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ABSTRACT: To improve the forecasting performance in dynamically active coastal waters forced by winds, tides, and

river discharges in a coupled estuary–shelf model off Hong Kong, a multivariable data assimilation (DA) system using the

ensemble optimal interpolation method has been developed and implemented. The system assimilates the conductivity–

temperature–depth (CTD) profilers, time series buoymeasurement, and remote sensing sea surface temperature (SST) data

into a high-resolution estuary–shelf ocean model around Hong Kong. We found that the time window selection associated

with the local dynamics and the number of observation samples are two key factors in improving assimilation in the unique

estuary–shelf system. DA with a varied assimilation time window that is based on the intratidal variation in the local

dynamics can reduce the errors in the estimation of the innovation vector caused by the model–observation mismatch at the

analysis time and improve simulation greatly in both the estuary and coastal regions. Statistically, the overall root-mean-

square error (RMSE) between the DA forecasts and not-yet-assimilated observations for temperature and salinity has been

reduced by 33.0% and 31.9% in the experiment period, respectively. By assimilating higher-resolution remote sensing SST

data instead of lower-resolution satellite SST, the RMSE of SST is improved by ;18%. Besides, by assimilating real-time

buoy mooring data, the model bias can be continuously corrected both around the buoy location and beyond. The assim-

ilation of the combined buoy, CTD, and SST data can provide an overall improvement of the simulated three-dimensional

solution. A dynamics-oriented assimilation scheme is essential for the improvement of model forecasting in the estuary–

shelf system under multiple forcings.

KEYWORDS: Remote sensing; Forecasting techniques; Data assimilation; Interpolation schemes; Model evaluation/performance;

Ocean models

1. Introduction

In ocean model simulation, data assimilation (DA) provides

an efficient way to address the uncertainties and improve the

forecasts of the ocean model by using observations. Due to

the uncertainties over model parameterization, driving

forces, and initial and boundary conditions, ocean models

are imperfect representations of the actual environments.

Assimilation techniques for ocean forecasts are commonly

classified into sequential methods (e.g., Kalman filter) and

variational methods (e.g., 3D/4D-Var). The variational DA

algorithms are based on optimal control theory and con-

sider the initial state as the control vector. They need to

compute both the linearized state and the adjoint state and

use a minimization algorithm to minimize the cost-function.

However, complex algorithms make their implementations

difficult. The sequential methods are generally adopted,

which, based on filter theory, estimate the system state se-

quentially forward in time by adding a statistically based

correction term to the solution of the balance equations.

This algorithm is relatively easy to implement. One popular

sequential approach is the ensemble Kalman filter (EnKF)

that was introduced by Evensen (1994, 2003) and Burgers

et al. (1998). The EnKF is a Monte Carlo approximation to

the Kalman filter. However, a practical limitation of the

EnKF is the ensemble size (Oke et al. 2007). Thus, the en-

semble optimal interpolation (EnOI), an approximation of

the EnKF, was born and provides a cost-effective solution

(Oke et al. 2002; Evensen 2003). In theory, the EnOI per-

forms the analysis by a time-invariant ensemble of model

states sampled from a long-term model integration. The

EnOI requires only one deterministic model run, and only

one background state needs to be updated. Thus, the com-

putational cost is inexpensive compared to the EnKF (Oke

et al. 2007).

Owing to its attractive characteristics like quasi-dynamically

consistent, multivariate, inhomogeneous, anisotropic covari-

ances, and high efficiency, the EnOI methods have been ap-

plied by many operational ocean forecasting centers, for

example, in China, Brazil, South Africa, and Australia (Lyu

et al. 2014; Tanajura et al. 2014; Backeberg et al. 2014; Oke

et al. 2008). Oke et al. (2007) have demonstrated the power

of the multivariate EnOI in solving the eddy-resolving prob-

lem in a region of energetic mesoscale variability where theCorresponding author: Jianping Gan, magan@ust.hk
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Leeuwin Current frequently sheds eddies to the west of

Australia. Counillon and Bertino (2009) also suggested that

EnOI can effectively improve the forecasts of the mesoscale

variability in the Gulf of Mexico. To date, real-time buoy-

mounted, shipboard in situ, and remote sensing SST data are

the three main types of data applied in the DA scheme. For

instance, Liu et al. (2013) assimilated temperature and salinity

profiles into an ocean model of the Baltic Sea by using the

EnOI approach and proposed that the static ensemble can well

resolve the high singularity in the coastal and offshore waters.

The remote sensing SST data have been widely applied to the

operational forecast, reanalysis, or validation of the model due

to their excellent spatiotemporal coverage. Losa et al. (2012)

reduced the model uncertainties by assimilating the Advanced

Very High Resolution Radiometer (AVHRR) SST data into

the North Sea and Baltic Sea forecasting model. O’Dea et al.

(2012) improved the SST prediction by assimilating both in situ

and remote sensing SST data into the European northwest

shelf operational model. Based on EnOI, D. Liu et al. (2018)

carried on observing system simulation experiments (OSSE) to

study the impact of assimilating moored velocity on the im-

provement of the simulation in the intraseasonal variability.

Crosby et al. (2017) reported that assimilating buoy observa-

tions can improve model predictions and wave hindcasts and

suggested that dense observational networks lead to a signifi-

cant improvement in model performance. Despite successful

applications of DA in the mesoscale ocean simulation in many

previous studies, its application in estuary–shelf waters is still a

challenge (De Mey et al. 2017). The water properties (e.g.,

temperature, salinity, and velocity) in coastal waters are highly

variable due to the amplified forcing effects of winds, tides, and

freshwater flux, and topographic control. Indeed, a well-

performed DA scheme in the open ocean may not be reliable

in the dynamic coastal waters (Barth et al. 2011; Sperrevik et al.

2015; Edwards et al. 2015; Botto et al. 2018).

The Pearl River Estuary (PRE) is a semienclosed coastal

embayment in the northern South China Sea (NSCS; Fig. 1).

The upper estuary is linked to the Pearl River and the lower

estuary to the adjacent continental shelf. Together, they form

an estuary–shelf system off Hong Kong. The Pearl River dis-

charges on average 10 000m3 s21 of freshwater annually into

the NSCS. The PRE is shaped like a trumpet with a width of

5 km at the northern end and 35 km at the southern end. Over

the continental shelf outside the estuary, the water depth in-

creases to more than 20m and the isobaths run approximately

parallel to the coastline with a strong cross-shelf pressure

gradient. The coastal waters of the estuary–shelf system have

mixed tides predominated by the diurnal frequency with an

amplitude of ;1m and a strong spring–neap tidal cycle (Mao

et al. 2004). The tidal currents change stratification structures

in the PRE and play an important role in vertical mixing, es-

pecially in the shallow nearshore regions (Lai et al. 2018; Z. Liu

et al. 2018). In summer/winter, the monsoon-driven currents

form a freshwater plume that extends eastward/westward over

the shelf (Pan et al. 2020). The circulation and associated river

plume exhibit a distinct seasonal variation, as a result of the

interaction between the wind-driven current and estuarine

circulation (Gan et al. 2009; Zu et al. 2014). The overall

circulation in the estuary–shelf system off Hong Kong is

highly variable in space and time subject to the controls of an

irregular coastline, variable topography, and the multiple

forcings of winds, river discharges, and tides. Inevitably, the

FIG. 1. CTD cast stations during the field survey period, and the PRE model domain and bathymetry. The red

triangles indicate the stations in leg 1, and the blue squares indicate the stations in leg 2. The green dot indicates the

buoy location. The black star indicates the location of Waglan Island.
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model forecast contains uncertainties. Shu et al. (2011a) ana-

lyzed the different sources of error in the circulation simulation

in NSCS and found that the major forecast errors come from

river discharges, atmospheric forcing, and initial and open

boundary conditions. Further, Shu et al. (2011b) reproduced

the structure of Pearl River Plume and coastal upwelling by

assimilatingGroup forHighResolution (GHR) SST and in situ

data using an ensemble data assimilation method.

To improve the accuracy of initial conditions and reduce

forecast uncertainties in the estuary–shelf model off Hong

Kong, a DA system can be applied to constrain the model with

coastal observations. To date, in situ and remote sensing data

have been collected in this region. Since the in situ mea-

surements are sparsely and asynchronously observed in a

highly variable coastal environment, that can potentially in-

troduce error in the estimation of the innovation vectors

(observation minus background) by comparing observations

with the background at the analysis time. In this study, we

propose a novel DA scheme with a variable assimilation time

window to correct the mismatch between the observations

and the model forecast in the analysis process due to asyn-

chronous observation in a highly variable estuary–shelf sys-

tem off Hong Kong. We demonstrate the effectiveness of the

scheme, which can minimize model–observation mismatch

and provides sufficient observations for reconstructing the

model’s initial conditions. We investigate the model forecast

performance when different types of observational data are

assimilated and assess the impacts of assimilating the time

series buoy (temporally continuous) data and remote sensing

SST (spatially continuous) data. Furthermore, the impacts

of the DA system on the hydrodynamics in the PRE are

discussed.

2. Assimilation algorithms and ocean model

a. EnOI algorithms

In EnOI, the assumption is the anomaly based on the en-

semble can be used to mimic the model error variance, as the

previous implementations in the SCS (Xie et al. 2011; Lyu et al.

2014). The EnOI estimates an ‘‘optimal’’ oceanic state at a

given time using a numerical model, observations, and as-

sumptions on their respective distribution and uncertainty. The

distribution of stochastic errors is assumed to be Gaussian and

nonbiased. This relationship is summarized in the following:

xa 5 xf 1K y2Hxf
� �

, (1)

where y is them3 1 vector of observations (m is the number of

available observations), x is the n 3 1 model state estimate

vector (n is the number ofmodel state variables ordered by grid

points), and H is a measurement operator that transforms the

model state to the observation space. The superscripts ‘‘a’’ and

‘‘f ’’ refer to the analysis and the forecast model states, re-

spectively. The vector y2Hxf describes the innovations, andK

is the gain matrix that weights the observational information

based on the model and observation error covariance. Each

row ofK contains the weights used to update one state variable

depending on the innovation vector. Assuming that the model

and observation errors are nonbiased, independent of each

other and that all variables are Gaussian, the gain that leads

to a minimum distance to an unknown truth is

K5PfHT HPfHT 1R
� �21

, (2)

where Pf represents the n 3 n prior sample error covari-

ance matrix (approximated by the forecast ensemble), R is

the m 3m observation error covariance, and superscript T

denotes matrix transpose. As can be seen from the for-

mulas, the quality of the analysis depends on the error

statistics Pf and R. The EnOI is a cost-effective ensemble

DA method that assumes a static ensemble is representa-

tive of the instantaneous forecast error. The forecast co-

variance matrix is computed from a collection of model

states, as follows:

Pf 5
a

N2 1
A0A0T , (3)

where the ensemble anomalies are given as

A0 5Af 2Af , and (4)

Af 5 xf
1 , x

f
2 , . . . , x

f
N

h i
, (5)

FIG. 2. Time series of (a) river discharge observed at Gaoyao

Station, (b) tide elevation at Waglan Island (shown in Fig. 1),

and (c) wind stress averaged in the NSCS during the cruise pe-

riod. The positive values indicated by the red and blue lines in

(c) represent westerly and southerly winds, respectively, and the

positive value of alongshore wind indicates upwelling-favorable

wind (gray area).
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where Af is the ensemble of N model forecasts andAf is the

ensemble mean; a 2 (0, 1] is a parameter introduced to adjust

the covariance of the ensemble perturbations to capture the

model uncertainties. In this study, the a is set to 0.3.

b. The coastal ocean model

In this numerical study, the Regional Ocean Modeling

System (ROMS) is used to simulate the hydrodynamic envi-

ronment in the coupled estuary–shelf system off the PRE (Liu

and Gan 2020). ROMS is a free-surface, hydrostatic, primitive

equation model discretized with a terrain-following vertical

coordinate system (Shchepetkin and McWilliams 2005). The

model domain has been horizontally discretized into a matrix

with 400 3 441 points covering the PRE and the shelves off

Guangdong in the NSCS (Fig. 1). An orthogonal curvilinear

coordinate system is designed to follow the coastline. The ul-

trahigh resolution (;0.1 km) resolves the estuary and the inner

shelf that neighbors Hong Kong. The grid size gradually in-

creases to ;1 km over the shelf at its southern boundary. The

model has 30 vertical levels with terrain-following coordinates

(Song and Haidvogel 1994) and adopts higher resolutions

(,0.2m) in both the surface and bottom boundary layers to

better resolve the dynamics there. The model is nested within

an NSCS model with a coarser resolution (;3 km; Gan et al.

2015). This NSCS model is further downscaled from a hindcast

simulation in the China Seas Multiscale Ocean Modeling

System (CMOMS) (Gan et al. 2016).

The model is initialized and spun-up with temperature and

salinity extracted from the NSCS model on 1 May 2015. A

new tidal and subtidal open boundary condition (TST-OBC)

scheme developed by Liu and Gan (2016, 2020) is applied to

this limited-area ocean model. Tidal forcing is applied to the

open boundary by eight major tidal constituents of M2, K1,

S2, O1, N2, P1, K2, and Q1, which are extracted from the

Oregon State University Tidal Inversion Software (Egbert

and Erofeeva 2002). Atmospheric fluxes are estimated by

the bulk formula using the European Centre for Medium-

Range Weather Forecasts (ECMWF) interim reanalysis

dataset (ERA-Interim). A time-dependent river discharge

obtained from the upstream hydrographic monitoring sta-

tion at Gaoyao is applied as the runoff from the Pearl River.

Details about the model implementation and the well-

validated model results can be seen in Liu and Gan (2020).

3. Observations and experiments

a. Observations

A hydrographic cruise to collect in situ data on marine en-

vironmental parameters in the PRE was implemented from 10

to 25 July 2015. The cruise was divided into two legs: 1) leg 1

from 13 to 18 July and 2) leg 2 from 19 to 25 July. Figure 2

shows the river discharge, tide, and wind conditions during the

cruise period. The river discharge was stable during this period,

with an average discharge of 10 000m3 s21. The field survey

experienced a prominent spring–neap tidal cycle, where a

spring tide was seen during leg 1 and a neap tide during leg 2.

The winds were weaker during leg 1, while a typical summer

southwesterly monsoon prevailed during leg 2. In situ salinity

and temperature were measured with a well-calibrated Sea-

Bird SBE25 CTD profiling system. The measurement stations

are located along the transects in the PRE and over the

TABLE 1. Summary of assimilation experiments.

Expt DA data

Obs time window

for assimilation

Reinitialization/analysis

time T

Obs time window

for validation

NoDA Control run without DA No No No

EXP1 Only CTD data (T 2 24 h, T) At 0000 local time (T, T 1 24 h)

EXP2 Only CTD data (T 2 72 h, T) Max flood/ebb (T, T 1 72 h)

EXP3 Only OSTIA SST data T Satellite obs time (T, T 1 24 h)

EXP4 Only MUR SST data T Satellite obs time (T, T 1 24 h)

EXP5 Only buoy data (T 2 0.5 h, T 1 0.5 h) At 0000 local time (T, T 1 24 h)

EXP6 CTD1buoy1MUR SST (T 2 72 h, T) Max flood/ebb (T, T 1 72 h)

FIG. 3. Analysis–forecast schemes for EXP1 and EXP2 that were used in the model. The blue dot indicates the

reinitialization/analysis time of DA.
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adjacent shelf (Fig. 1). The survey period covered the spring–

neap cycle and different wind forcing conditions, which aids in

the identification of the variability of salinity, temperature, and

circulation. At the same time, we conducted time series mea-

surement of temperature, salinity, and current in the surface

(1m), middle (15m), and bottom (25m) layers using a buoy

mooring located in the south of Hong Kong Island (Fig. 1). Only

temperature and salinity data have been assimilated in this study.

Remote sensing SST data are also used in this study. Due

to the differences in satellite source data and integration

methods, the accuracy of SST products could differ, espe-

cially for the shelf and coastal waters. Two kinds of satellite

SST products with different spatial resolutions were exam-

ined in our DA study. One is the Operational SST and Sea

IceAnalysis (OSTIA) SSTdata (http://ghrsst-pp.metoffice.gov.uk/

ostia-website/index.html) obtained from the National Centre for

Ocean Forecast (NCOF) of the Met Office (Donlon et al.

2012), which is a global daily analysis gridded at a 0.058 3
0.058 horizontal resolution. The other is the Multi-Scale

Ultra High Resolution (MUR) SST daily product (https://

registry.opendata.aws/mur/) produced at the Jet Propulsion

Laboratory (Chin et al. 2017). The MUR SST data are re-

leased on a uniform latitude–longitude grid with a sampling

resolution of 0.018 or approximately 1 km.

b. Data assimilation experiments

We carried out a series of assimilation experiments using

different types of observational data and assimilation time

windows to assess the DA effects (Table 1). The control run

without DA (NoDA) of themodel is used to identify themodel

anomaly fields and as a benchmark for comparison with the

assimilation experiments. The model simulation period is from

10 to 30 July 2015, covering the entire field survey period. Due

to the high variability of features in the waters of the PRE and

the adjacent shelf, the selection of the assimilation time win-

dow is a key factor for successful assimilation. A shorter cycle

length of DA has more frequent analyses and initialization of

the model, and thus resolves better the highly variable features

in the waters. However, the disadvantage of this is that the

increasing noise in the initial condition would be accumulated

during the model continuous integrations with frequent re-

initialization. Although a longer cycle provides better tempo-

ral observation coverage, it can introduce a larger analysis

increment with temporal representation errors, and ob-

servational data might be overfitted (Sandery 2018). To

evaluate the influences of the assimilation time window on

model forecasts and the effects of assimilating CTD data,

two schemes for the observation time window were de-

signed: EXP1 and EXP2 (Fig. 3 and Table 1). EXP1 as-

similated the observed CTD data at 0000 (local time T)

every day, in which the data collected in the previous 24 h

(T 2 24 h) were assimilated into the model. The model

ran a 1-day simulation (T 1 24 h) to the next DA time

(0000 of the second day) and repeated this assimilation

process. The CTD data observed within this 24-h simula-

tion cycle (T 1 24 h) were not assimilated into the model

FIG. 4. The structures of SDs of the (a),(b) temperature and (c),(d) salinity in the (left) surface and (right) bottom

layers that form the background model state.
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yet and was to be used for validating the model results of

this simulation.

Because the tidal currents with diurnal periods are dominant

in the PRE waters, we separate the waters into states of flood

and ebb tides, respectively. In EXP2, we used an assimila-

tion time window that agreed with the flood–ebb tidal cycle.

The observation data were classified into ebb and flood

types based on the observed time. In this scheme, we first

assimilate the ebb tide data in the previous 3 days (T2 72 h)

(before the DA time) on the maximum ebb tide (Te) of the

model as initial condition, and the model ran until the next

DA time (maximum flood tide, Tf). We then used the flood

tide data in the previous 3 days (T 2 72 h) to update the

initial condition on that maximum flood tide (Tf), and

subsequently the model ran a 3-day simulation until the

next DA time (maximum ebb tide on the third day). We

repeated this assimilation process. Compared with EXP1,

the advantage of this scheme is that it can reduce the mis-

match representation of observation at the analysis time

caused by asynchronous observation and provide more

observations for better coverage when reconstructing the

initial condition.

As the CTD data are sparsely observed, the satellite

SST is a significant supplement to get the initial condition

of temperature updated over the entire domain. To assess

the influence of remote sensing SST data on the DA, we re-

spectively assimilated the OSTIA SST (EXP3) and MUR

SST (EXP4) data. Besides, the time series measurements

using buoy mooring provided useful information for the

temporal variation in the estuary–shelf system. Assessing the

impact of assimilating the near-real-time buoy data (EXP5)

not only helps to improve the model simulation but also to

provide guidance for where to deploy buoys.We also assessed

the outcome of assimilation by using all buoy, CTD, and

satellite SST data in EXP6. EXP2 and EXP6 are assimilated

at the flood/ebb time, and the rest use a 24-h assimilation

time window.

c. Data assimilation settings

The water properties in the coastal area are highly variable

in time and space under multiple forces. The seasonal vari-

ability is strong in the region due to the monsoon forcing, and

we thus only consider the samples in summer. We generated

the ensemble from the model runs without data assimilation in

July of 2014 and 2015 and extracted the results every 12 h, in

which the samples hold the information of model variability

in the temporal scale of semidiurnal tides. These samples were

then combined as an ensemble with a size of 120. The struc-

tures of standard deviations (SD) of the temperature and sa-

linity in the surface and bottom layers from the background

FIG. 5. RMSEs of (a),(b) salinity and (c),(d) temperature of the water column at the observation stations for the

model without DA on (left) leg 1 and (right) leg 2.
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model state are shown in Fig. 4. The relatively large SD of

temperature occurs around the nearshore waters in both

surface and bottom layers (Figs. 4a,b), indicating the strong

tidal and river discharge effects. Meanwhile, the larger

SD of surface temperature also presents in the eastern

shelf region and bottom temperature on the south bound-

ary, suggesting the wind and boundary effects, respec-

tively. For the surface salinity, the larger SD is primarily

located in the western coastal region (Fig. 4c), while for

the bottom salinity, the larger SD is much closer to the

coastline in the west and inside the estuary (Fig. 4d), in-

dicating combined strong tidal and river discharge effects.

In basic terms, the background model samples can reflect

the temperature and salinity errors from the combined effects

of freshwater discharges, tides, winds, and open boundary

conditions.

To increase the rank of the background error covariance

matrix and decrease the spurious correlations of ensemble

covariances, horizontal localization has been applied in

the DA experiments. Localization ensures that measure-

ments will only affect states in the waters within a certain

distance from the measurement location. The covariance

localization is a procedure where the covariance is multi-

plied point by point by a fifth-order function (Gaspari and

Cohn 1999). The in situ data are scattered with different

spatial distances, but the distances between the stations

are generally less than 20 km. Here, a uniform horizontal

correlation scale of 20 km is adopted based on sensitivity

experiments. In the vertical direction, to avoid the as-

similation of more than one measurement for the same

position, observations averaged in model layers were used

for every profile. In general, the satellite remote sensing

SST and the data of temperature/salinity collected from

CTD profilings are different and they have different ob-

servation error variances. For observational errors in the

temperature/salinity profiles, we adopted the functional

shapes for observation errors as those from Xie and Zhu

(2010) and Stammer et al. (2002), which were based on

uncertainty estimations from analyses of global observa-

tion data of Levitus et al. (1994) and Levitus and Boyer

(1994), but with a larger SD because of the higher repre-

sentativity errors in the coastal zone. We assumed that

the observational errors are Gaussian with zero mean

and uncorrelated between temperature and salinity and

between different levels. Thus, the SDs of observational

errors of temperature and salinity are assumed to be

represented as a function of the depth d (m) as the fol-

lowing equations:

s
temp

5 0:051 0:45 exp

�
2d

500

�
and (6)

s
salt

5 0:31 0:2 exp

�
2d

125

�
. (7)

Xie et al. (2008) showed that the satellite remote sensing SST

products near the coastal waters have a larger uncertainty in

the SCS, in which the uncertainty has an increasing trend with

decreasing water depth. To well consider the representative

error, we exaggerated the raw observation error from the data

provider by a factor of 3. Thus, the SD of SST is represented as

this equation:

s
SST

5 3s
o
1 0:5 exp

�
2d

30

�
. (8)

Here, so represents the estimated error SD of SST.

4. Results

In the following sections, we explore the impact of dif-

ferent assimilation schemes on the forecast of the water in

the estuary–shelf off Hong Kong. The root-mean-square

error (RMSE) and the correlation coefficient between

model results and observations are used to evaluate the DA

improvement. All the model results from the assimilative

experiments are compared with the not-yet-assimilated

observations. For instance, in the EXP1 and EXP2, we

assimilated the CTD data observed 24 or 72 h (T 2 24 h or

T 2 72 h) before the analysis time T and ran the model

simulation for 24 or 72 h (T1 24 h or T1 72 h). And then the

CTD data observed within this period were not assimilated

into the model yet and will be used to validate the model

results of this simulation (Table 1). Thus, these observations

are semi-independent (Liu et al. 2009).

The RMSE represents the average magnitude of the model–

observation differences, defined as

RMSE5

�
1

N
�
N

i51

(h
mo

2h
ob
)2
�1/2

. (9)

The correlation coefficient is defined as

TABLE 2. RMSE of salinity in the NoDA, EXP1, and EXP2 experiments in region B and transect A on leg 1 and region B and region

C on leg 2.

Expt Region B on leg 1 Transect A on leg 1 Region B on leg 2 Region C on leg 2

Salinity (PSU) NoDA 2.27 2.33 2.32 0.87

EXP1 2.32 2.80 2.17 0.70

EXP2 1.24 2.09 1.50 0.50

Temperature (8C) NoDA 1.58 1.08 0.88 0.95

EXP1 1.31 0.85 0.97 0.99

EXP2 0.80 0.68 0.63 0.79
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R5
�
N

i51

h
mo

2h
mo

� �
h
ob
2h

ob

� �� 	

�
N

i51

h
mo

2h
mo

� �2�N
i51

h
ob
2h

ob

� �2" #1/2
, (10)

where hmo and hob represent the modeled and observed vari-

ables, respectively; and the overbar denotes the temporal av-

erage; N is the number of records.

A model run without DA is first used to identify the simu-

lation bias. We discuss the results for leg 1 and leg 2 separately,

to identify the responses to different tidal and wind conditions

during the survey period. Figure 5 presents the RMSEs of sa-

linity and temperature of the water column at the observation

stations for two legs in NoDA. On leg 1 with a spring tide and

weak wind, the larger RMSEs of salinity and temperature

mainly occur inside the estuary (transect A) and the western

coastal waters (region B) over the shelf (Figs. 5a and 5c;

transect A and region B shown in Fig. 1), where relatively

strong tidal and river discharge effects occur in the nearshore

waters. Relatively small RMSEs are found in the offshore

FIG. 6. For (left) leg 1 and (right) leg 2, RMSEs of salinity of the water column at the observation stations for (a),(b)

EXP1 and (c),(d) EXP2, along with (e),(f) the differences in temperature RMSEs between EXP2 and EXP1.
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waters in region C (Fig. 1). On leg 2 with a neap tide and

strong wind, the RMSEs of salinity at the stations are still

larger in the western coastal waters (region B) and smaller

in the offshore region (Fig. 5b). Despite the neap tide and

strong wind during this leg, the RMSE of salinity in region

B of the tidally affected zone is very close between leg 1

and leg 2, while there is a much smaller RMSE (0.87 PSU,

where PSU is a ‘‘practical salinity unit’’; Table 2) in off-

shore waters (region C). As for temperature, the larger

RMSEs exist mainly in the western coastal waters on leg 1

(Fig. 5c), although the RMSE of 0.888C on leg 2 during

neap tide is much smaller than that of 1.588C on leg 1

during spring tide (Table 2). We also see a slight increase in

the RMSE of temperature (0.958C) in the offshore waters

(region C) from that (0.888C) in the coastal region (region

B). Overall, the larger model simulation errors occur pri-

marily in the shallow coastal regions where dynamical in-

stabilities are most intense under combined forcings of

freshwater discharges, tides, wind, and boundary condi-

tions (external flux).

a. Flood–ebb assimilation time windows

As discussed above, the tidal currents play an important role

in changing the salinity and temperature structures in the PRE

and over the shallow shelf region. As a result, the observed

salinity and temperature data have large variability during the

flood–ebb tidal cycle. We first conduct CTD DA in EXP1

with a fixed 24-h assimilation time window followed by

adding a varied assimilation time window based on the food–

ebb tidal cycle in EXP2 (Table 1). Figure 6 shows the RMSEs

of salinity for the water column and their differences at the

sampling stations in the PRE and adjacent shelf during leg 1

and leg 2 for EXP1 and EXP2. The patterns of RMSE in

salinity of EXP1 are similar to those in the NoDA case

(Figs. 5a,b) for both leg 1 and leg 2 (Figs. 6a,b). The RMSE

of salinity in region B and transect A are 2.32 and 2.80 PSU

in EXP1, which are even larger than those (2.27 and 2.33 PSU)

in theNoDAcase (Table 2), implying that themodel–observation

mismatch at the analysis time can amplify the errors in the

innovation vector and undermine the model simulation. During

leg 2 with a neap tide, the RMSEs of salinity in EXP1 in

regions B and C are slightly decreased compared with the

NoDA case.

In EXP2 with the consideration of the tidal variation in the

assimilation window, the RMSEs of salinity are greatly im-

proved in the western coastal region and outside the estuary

on leg 1 as compared with EXP1, in which most of the salinity

RMSEs decrease to less than 1 PSU (Fig. 6c). For leg 2, the

RMSEs of salinity at most stations are less than 1 (Fig. 6d).

The differences in salinity RMSE between EXP2 and EXP1

are negative at most stations (Figs. 6e,f), suggesting a greater

improvement in EXP2. Overall, the RMSEs of salinity at all

stations are 1.57, 1.54, and 1.07 PSU in NoDA, EXP1, and

EXP2 (Table 3), respectively. This indicates the RMSE of

salinity is improved from 1.9% in EXP1 to 31.9% in EXP2.

The correlation coefficient of salinity between the DA ex-

periments and observations increases from 0.83 in NoDA to

0.91 in EXP2.

For temperature, the RMSEs of EXP1 in region B and

transect A (1.318 and 0.858C) on leg 1 are slightly lower than

those (1.588 and 1.088C) in NoDA (Table 2). However, the

RMSEs of temperature in EXP1 become even larger (0.978 and
0.998C) in both regions B and C than those (0.888 and 0.958C) in
NoDA during leg 2. As a result, the patterns of RMSE in the

temperature of EXP1 are also similar to those in NoDA

(Figs. 5c,d) for both leg 1 and leg 2 (Figs. 7a,b). By adopting the

flood–ebb tidal assimilation window in EXP2, the reduction

in RMSE is remarkable, in which the RMSEs of temperature

are lower than 18C at most sampling stations on both leg 1 and

leg 2 (Figs. 7c,d). The differences in temperature RMSE be-

tween EXP2 and EXP1 are negative at most stations, indi-

cating the RMSEs are reduced in EXP2 (Figs. 7e,f). The

RMSE of temperature at all stations is 1.038, 0.998, and 0.698C
in NoDA, EXP1, and EXP2 (Table 3), respectively. The

RMSE of temperature has been reduced by 33.0% in EXP2,

but only by 3.9% in EXP1. The correlation coefficient of

temperature at all stations increases from 0.81 in NoDA to

0.89 in EXP2.

The results demonstrate that the DA scheme with the

variable flood–ebb assimilation time window minimizes

the mismatch between assimilated observations and model

forecasts at the analysis time, reducing the error in the

estimation of the innovation vectors. The longer assimi-

lation cycle and more accurate assimilation frequency or

windows in EXP2 lead to high-quality analysis. The

quality of simulations obtained by DA is largely deter-

mined by the coverage and quality of observations (She

et al. 2007). Overall, the DA experiment with a varied

assimilation time window based on the intratidal variation

of the observational data shows a much greater improve-

ment in model performance in the estuary and coastal

regions than that with a fixed and shorter assimilation

time window.

b. Assimilation of remote sensing SST data

The remote sensing SST data can potentially provide a

valuable constraint by updating the initial condition system-

atically due to its better spatiotemporal coverage. Two ex-

periments (EXP 3 and EXP4, Table 1) with SST data of

different spatial resolutions are implemented to assess the

TABLE 3. RMSE and correlation coefficients of salinity and

temperature in the NoDA, EXP1, EXP2, EXP4, and EXP6

experiments.

Variable Expt RMSE

RMSE

improvement

(%)

Correlation

coef

Salinity (PSU) NoDA 1.57 — 0.83

EXP1 1.54 1.9 0.83

EXP2 1.07 31.9 0.91

EXP6 1.09 30.6 0.91

Temperature (8C) NoDA 1.03 — 0.81

EXP1 0.99 3.9 0.85

EXP2 0.69 33.0 0.89

EXP6 0.69 33.0 0.89
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influences of assimilating satellite SST data. The overall RMSE

of surface temperature is 0.758C for the MUR data, while it is

1.048C for the OSTIA data (Table 4). The correlation coeffi-

cient between theMUR SST and CTD data is also greater than

that of the OSTIA data. This suggests MUR SST has a better

agreement with the CTD data as compared with OSTIA SST

data. Meanwhile, the MUR SST data have better coverage

near the coastal region and inside the PRE. Figure 8 illustrates

SST differences between the CTD observation and models

of NoDA, EXP3 assimilating OSTIA SST data, and EXP4

assimilating MUR SST data. Apparently, the SST is warmer in

the estuary and western coastal region and colder outside the

estuary than the observations in NoDA on leg 1 (Fig. 8a), in

which the deviations of SST exceed 18C atmost stations. On leg

2 under the strong upwelling-favorable wind, the model with-

out DA overestimates the SST on the west coast and under-

estimates outside the estuary (Fig. 8b). As a result of less

coverage of OSTIA SST data inside the estuary and nearshore

region, the SST deviation in EXP3 shows a similar pattern to

that in NoDA on leg 1(Fig. 8c). On leg 2 of EXP3, the SST is

decreased at most stations with SST deviations within 18C by

assimilating OSTIA SST data (Fig. 8d). For the EXP4, the SST

FIG. 7. As in Fig. 6, but for temperature.
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deviations are reduced within 18C at most stations on both leg 1

and leg 2 by assimilating higher-resolution MUR SST data

(Figs. 8e,f). Even under the strong upwelling-favorable wind,

the SST simulation errors can be reduced effectively by

assimilating OSTIA and MUR SST data on leg 2. Table 4

shows the RMSE and correlation coefficients of SST at all

stations in NoDA, EXP3, and EXP4. The RMSE of SST has

been reduced by 30.5% in EXP4, decreasing from 0.828 to
0.578C, but only by 12.2% in EXP3 (Table 4). The correla-

tion coefficient between the model and observation in-

creases from 0.72 in NoDA to 0.83 in EXP4. Therefore, the

higher quality and better coverage of MUR SST data lead

to a greater improvement in the surface temperature of the

model simulation.

Figure 9 displays the time-averaged SST for leg 1 and leg 2

from the remote sensing observation, NoDA, EXP2, and

EXP4. An average of the MODIS, OSTIA, and MUR SST

data is considered as the remote sensing observation. On leg

1, warmer water appears on the western side and in the off-

shore region where the temperature is higher than 308C.
Meanwhile, a colder-water pool appears around Hong Kong

and extends to the eastern side (Fig. 9a). Without DA, the

pattern of SST is consistent with the observation. However,

the SST is warmer in the western and offshore regions and

colder around Hong Kong and over the eastern shelf in

NoDA (Fig. 9c). On leg 2 under the upwelling-favorable

wind, the SST drops to less than 298C over the entire domain

(Fig. 9b). The relatively warm water is located on the eastern

side and the range of colder SST around Hong Kong is en-

hanced by the upwelling water. Without DA, a warmer-water

belt lies on the western side and extends eastward (Fig. 9d).

Relatively warm water occupies in the estuary and the west-

ern shelf due to the river discharge. After assimilating the

CTD data, the time-averaged SST in EXP2 shows a similar

pattern to that in NoDA (Figs. 9e,f), indicating theDA effects

are unsustainable when only sparse CTD profiles are assim-

ilated and will be dissipated by the strong multiple forcings of

winds, river discharges, tides, and open boundary conditions.

In EXP4, the SST has reproduced two warmer water regions

and the intensity of the colder water region is reduced around

Hong Kong on leg 1 (Fig. 9g). For leg 2, the warmer-water

belt is smoothed, and the SST is consistent with the obser-

vation (Fig. 9h). Thus, assimilating the MUR SST data can

provide sustainable improvement of SST in the simulation.

c. Assimilation of buoy data

We examine the effect of assimilating time series buoy data

only in EXP5 with a daily assimilation frequency. During the

analysis of the assimilation cycle, observations that fall within a

30-min window on either side of the analysis time are used. The

time series temperature and salinity in the surface, middle, and

bottom layers for the buoy observation, NoDA, and EXP5 at

the buoy location are shown in Fig. 10.

The surface water has lower salinity and higher temperature

during spring tide on leg 1 due to the spreading of freshwater by

the strong tidal current, while it has a higher salinity and lower

temperature during neap tide with the upwelling-favorable

wind on leg 2 (Figs. 10a,b). The model without DA and EXP5

can reproduce these variabilities caused by the spring–neap

tidal cycle. The RMSE of surface salinity has further been re-

duced by 53.9% in EXP5, decreasing from 3.30 PSU in NoDA

to 1.52 PSU in EXP5 (Table 5). Meanwhile, the RMSE of

temperature reduces from 0.898C in NoDA to 0.598C in EXP5

with a 33.7% improvement. For the middle and bottom layers,

the water salinity and temperature are also influenced by the

spring–neap tide cycle and the upwelling-favorable wind. The

model in EXP5 reproduces two lower salinity periods at sub-

surface on 14 and 21 July. In particular, themodel also captures

an increasing salinity due to the upwelling-favorable wind after

21 July during leg 2. However, the model without DA shows

smaller variabilities than those from EXP5 in the middle and

bottom layers. As a result, the RMSEs of salinity in the middle

and bottom layers have been reduced by 50.9% and 16.7%,

respectively (Table 5). Similar to the salinity, the DA experi-

ment has greater improvements in the temperature in the

middle and bottom layers, reducing 53.6% and 66.7% of the

temperature RMSE, respectively. After a long-time simula-

tion, the errors of the simulation without DA are increased in

the last few days of July, while EXP5 assimilating the time

series data can constrain the model dispersion and reduce

forecast errors.

Figure 11 shows the differences in RMSEs of the salinity and

temperature of the water column at the observation stations

within a 40-km radius (twice of the localization radius) of the

location of the buoy betweenEXP5 andNoDAon leg 1 and leg

2. A prominent reduction in RMSE of salinity (negative value)

occurs around the buoy location when the wind is weak on leg 1

(Fig. 11a). When the strong southwesterly wind prevails during

leg 2, the reduction zone of salinity RMSE is extended along-

shore outside the estuary (Fig. 11b). For the temperature, as-

similating buoy data also reduce the RMSEs around the buoy

location. (Fig. 11c).Meanwhile, theRMSEs of temperature are

obviously reduced around the buoy location and on the eastern

shelf in EXP5 during leg 2 (Fig. 11d). Apparently, the im-

provements of both salinity and temperature are more signif-

icant on leg 2 than on leg 1. The spatial impact by assimilating

buoy data may well be linked with the prevailing wind during

different legs of the research cruise.

The depth-averaged horizontal currents are relatively

weak under the weaker upwelling-favorable wind on leg 1,

while strong eastward currents under strong upwelling-

favorable wind dominate the entire domain on leg 2 (Figs. 12a,b).

TABLE 4. RMSE and correlation coefficients of surface tem-

perature for the OSTIA data, MUR data, and NoDA, EXP3, and

EXP4 experiments.

Source

RMSE

(8C)
RMSE

improvement (%)

Correlation

coef

OSTIA

SST

1.04 — 0.72

MUR SST 0.75 — 0.82

NoDA 0.82 — 0.72

EXP3 0.72 12.2 0.74

EXP4 0.57 30.5 0.83
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The spatial correlations of the simulated salinity and temperature

at the buoy location indicate the footprint, or region of influence,

by assimilating data from the buoy. The cross-correlation struc-

tures for the surface temperature and salinity show that the

maximum correlation occurs around the buoy location and in

the direction of the wind-driven upwelling current (Figs. 12c,d).

The fluctuation of upwelling wind, that is, upwelling and relaxa-

tion fromupwelling,may also extend the buoy influence upstream

when upwelling-favorable wind relaxes (Gan and Allen 2002).

For the bottom layer, the maximum correlation regions of

salinity and temperature run approximately parallel to the

isobaths outside the estuary with a strong cross-shelf gradient

on the shelf (Figs. 12e,f), implying the influence of bottom

boundary conditions.

d. Combined buoy, CTD, and remote sensing SST data

To investigate whether assimilating all three kinds of ob-

servational data can achieve the best forecast results, a DA

FIG. 8. Sea surface temperature differences with respect to in situ data from (left) leg 1 and (right) leg 2 for the

(a),(b) NoDA; (c),(d) EXP3; and (e),(f) EXP4.
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FIG. 9. Time-averaged SST for (left) leg 1 and (right) leg 2 from (a),(b) satellite observation; (c),(d) NoDA; (e),(f)

EXP2; and (g),(h) and EXP4.
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experiment EXP6 combining buoy, CTD, and remote sensing

SST data is conducted. The RMSEs of salinity and tem-

perature and the time-averaged SST for leg 1 and leg 2 in

EXP6 are shown in Fig. 13. The RMSEs of salinity in EXP6

are greatly improved on the west coast and outside the es-

tuary for both leg 1 and leg 2, in which most of the RMSEs of

salinity decreased to less than 1 PSU (Figs. 13a,b). Similar to

salinity, the RMSEs of temperature are lower than 18C
(Figs. 13c,d). In short, the patterns of RMSEs for both sa-

linity and temperature in EXP6 are similar to those in EXP2

(Figs. 6c,d and 7c,d). For the SST, EXP6 has similar struc-

tures to those of EXP4 assimilating MUR SST for both leg 1

and leg 2 (Figs. 13e,f). Therefore, the combined assimilation

can take advantage of both the vertical improvement from

the assimilation of CTD data and the improvement of the

upper-layer temperature from the assimilation of remote

sensing SST.

To illustrate the overall performance of these assimilating

schemes, the vertical profiles of the RMSEs of salinity and

FIG. 10. Time series (left) salinity and (right) temperature in the (a),(b) surface (1m); (c),(d) middle (15m); and (e),(f)

bottom (25m) layers for the observation (blue), NoDA (green), and EXP5 (red) at the buoy location (shown in Fig. 1).

TABLE 5. RMSE of salinity and temperature in the surface, middle,

and bottom layers in the NoDA and EXP5 experiments.

Variable Expt Surface Middle Bottom

Salinity (PSU) NoDA 3.30 0.57 0.12

EXP5 1.52 0.28 0.10

Improvement (%) 53.9 50.9 16.7

Temperature (8C) NoDA 0.89 1.25 1.26

EXP5 0.59 0.58 0.42

Improvement (%) 33.7 53.6 66.7
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temperature calculated from the data at the same depths of all

stations in the experiments of NoDA,EXP1, EXP2, EXP4, and

EXP6 are presented in Fig. 14. The RMSE profile of salinity in

EXP6 is nearly overlaid on that in EXP2, where the im-

provements are remarkable from near the surface to a depth of

30m. For the water below a depth of 30m, the RMSEs of sa-

linity are less than 0.1 PSU in all experiments since the deep

water is relatively stable with high salinity (Fig. 14a). For EXP4

only assimilating theMURSST data, theRMSEs of salinity are

worse than those in NoDA in the whole water column, indi-

cating that assimilating remote sensing SST data has a negative

impact on salinity simulation. That is because the salinity is

largely controlled by river discharge in this coastal water near

PRE, and less linked with temperature as compared with that

in the open ocean. This is also the reason why we assimilate

both salinity and temperature from CTD, rather than SST

from remote sensing data alone, in the coastal waters such as

PRE. The RMSEs of temperature are reduced in the whole

water column in EXP6 relative to the NoDA experiment

(Fig. 14b). It is interesting to note that only assimilatingMUR

SST can dramatically decrease the RMSE of temperature in

surface waters. However, in the deep water (below 30m), the

RMSEs of temperature in EXP4 are larger than those in

NoDA (Fig. 14b). Assimilating SST data can have a signifi-

cant improvement in the surface layer, because of better

spatiotemporal coverage and high-quality of SST data at the

surface. However, temperature data have generally poor spa-

tiotemporal coverage and larger uncertainties in the deep water.

The RMSE of salinity in EXP6 is 1.09 PSU, which is close to

the RMSE in EXP2 of 1.07 PSU (Table 3) and has been re-

duced by 30.6% relative to the NoDA experiment. The RMSE

of temperature in EXP6 is 0.698C, in which the improvement

reaches 33.0% in the experiment period (Table 3). The cor-

relation coefficient of temperature between EXP6 and obser-

vation is 0.89. The RMSE and correlation coefficient of

temperature are both the same as those in EXP2. Although the

RMSE of salinity in the combined experiment is a little larger

than that in EXP2 due to the negative effect of assimilating

remote sensing SST data, it is necessary to assimilate remote

sensing SST into the ocean model as doing so can significantly

improve the surface temperature systematically.

5. Discussion and summary

Wehave performed a series ofDAexperiments to investigate

the favorable DA scheme to improving numerical simulation in

FIG. 11. Differences in RMSEs of the (a),(b) salinity and (c),(d) temperature of the water column at the

observation stations within a 40-km radius of the location of the buoy between EXP5 and NoDA on (left) leg 1

and (right) leg 2. The star indicates the buoy location, and the dashed circle indicates the range of a 40-km

radius.

MARCH 2021 LA I ET AL . 473



the dynamically active coastal ocean around PRE under winds,

tides, and freshwater forcing. For the estuarine circula-

tion, the buoyancy forcing associated with the freshwater

runoff from river inlets generates a horizontal baroclinic

pressure gradient that increases with depth. With the im-

provement of temperature and salinity, the correction in

the vertical stratification will yield horizontal density

gradients that will be balanced by a correction in the

baroclinic currents. Figure 15 displays the salinity and

temperature along the transect A (Fig. 1) on 13 July for the

observation, NoDA, and EXP6 combining buoy, CTD,

and remote sensing SST data. The freshwater upstream

flows to the mouth of the estuary, forming a strong mixing

in the upper estuary and stratification in the lower estuary.

Vertical differences in salinity of 8–12 PSU appear in the

lower estuary (Fig. 15a). Relatively warm water is located

in the near-surface layer and cold water in the bottom

layer, in which the vertical temperature differences can

reach 58C (Fig. 15b). The salinity in the upper estuary is

overestimated in the model without DA, while that in the

lower estuary is underestimated (Fig. 15c). The tempera-

ture in NoDA is higher than the observation in the upper

estuary and lower in the bottom layer (Fig. 15d). For the

case EXP6, the salinity in the upper estuary is decreased

and the bottom salinity is increased forming a 10 PSU

vertical difference in salinity (Fig. 15e), which is close to

the observations. The temperature turns colder after DA

in the bottom layers (Fig. 15f). The water column in the

upper estuary is mainly controlled by thorough mixing

resulting from the tidal mixing and freshwater. For the

FIG. 12. Depth-averaged horizontal velocity vectors on (a) leg 1 and (b) leg2, and distribution of spatial

correlation for surface (c) salinity and (d) temperature and bottom (e) salinity and (f) temperature with

the buoy location during the cruise period. The black circle indicates the range of a 20-km localization

radius.
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tidally averaged along-estuary circulation, a prominent

two-layer exchange prevails with a seaward current in

the surface layer and a landward current in the bottom

layer (Fig. 15g). The intensity of the surface current is

strengthened after DA and the bottom current intrudes

landward more so than that without DA (Fig. 15h). The

improvement to stratification induced by the assimilation

can significantly enhance stratification and decrease mix-

ing and thus strengthen the two-layer estuarine circulation

after DA in the central estuary.

Another important issue is the covariance localization

radius, which essentially controls the impact area of the

buoy observation. Localization can effectively ameliorate

the spurious long-range correlations between the back-

ground and observations. Oke et al. (2007) suggested that

the localization radius should be larger than the decorre-

lation length scale (i.e., where the correlation becomes

insignificant) of the variables being updated. The locali-

zation radius is appropriate in the sense that it includes

the significantly correlated region, while small or negative

correlations away from the reference point are forced to

have zero correlation. However, the shape of the signifi-

cantly correlated region is not always a circle. For instance,

the high-correlation region in the western waters is in the

FIG. 13. For EXP6 for (left) leg 1 and (right) leg 2, RMSEs of (a),(b) salinity and (c),(d) temperature of the water

column at the observation stations, along with (e),(f) time-averaged SST.
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shape of a long belt. Therefore, when we construct the

localization radius of the influenced region, we need to

consider a creative function for adapting the different

shapes of the correlated region.

In this study, the EnOI algorithm is implemented to

assimilate the CTD, buoy, and remote sensing SST data

into a coastal ocean model in the PRE. We have assessed

the impacts of assimilating these three kinds of data on the

coastal water simulation. We found that the DA experi-

ment with a flood–ebb assimilation time window based on

the intratidal variation of the observation data reduces

the errors in the estimation of the innovation vector

caused by the model–observation mismatch at the analysis

time and improve the simulation particularly in the estu-

ary and shallow coastal regions. Statistically, the overall

RMSEs of temperature and salinity between the DA

forecasts and not-yet-assimilated observations have been

reduced by 33.0% and 31.9% in the experiment period,

respectively. Moreover, when the monsoon is relatively

weak, a 3-day observation window provides better ob-

servation coverage, resulting in greater improvement.

The selection of the DA time window associated with

regional physics and the number of observation samples

needed to spatially cover the variability in the simulated

region are two key factors for successful assimilation in

the dynamic estuary–shelf system.

The assimilation of remote sensing SST data appears to

give a great improvement in the temperature field in shallow

water and the upper layer outside the estuary. Only assimi-

lating remote sensing SST tends to have a negative effect on

the salinity simulation. Because of the higher quality and

better coverage of MUR SST data, assimilating higher-

resolution MUR SST data has better performance than as-

similating OSTIA SST data, which increases the percentage

of surface temperature improvement from 12.2% to 30.5%.

The near-real-time and continuous buoy data can further

provide continuous correction to the model around the

buoy location and beyond with the aid of coastal current.

Analyses of the cross-correlation structures and the regions

of influence of assimilating time series buoy data can sig-

nificantly guide the distribution of buoy location in the field

observation.

Assimilation of the combined buoy, CTD, and MUR SST

data can take advantage of both the improvement in the

water column from the assimilation of CTD profiles and

the improvement of the upper-layer temperature from the

assimilation of remote sensing SST. Assimilating CTD

data, on the other hand, corrects the salinity bias that re-

mains after assimilating the remote sensing SST data.

Assimilating both the buoy and remote sensing SST data is

essential in the model forecasting as it can continuously

and systematically improve the model simulation. The

RMSEs of temperature and salinity have been remarkably

reduced by 33.0% and 30.6% in the experiment period,

respectively. With the improvements of temperature and

salinity, the errors of stratification and pressure gradient

FIG. 14. Vertical profiles of the RMSEs of (a) salinity and (b) temperature calculated from

the data at all stations at the same depths in the experiments of NoDA, EXP1, EXP2, EXP4,

and EXP6.
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are decreased, improving the model physics and thus es-

tuarine circulation simulation.

This study provides new insight into the DA scheme in

the active dynamics coastal waters and indicates that a

dynamics-oriented assimilation scheme is essential for the

model forecasting in the dynamically active estuary–shelf

system under the multiple forcings of winds, tides, and

river discharges.

FIG. 15. Salinity and temperature distributions along transect A (Fig. 1) for (a),(b) the observation, (c),(d)

NoDA, and (e),(f) EXP6 on 13 Jul; (g) the tidally averaged along-estuary velocity U (m s21) on transect A for

NoDA, and (h) the difference of the along-estuary velocity U between EXP6 and NoDA on 13 Jul.
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