–(h).

TABLE 3 Statistical performance of
simulated streamflow for the Pearl River
Basin (sum of values from the three
control stations).

Period Streamflow Scale NSE RSR Pbias Rank

Whole period Total flow Daily 0.61 0.62 �8.18 S

Monthly 0.86 0.37 �8.2 VG

Baseflow Daily 0.81 0.44 �9.71 VG

Monthly 0.86 0.37 �9.74 VG

Calibration Total flow Daily 0.58 0.65 �11.7 S

Monthly 0.82 0.42 �11.79 G

Baseflow Daily 0.79 0.45 �10.36 G

Monthly 0.85 0.39 �10.41 G

Validation Total flow Daily 0.62 0.62 �5.92 S

Monthly 0.88 0.35 �5.91 VG

Baseflow Daily 0.8 0.44 �9.28 VG

Monthly 0.86 0.37 �9.3 VG

Note: The abbreviations VG, G, and S stand for the ranks of Very Good, Good, and Satisfactory,

respectively.
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close to the coastal margins and consists of the lower reaches of the

West, North, and East Rivers. The diverse spatial patterns of

the water fluxes indicate the combined influence of external forcing,

such as precipitation and solar radiation, and internal processes

related to terrain and surface conditions on hydrological processes in

the PRB. Consequently, each flow component exhibits its unique

active zone across the basin. We analyse and discuss these controlling

factors further in Section 4.1.

To further examine the spatial variability of the hydrological pro-

cesses in the PRB, we zonally averaged the water flux components

(Figure 5). The total flow consistently exhibits higher values in the

midstream subregion (2.83 mm/day) throughout the year compared

to the upstream and downstream subregions (1.23 and 2.5 mm/day,

Figure 5a). This distribution aligns with the active zones of precipita-

tion and total flow in the midstream (Figure 4d,f), highlighting their

critical roles in water resources management. In contrast, the

upstream subregion is characterized as a relatively dry area with lower

water availability. This is evident from the lower runoff coefficient η

of 32% in this area, much smaller than the 50% in the other two sub-

streams (Figure 5a). The distribution of the aquifer flow follows a pat-

tern like the total flow, but with peaks that shift westward (from 109�

to 108�E), suggesting that infiltration processes redistribute the water.

Regions with higher lateral flows (at 104�–106� and 110� to 112�E)

cover broader longitudes compared to regions with higher surface

flows (108� to 110� and 113�–114�E), coinciding with the narrower

shapes of the active zones of the surface flow compared to the other

flow components (Figures 4, 5a).

3.3 | Temporal patterns of water fluxes

The PRB exhibits a typical monsoon climate characterized by distinct

dry and wet seasons, as illustrated in Figures 5c–f. During the wet

season (April to September), the three components of the streamflow

(surface, lateral, and aquifer flows) exhibit relatively equal magnitudes

in the midstream subregion (Figure 5c). However, in the upstream

subregion, the lateral flow (1 mm/day) is three times higher than the

surface and aquifer flows (both 0.3 mm/day). In the downstream sub-

region, the lateral flow surpasses the surface and aquifer flows, with

values of 1.6, 1.14, and 0.86 mm/day, respectively. These differences

indicate distinct flow pathways in each substream.

During the dry season (October to March of the following year),

the total streamflow decreases to half of that observed during the

wet season (1.4 and 2.95 mm/day, respectively). Notably, the aquifer

flow dominates during this period, accounting for 63% of the total

flow (Figure 5e). Additionally, the ratio of AET to precipitation reaches

almost 100% in the upstream subregion (Figure 5f), indicating rapid

depletion of water storage and increased vulnerability to water scar-

city in that area. In contrast, the lower substreams exhibit higher

water availability, with an AET-to-precipitation ratio of 59%.

To further analyse the spatiotemporal variability, we calculated

the monthly water fluxes in each substream (Figure 6). The temporal

patterns of water fluxes in the three substreams differed in terms of

both magnitude and timing of peaks. Precipitation, total flow, surface

flow, and recharge exhibit a consistent trend, with their highest values

occurring in early summer (from May to June) in the midstream and

downstream subregions, and slightly later from June to September in

the upstream subregion. The midstream, which is hydrologically

active, consistently demonstrates the highest water values for most

water fluxes, except for lateral flow, which is more active in the down-

stream subregion. Conversely, the drought-prone upstream subregion

generally exhibits lower water fluxes each month, except for AET,

which aligns with the distribution of precipitation in the PRB.

Among the different water components, the surface flow is the

most variable, with a coefficient of variation (cv) of 0.9 (Figure 6), indi-

cating that the surface flow is sensitive to precipitation. Lateral flow

F IGURE 5 Zonally averaged water fluxes: (a,c,e) flow components of total flow (Qtot), surface flow (Qsur), lateral flow (Qlat), and aquifer flow
(Qaqu), and (b,d,f) ratios of AET and Qtot to precipitation. The left, centre, and right panels represent the average scale for annual, wet (April–
September), and dry seasons (October to next March), respectively.
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and recharge have similar levels of temporal variability, both have a cv

of 0.77. Precipitation and the total flow comparably variable, both

have a cv of 0.55. In contrast, AET and the aquifer flow have relatively

lower variability, with cv values below 0.35. AET peaks from May to

September, and the aquifer flow peaks from July to October. Despite

the similar spatial distribution between the recharge and the aquifer

flow, with a correlation coefficient (r) of 0.95 (Figure 4c, h), there is a

clear time lag and extension between these two variables indicating

buffering by soil moisture. Consequently, the behaviour of AET and

the aquifer flow contributes to an out-of-phase relationship between

precipitation and streamflow in the PRB, highlighting their significance

in modulating the hydrological response in the region.

We then analysed the temporal patterns of the surface flow, lat-

eral flow, and aquifer flow at a daily scale for each substream in detail

(Figure 7). The aquifer flow is minimally variable throughout the year,

indicating its steady contribution as the baseflow. In contrast, the sur-

face flow has large day-to-day variability, while the lateral flow has

intermediate levels of variability between the surface and aquifer

flows, highlighting their distinct responses to climate events.

The drought-prone upstream subregion accounts for only 14% of

the outlet discharge (Figure 7a). The streamflow has the strongest

seasonality in the substream with extremely low values from February

to April during the dry season. The aquifer flow dominates the

upstream subregion compensating for the reduced surface flow during

this period. In June, the streamflow substantially increases primarily

because of the lateral flow.

The hydrologically active upstream subregion contributes half of

the overall discharge to the adjacent estuary (Figure 7b). We primarily

attribute the peak values in the midstream subregion to the surface

flow. The downstream subregion streamflow exhibits two distinct

peaks (Figure 7b,c). A major peak occurs during mid-June, coinciding

with the monsoon season, while a minor peak is observed during mid-

August, aligning with the typhoon season. These differences highlight

the significance of subregional heterogeneity in shaping the discharge

to the coastal ocean.

3.4 | Hydrological variability by river orders

To understand the connections within the substream, we investigated

the daily streamflow dynamics across different channel orders

(Figure 8). Within each substream, we observe a coherent temporal

F IGURE 6 Normalized monthly water
fluxes in the three substreams, with the
minimum and maximum values annotated on
each panel. The fluxes include precipitation
(Precip), actual evapotranspiration (AET), the
total flow (Qtot), surface flow (Qsur), lateral
flow (Qlat), and aquifer flow (Qaqu), and
recharge to the shallow aquifer (Rchrg) (from
bottom to top panels) in the upstream,

midstream, and downstream.
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behaviour in the streamflow across different river orders, as evi-

denced by a high mean inter-correlation (r¼0:94) among them

(Figures 8c–e). These behavioural patterns are similar to the corre-

sponding overall streamflow of each substream (Figures 7, 8), suggest-

ing a relatively stable relationship among flow components within

each substream throughout the river network. Furthermore, the

streamflow follows a logarithmic growth pattern within each sub-

stream that increases from the headwater tributaries with orders of

magnitude Ο(100) to the main stream with Ο(103), reflecting the accu-

mulation of streamflow as the rivers progress downstream. Specifi-

cally, the midstream and downstream subregions display similar

streamflow values for the headwaters, at approximately 14m3/s

(Figure 8b). However, the streamflow in the hydrologically active mid-

stream has a faster growth rate, reaching 1440m3/s at order 4, which

is about 60% higher than that of the downstream subregion.

To describe the statistical patterns of the streamflow over time in

the PRB, we analysed the PDFs of the streamflow across channel

orders within each substream (Figure 9 and Table 4). The analysis of

the overall streamflow in the PRB reveals a large and steep dry mode

(P¼51% in Equation 4), a relatively flat transitional

mode (σ¼267m3=s), and a short wet mode (P¼9%) (Table 4). These

modes demonstrate varying contributions across the substreams,

reflecting the diverse dynamics of the water resource within each

substream (Figure 9). The upstream subregion has a minimal contribu-

tion from the wet mode (2%) and a dominant dry mode (58%), indicat-

ing its vulnerability to water scarcity. In the midstream subregion, the

dry and wet modes exhibit significant probabilities, indicating the

strong influence of the monsoon climate. In comparison, the down-

stream subregion has a lower probability of the dry mode but a higher

probability of the transitional mode. For example, for order 5 rivers in

the downstream, the transitional mode accounts for almost half of the

total probability (48%), indicating a long duration of normal water

resources without extreme events.

To evaluate the performance of the fitting method, we compared

the multimodal distribution with the unimodal, gamma, and log-normal

distributions. The SE (Equation 5) for these distributions is 27%, 56%,

41%, and 66%, respectively, supporting the superior performance of

our method in capturing the temporal features of streamflow. In addi-

tion, our fitting method is advantageous because it provides compre-

hensive information about the duration, centre values, and variability

of dry, transitional, and wet conditions. This information is useful for

assessing the dynamics of water resources. The method utilization is

also flexible in terms of time requirements, as it only necessitates cov-

erage of the entire year.

3.5 | Controls on streamflow

The land surface processes and regional land-atmosphere interaction

control the spatiotemporal variability of the streamflow in the PRB.

The spatial maps of topography, land use, soil, and precipitation pre-

sented in Figure 10 are linked to the active zones of the water fluxes

in Figure 4. The local distribution of precipitation is influenced by the

terrain topography, leading to a general decrease in precipitation with

increasing distance from the coastal area (Figure 10a,d). The plains

and hills allow water vapour to travel from the bay and coastal waters

inland, creating an active precipitation zone in the PRB. In contrast,

the high elevation (>1600 m) of the Yungui Plateau in the upstream

region acts as a barrier, blocking the movement of warm and moist air

to the headwaters of the West River, resulting in lower precipitation

in this region. The precipitation pattern links to the active zones of

other water fluxes (Figure 4) and plays a fundamental role in shaping

the hydrological processes in the PRB.

Land surface properties, such as land use and soil properties,

impact the redistribution among different water components. Agricul-

tural land, for instance, experiences higher AET due to increased tran-

spiration for crop growth (Figures 4e, 10b). Forested regions, on the

other hand, have active lateral flow due to their high percolation rates

(Figures 4b, 10b). Areas with extensive impervious surfaces, such as

the PRD, tend to convert most of the precipitation into surface flow

F IGURE 7 Streamflow components in the (a) upstream,
(b) midstream, (c) downstream, and (d) basin outlet.
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(Figures 4a, 10a). Soil properties, particularly soil texture, further influ-

ence water infiltration and soil water dynamics, leading to deviations in

the spatial distribution of surface and subsurface flow from the precipi-

tation map. Notably, regions with high rock content exhibit active aqui-

fer flow due to high percolation rates associated with coarse textures

(Figures 4c, 10c). To further quantify the impact of soil on water redis-

tribution, we applied a threshold of 30% clay content to classify the

surface soil texture into two primary groups: dense clay (>30%) and

loose rocky (<30%) soil, following the USDA soil classification system.

Figure 11 shows the ratios of different flow components in vari-

ous land use and soil types (Figure 11). Regarding land use roles, for-

ested regions exhibit the highest lateral flow ratio, accounting for 24%

of precipitation, while agricultural regions have a higher AET ratio

(56%) compared to forests (50%) (Figure 11a). Pasture land, primarily

located in the Yungui Plateau, has the lowest total flow ratio, where

AET accounted for 60% of rainfall. In urban areas, only 37% of the

rain was evaporated, with the remaining water converting to surface

flow, contributing to the active zone of surface flow in metropolitan

areas surrounding the megacities. Wetlands converted almost one-

third of precipitation into aquifer flow.

Soil influences water percolation processes. In agricultural regions

with rocky soils, the aquifer flow accounts for 69% of the total flow

(Figure 11b). The highest proportion of lateral flow (57%) is found in

the rocky forest areas. In contrast, clay soils produce more surface

flow than rocky areas. For instance, surface flow constitutes only 1%

of the total flow in areas with coarse-textured soils, whereas it

reaches 16% in clay soils in pasture land. In agricultural regions, aqui-

fer flow in rocky areas accounts for 69% of the total flow, a significantly

F IGURE 8 (a) Distributions of
river channel orders, (b) runoff at
stream orders 1 and 4 in the three
substreams, and runoff of different
orders of channels within each
substream for (c) the upstream,
(d) midstream, and (e) downstream.
The bottom to top lines in subplots
(c) to (e) correspond to increasing

hierarchical stream orders
from 1 to 5.

F IGURE 9 Representative probability distributions of flow in the (a) upstream, (b) midstream, and (c) downstream. Dry, Transitional, Wet,
Sum, and Raw represent the decomposed modes of the dry, transitional, wet, the superposition of modes, and the raw probability distribution,
respectively.
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higher proportion compared to soils with high clay contents, where

aquifer flow accounted for 41%.

These findings highlight the intricate interplay between atmo-

spheric and land surface properties in shaping the rainfall-runoff rela-

tionship in the PRB. The monsoon climate and topography establish

the foundation for the spatial and temporal patterns of precipitation

and various water fluxes. Moreover, land use and soil properties gov-

ern the conversion of precipitation into different flow components,

including AET, surface flow, lateral flow, and aquifer flow.

4 | DISCUSSION

4.1 | Controls of land surface processes and
atmospheric impacts

The hydrological processes in the PRB exhibit distinct seasonal pat-

terns influenced by moisture circulation (Figure 1a). During the wet

season, moisture-laden water vapours from the Bay of Bengal, the

west Pacific, and the southwest side of the Tibetan Plateau play a

TABLE 4 Best fit parameters of the normalized multimodal probability distribution functions (PDFs) of runoff by river orders in the three
substreams.

Substream Order P1 P2 P3 S1 S2 S3 σ1 σ2 σ3

Upstream 1 0.53 0.46 0.01 0.3 14.4 26.4 1.4 6.0 0.7

2 0.56 0.40 0.04 1.7 56.3 92.2 4.1 15.0 4.0

3 0.58 0.39 0.04 80.0 341.2 550.0 50.0 74.5 25.9

4 0.63 0.35 0.02 110.6 704.5 1027.2 130.0 140.3 11.5

Midstream 1 0.37 0.46 0.17 3.5 15.0 33.9 1.5 5.4 5.1

2 0.55 0.36 0.09 24.0 140.0 251.5 35.6 30.6 30.1

3 0.57 0.34 0.09 109.8 650.0 1108.2 174.3 138.1 100.0

4 0.63 0.24 0.13 678.4 1900.3 3016.5 407.7 200.0 500.0

5 0.54 0.41 0.05 925.5 2500.0 3634.5 214.1 500.0 222.2

Downstream 1 0.45 0.43 0.13 3.9 15.0 28.9 2.0 5.0 3.3

2 0.42 0.47 0.11 14.1 51.6 98.1 5.8 19.7 8.2

3 0.44 0.35 0.21 91.6 195.2 322.0 20.1 44.3 50.0

4 0.44 0.41 0.15 431.1 970.0 1659.6 76.5 198.9 214.6

5 0.46 0.48 0.06 3338.1 8900.4 15597.3 1470.7 2364.7 1145.8

Note: Here, Pi , Si , and σi are the representative probability, centre streamflow value, and standard deviation of the ith unimodal PDF, respectively.

F IGURE 10 Spatial distributions of:
(a) precipitation, (b) land use, (c) ratio of rock to
clay (soil), and (d) topography. Coloured polygons
in (a)–(c) indicate the active zones corresponding
to Figure 4. AGRL, FRST, PAST, URBAN, and

WATR represent agriculture, forest, pasture,
urban, and water, respectively. The SCS
represents the South China Sea.
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significant role in shaping the region's hydroclimate (Lu et al., 2021).

The wet season encompasses the pre-flood season (April–June) and

the post-flood season (July–September). The pre-flood season,

accounting for nearly half of the PRB's annual precipitation

(Ling, 2023), results in prolonged increased streamflow (Figures 6, 7).

Moisture transport primarily occurs through the Indian Ocean chan-

nel, with a lesser contribution from the west Pacific (Shi et al., 2020).

This period is characterized by two primary precipitation events: fron-

tal heavy rainfall over inland areas and warm-sector heavy rainfall in

coastal regions (Wu et al., 2020). The post-flood season, which con-

tributes approximately 30% of the yearly rainfall, is mainly influenced

by tropical cyclones moving along the southwest side of the Western

Pacific Subtropical High (Li, Wang, & Lan, 2021). These cyclones sup-

press the moisture flux out of the PRB, resulting in short but intense

rainfall and streamflow peaks in the lower substreams (Figure 7). In

contrast, the streamflow in the entire basin remains low and stable

during the dry seasons due to sparse precipitation (Figures 5–7).

Autumn sees a decrease in moisture from the south, which further

diminishes precipitation. Winter is characterized by cold and dry

northeasterly winds, while the transitional spring season experiences

some rainfall from the interaction of cold mainland air with warmer

ocean currents (Lu et al., 2021).

The diverse topography of the PRB, ranging from coastal plains to

mountainous terrains, interacts with weather systems to create spatial

variability in precipitation and runoff. Coastal areas, especially the

PRD in the downstream, experience heavy rainfall due to land-sea

boundaries (Zhang et al., 2021). Low-level jets, associated with synop-

tic systems or the boundary layer, contribute to this pattern (Du &

Chen, 2019). Mountainous regions such as the Nanling and Dayao

mountains serve as centres for heavy precipitation, creating hydrolog-

ically active areas in the midstream subregion, which is critical for

water resources management (Li, Yu, et al., 2021). These areas experi-

ence barrier effects, terrain uplift, and thermal effects of mountains

that disrupt airflow stability, enhance convective precipitation, and

facilitate heavy rainfall on windward slopes. Conversely, the Yungui

Plateau in the western basin receives damp Southwestern summer

monsoons blocked by mountains, resulting in relatively drier condi-

tions (Figures 7, 10). In this region, the statistical distribution of

streamflow predominantly shows a dry condition (Figures 5f, 9a) dur-

ing the dry seasons, highlighting the need for attention during drought

events.

Land use and soil play a crucial role in controlling different com-

ponents of streamflow. Natural land use types such as forests and

wetlands retain more water compared to croplands and urban areas,

which experience significant water loss through evapotranspiration

and surface flow. The karst terrain of Guangxi province hosts the

active zone of aquifer flow (Figure 4c, 10), characterized by a frac-

tured bedrock structure and lithology that enhance water storage

capacity (Zhang et al., 2007; Zhou et al., 2012). However, with pro-

jected population growth, particularly in the metropolitan region, the

conversion of natural land types to croplands and urban areas is

expected to continue rapidly (Chen et al., 2020). Additionally, global

warming has resulted in a 10% increase in streamflow over the past

half-century in the PRB, and the probability of heavy rainfall is antici-

pated to rise by 1.3–1.8 times in the coastal urban areas of the GBA

(Hu et al., 2023). Consequently, future studies should prioritize miti-

gating the impacts of land conversions and climate change on flood

control. Developing adaptation and mitigation strategies for a chang-

ing climate is crucial (Niu, 2013; Qiang et al., 2021).

4.2 | Uncertainties and limitations

We further evaluated our model in simulating water fluxes within the

PRB by comparing it with various datasets. Our simulation shows

superior time series for streamflow (NSE = 0.9, RSR = 0.32,

F IGURE 11 Ratios of flow
components to (a) precipitation for
different land use and (b) the total
flow of dense clay and loose rocky
groups. The numbers in the circles
refer to percentages of flow
components.
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Pbias = �1.3), as depicted in Figure S9. Its efficacy surpasses that of

regional models like WAPABA and meets the ‘very good’ level

according to Moriasi et al. (2007)‘s performance criteria, in contrast to

national or global models such as GloFAS, GFSR, and CNRD, which

only reach a ‘satisfactory’ level at best. The simulations also reveal

consistent findings regarding runoff distribution; SWAT, GRFR, and

CNRD identify active and inactive hydrological zones that align with

each other (Figure S10). However, GRFR and CNRD tend to overesti-

mate runoff in the East River Basin, indicating values exceeding

1250 mm/year. Moreover, in comparing the baseflow index with the

GSCD streamflow characteristics dataset, our model shows a broader

range but maintains a consistent spatial distribution (Figure S11 ). It is

critical to recognize that different computational methods may lead to

diverse baseflow index results, potentially causing discrepancies

among datasets. When evaluating simulated AET flux, our model

result aligns well with datasets such as GREA and GETM in spatial and

temporal distributions (Figures S12 and S13), particularly mirroring

GREA with a high correlation (R2 = 0.942, RMSE = 6.7). For potential

evapotranspiration (PET) flux (Figures S12 and S14), our spatial pat-

terns are consistent with those of CPET, although it reports lower

PET values in the southern regions, with consistent temporal varia-

tions (R2 = 0.794, RMSE = 13).

Despite these alignments, uncertainties in SWAT-generated

streamflow largely arise from the input meteorological dataset and

the adopted model's structure. The preferred AgrEra5 forcing dataset,

superior to CFSR and CMADS (see Section 2.2.2), underestimates

precipitation in the coastal areas of Guangdong province where the

land-sea interface promotes higher precipitation (see Section 4.1).

Consequently, for smaller study areas, combining reanalysis datasets

with measured data is recommended to minimize inaccuracies. The

model's internal limitations, such as shortcomings in simulating flood

processes and rapid streamflow fluctuations, also warrant consider-

ation (Bieger et al., 2017). Furthermore, the model does not currently

reflect the land use changes—particularly urbanization of agricultural

and rural areas in recent decades (Ye et al., 2021)—which affect

hydrological processes. Additionally, the impact of reservoirs, espe-

cially upstream, is significant. The residence time of 0.423 years for

the entire basin, calculated by dividing the total reservoir storage

capacity by the annual discharge of the Pearl River, suggests that it is

necessary to incorporate detailed reservoir management into the

model to improve the simulations of streamflow patterns. Model

uncertainty also arises from the parameters used. Employing methods

such as the Monte Carlo simulation to generate a distribution of

potential streamflow outputs can assist in quantifying this uncertainty

in future work. Moreover, availability of detailed data on the ratios of

surface, lateral, and aquifer flows could also further enhance model

calibration.

5 | CONCLUSION

The hydrological processes in the PRB exhibit significant temporal

(seasonal) and spatial (zonal) variability, highlighting the influences of

monsoon climate and landscape features. Based on the analysis, we

draw the following conclusions:

1. The fundamental patterns of hydrological processes in the PRB are

shaped by precipitation, which is influenced by the monsoon cli-

mate and terrain topography. Land use and soil texture are signifi-

cant to water redistribution in the soil profile and regulate the

locations of the active zones of water fluxes. The surface flow is

the most active within the precipitation centres. The lateral flow

and AET dominate in the forests and agricultural regions, respec-

tively, while the aquifer flow is more active in areas with coarse

soil textures.

2. All hydrological processes in the PRB exhibit significant spatiotem-

poral variability. AET and aquifer retention cause the streamflow

and precipitation to be out-of-phase. The surface/aquifer flow dis-

plays the strongest/weakest variations in space and time, while

the lateral flow varies at an intermediate level between the surface

and aquifer flows.

3. Based on the hydrological variability, the PRB can be divided

into three substreams: a drought-prone upstream, a hydrologi-

cally active midstream, and a typhoon-affected downstream

from west to east. Streamflow within each substream is inter-

connected and exhibits similar temporal patterns and statistical

distributions.

4. The streamflow PDFs are multimodal, and the PDFs can be decom-

posed into three unimodal distributions representing dry, transi-

tional, and wet conditions. The PRB features a large and steep dry

mode, a flat transitional mode, and a short wet mode. The percent-

ages and centre values of each mode vary among the substream

subregions, reflecting the diverse dynamics of water resources

within each substream.
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