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AI-powered spatiotemporal imputation and
prediction of chlorophyll-a concentration in
coastal ecosystems

Fan Zhang 1,2, Hiusuet Kung 2,3, Fa Zhang1, Can Yang 1,2 &
Jianping Gan 1,2,3

Predicting spatiotemporal Chlorophyll-a (Chl_a) distributions is essential for
diagnosing and analysing productivity and ecosystemhealth of coastal oceans.
Yet, current tools remain inadequate for prognosing marine ecosystems
through predicting spatiotemporal Chl_a distributions, particularly in the
dynamic coastal ocean. Coupled physics-biogeochemical models struggle to
resolve complex trophic interactions, while data-driven approaches are lim-
ited by incomplete satellite observations. We developed an advanced
AI-powered spatiotemporal imputation and prediction (STIMP) model for
predicting Chl_a in coastal ocean. STIMP adopts a novel paradigm that first
imputes and subsequently predicts Chl_a across a broad spatiotemporal scale,
resolving difficulties arising from incompletion, nonstationary temporal var-
iations, and spatial heterogeneity of data through integrating specially
designed modules. We demonstrated the STIMP’s robust imputation and
prediction of Chl_a in four representative global coastal oceans. STIMP
reduced the imputation mean absolute error (MAE) by 45.90–81.39% com-
pared with the data interpolating empirical orthogonal function method in
geoscience and by 8.92–43.04% against leading AI methods. With accurate
imputation, STIMPdemonstrated superior predictive accuracy, achievingMAE
reductions of 58.99% over biogeophysical models and 6.54–13.68% over AI
benchmarks. STIMP offers a new approach for predicting oceans’ Chl_a that
typically have spatiotemporally limited data.

Coastal oceans are the world’s most productive marine ecosystems1

because terrestrial nutrient input and active hydrodynamics produce
high biological productivity and biodiversity2,3. The ecosystems of
coastal oceans, however, are vulnerable to frequent and severe
eutrophication4, biogeochemical extremes5, and hypoxia6 that sub-
stantially threaten the sustainability of these coastal environments7,8

and the blue economies of the coastal zones9,10.
The concentration of chlorophyll-a (Chl_a) is a key indicator of the

overall health of marine environments11,12. An increasing number of

studies have diagnosed and predicted Chl_a concentration in marine
ecosystems. These studies can be broadly classified into two cate-
gories: coupled physics-biogeochemistry numerical simulations and
data-driven predictions. Simulations predict the concentrations by
integrating a suit of physical and biogeochemical equations13–15.
Unfortunately, complex and unknown trophic transfers in ocean eco-
systemspose qualitative andquantitative challenges16 in these coupled
physical and biogeochemical models so that factors such as energy
fluxes and biomass are not represented well because of simplified
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biogeochemical cycles. Unlike open ocean, Chl_a identification and
prediction are even more challenge in the coastal waters under con-
trols of multiple forcings from terrestrial, active coupled
hydrodynamic-biogeochemical processes and influx fromopen ocean.
These errors accumulate17 continuously during the long-term inte-
gration of nonlinear systems, ultimately affecting the accuracy of the
simulation results. Many works18,19 intend to integrate observation of
Chl_a and coupled physics-biogeochemistry numerical simulation
model to mitigate error accumulations. By calibrating the state vari-
ables, these methods enhance the forecasting capability of ocean
numerical simulations. However, error accumulations are inevitable in
coupled physics-biogeochemistry numerical simulations20,21.

In contrast, data-driven approaches that use historic observations
allow discovery of underlying dynamic patterns by analysing spatio-
temporal variations of Chl_a. Without requiring extensive oceanic
knowledge, computational-friendly data-driven approaches, such as
mechanistic22, statistical23,24 and deep learning methods25–27, have
gained more attention in marine ecosystem study by offering an
alternative solution to the numerical modelling challenges. Moreover,
remote sensing measurements provide precious data support for the
developing data-driven spatiotemporalChl_a predictionmethods. Sea-
viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution
Imaging Spectroradiometers (MODIS), including Terra MODIS and
Aqua MODIS, and other remotely sensing data provide near-daily
coverage of the global surface ocean28 and capture large-scale changes
of phytoplankton biomass in the ocean29.

However, there remain three challenges in developing large-scale
spatiotemporal Chl_a data-driven prediction method. First, temporal
variations are difficult to capture in existing data. Temporal variations
of Chl_a are controlled by complex physical and biogeochemical
stressors, such as water stratification, nutrient supply, and light con-
ditions, whose variability exacerbate the unpredictability of Chl_a
concentrations, even over short periods30. Second, spatial hetero-
geneity and relationships are difficult to model, and distinct temporal
patterns in Chl_a distributions have been observed across different
locations due to terrain, ocean currents, and other conditions. Third,
high rates of missing observations render spatiotemporal variations
more challenging to comprehend. Satellite remote sensing measure-
ments are highly susceptible to environmental factors such as orbital
position of satellite and cloud coverage31. In a typical coastal ocean
such as the Pearl River Estuary, one of our study sites in the northern
SouthChina Sea (Fig. 1a), the average rate ofmissing 8-dayChl_a data is
50.29%. These kinds of spatiotemporally limited observation data
hinder resolving the variations of Chl_a that are needed for accurate
predictions.

In this study, we developed an advanced AI-powered spatio-
temporal imputation and prediction (STIMP) model for predicting
Chl_a in coastal ocean. The success of STIMP is attributed to the
paradigm of first imputing and subsequently predicting. High rates of
missing observations render spatiotemporal variations of Chl_a and
pose challenges to comprehend and predict of the ecosystem. Most
data-drivenmethods are able tomake the prediction of Chl_awhen the
observation datasets are complete, but struggle to identify its tem-
poral patterns and spatial relationships when there are only partial
datasets of observations. STIMP decomposes the prediction of Chl_a
into twosequential steps: 1) the imputation process, which reconstructs
multiple potential complete spatiotemporal Chl_a distributions from
partial observations, and 2) the prediction process, which accurately
predicts Chl_a based on each reconstructed continuous and complete
spatiotemporal Chl_a distribution. Using Rubin’s rules32, the final Chl_a
prediction is obtained by averaging the outcomes of multiple impu-
tation and prediction processes. In this way, our STIMP method not
only improves the overall predictive performance through accurate
imputation of missing data but also provides confidence intervals to
quantify the prediction uncertainties.

Moreover, STIMP can address the three challenges of incomple-
tion, nonstationary temporal variations, and spatial heterogeneity of
data that we are facing by integrating three specially designed mod-
ules. We conducted benchmark studies of four representative global
coastal regions: northern Gulf ofMexico, Chesapeake Bay, the Yangtze
River Estuary, and the Pearl River Estuary. These four regions all suffer
eutrophication and hypoxia due to explosively growths of algae with
high concentrations of Chl_a. STIMPdemonstrated superiority in large-
scale spatiotemporal Chl_a imputation and prediction over baseline
methods. Our results also indicated that the importance of imputation
in the prediction. STIMP has proofed its capabilities to diagnose and
prognose broad oceans that typically have spatiotemporally lim-
ited data.

Results
STIMP method
STIMP is a deep learning-based method that accurately imputes and
predicts Chl_a in the coastal oceans (Fig. 1). The inputs for STIMP
include observations of Chl_a from coastal oceans, denoted asXob, and
a spatial graph, G, that contains the geographic coordinates of the
observations. STIMP simultaneously outputs a complete Chl_a dataset,
X, and accurately predicts Chl_a, ~Y, based on X. STIMP and is for-
mulated as:

pð~YjXobÞ=
Z
X
pΦð~YjXÞpθðXjXobÞdX: ð1Þ

Specifically, the primary challenge in learning the imputation
function pθ(X∣Xob) lies in approximating the spatiotemporal distribu-
tion of Chl_a. We designed a Spatiotemporal Denoising Diffusion
Model (STDDM) as the imputation function. Specifically, STDDM
decompose the complicated task into L simple tasks,with theobjective
of increasing the signal-to-noise ratio. Finally, the spatiotemporal dis-
tribution of Chl_a is transformed from an easy-to-sample distribution
pðXLÞ=N ðXL;0, IÞ, using a joint distribution in the form of a Markov
chain:

pθðXjXobÞ=
Z

pðXLÞpθðXjX1,X
obÞ

Y2
l = L

pθðXl�1jXl ,X
obÞdX1:L: ð2Þ

Then the large scale spatiotemporal future Chl_a distribution is pre-
dicted using the function, pΦð~YjXÞ.

The network structures of the imputation and prediction func-
tions are shown in the Fig. 1. For both imputation and prediction
functions, nonstationary temporal variations and spatial heterogeneity
of Chl_a are all difficult and crucial. For nonstationary temporal varia-
tions, we employ Temporal Linear Transformer (TLT). TLT preserves
crucial information regarding the Chl_a variations, computing across
all elements of the time series to facilitate understanding of the tem-
poral patterns of Chl_a. For spatial heterogeneity, we designed a Het-
erogeneous Spatial Graph Neural Network (HSGNN). HSGNN learns
location-specificparameters fromparameter pools to represent spatial
heterogeneity. By doing so, distinct temporal patterns across different
locations can bewell accommodated in spatial-specific parameters in a
computationally friendly way. We reuse the same structure of TLT and
HSGNN in both the imputation function and the prediction function,
ensuring that the spatiotemporal relationships of Chl_a can be well
utilized in both tasks.

Benchmarking spatiotemporal imputation and prediction
We evaluated how well STIMP separately imputed and predicted Chl_a
concentrations. We used MODIS Aqua project data33 for: (1) the Pearl
River Estuary, 4325 positions within 20.52–22.98°N, 112.02–115.98°E,
with rates of missing data for each position ranging from 32.06% to
89.56% with an average rate of missing data across all positions equal
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to 50.29%; (2) northernGulf ofMexico, 2907 positions within 28.52° to
29.98°N, 89.02° to 93.98°W, with rates of missing data for each posi-
tion ranging from 5.35% to 94.23% with an average rate of missing data
across all positions equal to 18.19%; (3) Chesapeake Bay, 1893 positions
within 36.52–38.98°N, 74.52–76.48°W, with rates of missing data for
each position ranging from 4.09% to 88.05% with an average rate of
missing data across all positions equal to 10.49%; and (4) the Yangtze
River, 4572 positionswithin 28.02° to 31.98°N, 121.02° to 123.98°E, with
rates of missing data for each position ranging from 41.93% to 89.94%
with an average rate of missing data across all positions equal to
54.28%. All data are from 01 January 2003 to 22 September 2023. For
default settings, training data span 1 January 2003 through 31 January
2015, with the independent test set encompassing observations from 7
February 2015 to 22 September 2023.

For the spatiotemporal imputation, we assessed the performance
of STIMP based on four categories, comparing our results with different

baseline methods in these categories: (1) a data interpolating empirical
orthogonal function (DINEOF) method34,35 from geoscience, note that,
we selected t = 1 in our implementation after conducting a compre-
hensive comparison of various values of t (Supplementary
Figs. S11 and S12); (2) classic statistical methods, including SlideWindow
and Lin-ITP; (3) spatiotemporal machine learning method, including
TRMF36; (4) deep learning methods, including CSDI37, ImputeFormer38,
Inpainter39 and MaskedAE40. Because our collected data were not
ground truthed for unobserved data, we randomly selected nine dif-
ferent rates of missing data, ranging from 10% to 90%, for choosing
observed data as imputation targets. In so doing, we were able to verify
the performance of all methods with different rates of missing data.
Overall, we saw that STIMP outperformed the other baseline methods
for different datasets in terms of the mean absolute error (MAE),
demonstrating we could apply STIMP effectively to different regions.
STIMP significantly reduced MAE by 45.90–81.39% compared to

Fig. 1 | Overview of STIMP. a We applied STIMP to four representative global
coastal regions: the Pearl River Estuary, northern Gulf of Mexico, Chesapeake Bay,
and the Yangtze River Estuary. b STIMP is designed to predict future Chlorophyll-a
(Chl_a) according to past partial observation. c–f The overall framework for STIMP
involves two successive stages: Imputation and Prediction. c STIMP uses past
partial observations of Chl_a, with spatial coordinates of the observations as inputs.

d STIMP uses the Spatiotemporal Denoising Diffusion Model (STDDM) to recon-
struct a completed Chl_a dataset with spatiotemporal relationships from the past
partial observation dataset. e STIMP outputs the future Chl_a based on the com-
pleted Chl_a dataset. f The outputs of STIMP, including imputed past observations
of Chl_a and predicted future Chl_a for the entire ocean, can be used for marine
conservation initiatives and policymaking for coastal regions.
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DINEOF, and by 8.92–43.04% compared to the state-of-the-art AI
methods. STIMP reduced mean square error (MSE) by 69.47–95.64%
compared to DINEOF, and by 12.04–68.30% compared to the state-of-
the-art AI methods (Supplementary Fig. S1). In addition, DINEOF per-
formed even worse than linear interpolation Lin-ITP due to the com-
plexity of the spatiotemporal Chl_a distribution. Specifically, the
intricate relationships present in the large-scale, long-term observations
challenged DINEOF in effectively capturing the spatiotemporal rela-
tionships using singular value decomposition. The performance of CSDI
and ImputeFormer was inevitably unsatisfactory because neither con-
siders spatial relationships during imputation. Our results indicate that
the spatial and temporal relationships are essential for imputing data.

We comprehensively compared different methods of predicting
Chl_a (Fig. 2b). For the spatiotemporal prediction,we compared results
against baseline methods in three categories: (1) machine learning
method, XGBoost41; (2) time series prediction methods, including
CrossFormer42, TSMixer43 and iTransFormer44; (3) spatiotemporal
prediction methods, including MTGNN45 and PredRNN46. We also
compared our STIMP results with results from the well-calibrated
numerical model, CMOMS15 for Pearl River Estuary. STIMP performed
well for all four regions. Compared to the second best method, STIMP
reducedMAEby 12.24%, 13.68%,6.54%, and9.72% (Fig. 2b) and reduced
MSE by 22.28%, 22.81%, 15.37%, and 12.17% for all four regions (Sup-
plementary Fig. S2). PredRNN performed the second best. PredRNN
uses spatiotemporal recurrent neural networks with long short-term
memory to memorize spatial appearances and temporal variations,
performing better than time series prediction methods. The results
demonstrate the importance of the spatiotemporal relationships for
accurate prediction. However, due to the inherent lack of observations
of Chl_a, PredRNN could not perform as well as STIMP.

STIMP enables spatiotemporal imputation
We used the Pearl River Estuary to demonstrate the effectiveness
of STIMP spatiotemporal imputation. The number of missing

observations from the Pearl River Estuary reflects the data defi-
ciencies for most estuaries. The advantage of using the Pearl River
Estuary as an example is that we have results from numerical
simulations to compare to our STIMP results. There are several
major cities in the Pearl River Estuary, including Shenzhen,
Guangzhou, and Zhuhai, where rapid industrialization and urbani-
zation have adversely impacted water quality in downstream of the
Pearl River system47. Eutrophication has produced serious red tide
events or harmful algal blooms in the estuary and its adjacent
coastal waters since the 1980s, causing economic losses48.

High rates of missing observations prevent completing a picture
of the spatiotemporal Chl_a relationships for the Pearl River Estuary,
impeding forecasting and analysis. However, STIMP enabled large-
scale spatiotemporal imputation of the Pearl River Estuary data. STIMP
performed exceptionally compared to other imputation methods for
one-year imputation in terms of MAE, reducing MAE significantly by
45.90% to 77.35% compared to DINEOF and by 10.20% to 40.38%
compared to the second best model (Fig. 2a). Despite the default
length of the time series on imputation, we tested the performance of
STIMP in imputation over periods of 6 months and one-and-a-half
years (Fig. 3a). The results demonstrated that the length of the time
series on gap-filling did not affect the superiority of STIMP. For
6 months imputation, STIMP significantly reduced MAE by
44.34–76.54% compared toDINEOF, and4.64–38.22%compared to the
state-of-the-art AI methods. For one-and-a-half years imputation,
STIMP achieved MAE reductions of 50.34–76.43% compared to
DINEOF, and of 0.33–38.17% compared to the state-of-the-art AI
methods.

We selected observations of the entire Pearl River Estuary from07
February 2015 to 02 February 2016 and used STIMP and the baseline
methods, including data interpolating empirical orthogonal function
(DINEOF) method, MaskedAE, and Lin-ITP, to reconstruct the Chl_a
distribution to investigate why STIMP imputation of the Pearl River
Estuary data outperformed the baseline methods. We examined the
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Fig. 2 | A benchmarking study of spatiotemporal imputation and prediction of
Chl_a for four global representative coastal oceans. a Overall mean absolute
error (MAE) between ground truth and imputed Chl_a for different interpolation
methods. For each coastal ocean, we constructed datasets with nine different rates

of missing data, ranging from 10% to 90%. Source data are provided as a Source
Data file. b Overall MAE between ground truth and predicted Chl_a of different
prediction methods. Source data are provided as a Source Data file.
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correlation between ground truth and imputed data of STIMP and
DINEOF using rates of missing data of 10%, 30%, 50%, 70% and 90%
(Fig. 3b). We observed that the Pearson correlation coefficients (PCC)
of the STIMP imputed data and ground truth data were greater than
0.90 even when the rate of missing data euqalled 90%. DINEOF was
prone to fill in gaps with zero values when missing rate was high and
couldnotperformsingular valuedecompositionof the spatiotemporal
distribution of Chl_a.When comparing STIMP results toMaskedAE and
Lin-ITP results (Supplementary Fig. S3a), we saw that MaskedAE PCC
values were comparable to STIMPwhen rates ofmissing data were 10%
and 50%. However, MaskedAE imputation severely degenerated when
rates of missing data were high. In that case, STIMP PCC (correlated to
ground truth data) improved by 6.65% overMaskedAE. In addition, the
results illustrated that Lin-ITP introduced significant errors which
hindered the analysis of the Pearl River Estuary data.

Because STIMP’s imputation is based on spatiotemporal rela-
tionships, using case studies, we explored whether the imputed values
from STIMP aligned with actual spatiotemporal relationships. STIMP
effectively preserved the spatial relationships during the imputation
compared to DINEOF on 07 February 05 May, and 10 October 2015
(Fig. 3c). STIMP generated larger values close to the coastline, and
STIMP generated similar values for most regions. STIMP effectively
reconstructed the completed data even when the rate of missing data
was high (see 07 February 2015). Moreover, STIMP effectively pre-
served temporal relationships during imputation. In Fig. 3d, we show
the imputation of five single positions from 07 February 2015 to 22
September 2022, where blue represents the observations and red

represents the imputation. Compared to simple linear interpolation,
STIMP contained more fluctuations, especially for long-term missing
data. Overall, we saw that the STIMP results were significantly superior
compared to the results from the baseline methods.

STIMP offers spatiotemporal prediction
Predicting Chl_a is critical to diagnosing future sustainable marine
environments and formulating effective mitigation schemes, particu-
larly under a changing climate that will warm and stratify the vulner-
able ocean. With the continuous and completed spatiotemporal Chl_a
distribution imputed from partial datasets of observations, we found
that STIMP accurately predicts Chl_a.

STIMP has more advantages in long-term prediction. As shown in
Fig. 4a, STIMPgainedmore improvement for long-termprediction. For
1 year prediction, STIMP achieved 6.54–13.68% mean absolute error
(MAE) reduction over baselines. For 2 years prediction, STIMP reduced
13.68–32.25% MAE. For 3 years prediction, STIMP achieved
13.77–32.01% MAE reduction. STIMP outperformed other prediction
methods due to its paradigm of first imputing then predicting and
three elaborately designed modules. Without imputation, our pre-
dictive model results still improved compared to PredRNN (Fig. 4b),
indicating that our designed TLT and HSGNN modules are more sui-
table for capturing the spatiotemporal relationships of Chl_a than the
design of PredRNN. We examine the advantages of having these two
modules when we describe our ablation study of STIMP later in sup-
plementary. Moreover, imputation significantly improved how well
STIMP predicted distributions (Fig. 4b, STIMP w/o imputation versus

Fig. 3 | SIIMP enables large scale spatiotemporal imputation of chlorophyll-a
(Chl_a) in the Pearl River Estuary. a Overall mean absolute error (MAE) between
ground truth and imputed Chl_a for different imputation methods over half-year
and one-and-a-half-year periods. b Pearson correlation coefficient (PCC) between
imputed data and ground truth data of STIMP and data interpolating empirical
orthogonal function (DINEOF) method at rates of missing data equal to 10%, 30%,

50%, 70%, and 90%. c Measured and imputed Chl_a distribution in the Pearl River
Estuary. The first column from the left shows the original observations with many
missing values. The second and third columns show the corresponding imputed
Chl_a from DINEOF and STIMP. d Imputed Chl_a from STIMP at five locations. The
original observations are represented by blue lines, and the imputed Chl_a are
represented by red lines.

Article https://doi.org/10.1038/s41467-025-62901-9

Nature Communications |         (2025) 16:7656 5

www.nature.com/naturecommunications


STIMP). In locations with higher rates of missing data, STIMP results
often improved more than PredRNN results (Fig. 4c). Our analysis
demonstrated that imputing before predicting contributed to STIMP
effectively capturing the spatial distribution and the seasonal signal of
Chl_a. The maxima of observed annual mean Chl_a are in the river, but
large Chl_a concentrations are spread along the coast in the inner shelf
and decrease with distance from the coast (Fig. 4d). The time series of
the domain-averaged Chl_a has a strong seasonal cycle where Chl_a
concentrations in the Pearl River Estuary peak during summer when
nutrient inputs from the Pearl River are large (Fig. 4e).

We conducted case studies at three specific locations in the Pearl
River Estuary to further demonstrate the superiority of STIMP over
other baselinemethods: 1) 22°9’N, 113°49’E; 2) 20°41’N, 113°41’E; and 3)
21°16’N, 114°1’E. The three sites correspond to three marine regions
delineated by isobaths at 30m and 50m below sea level (Fig. 4f). Data
are from 2 February 2016 to 2 February 2022. We compared STIMP to
CMOMS15, which is a widely used numerical model for analysing eco-
systemdynamics in the Pearl River Estuary. STIMPcannotonly provide
accurate Chl_a prediction (blue lines in Fig. 4i), but also provide con-
fidence intervals, which is visualized as shaded regions around the

predicted values, too quantify the prediction uncertainties. STIMP
outperformed PredRNN by a large margin, with MAE improving by
30.28%, 22.09%, and 1.83%. CMOMS yielded large MAE because the
model severely underestimated theChl_a. STIMP improved theMAEby
53.78%, 74.63%, and 66.33% compared to CMOMS. In Fig. 4g, we pre-
sent the prediction results for the entire Pearl River Estuary for 2
February 2016, 16 July 2016, and 8 January 2017. We observed that
STIMP predictions consistently agreed with the observations, provid-
ing larger predicted values near the coastline. CMOMS, on the other
hand, severely underestimated the Chl_a in the region far from the
coastline, especially in winter.

Applying STIMP to the global ocean
We examined how effectively STIMP can be applied to global coastal
oceans by examining how well the model predicted Chl_a for the
northern Gulf of Mexico, Chesapeake Bay and the Yangtze River
Estuary.

The Gulf of Mexico, ranking as the ninth largest body of water
globally49, is also among the most economically and ecologically
productive water bodies in the world50. The average rate of missing

Fig. 4 | SIIMP enables large scale spatiotemporal prediction of chlorophyll-a
(Chl_a) in the Pearl River Estuary. a The performance of STIMP and the baseline
models in terms of mean absolute error (MAE) for 1-year, 2-year, and 3-year pre-
dictions. b MAE between the actual values and the predictions made by PredRNN,
STIMP without imputation and STIMP. c The relationship between the improved
performance due to imputation and the rates of missing data. d Time series of
domainmeanChl_a from January 2017 to December 2022. eHorizontal distribution

of observed and predicted temporally averaged Chl_a. f Predicted Chl_a at three
locations. The first to third columns show the Chl_a predicted by CMOMS,
PredRNN, and STIMP. The red scatter points represent the observations. The blue
shading represents the confidence intervals of STIMP to quantify the prediction
uncertainties. Source data are provided as a Source Data file. g Predicted Chl_a for
the entire Pearl River Estuary. The first column shows the true observations. The
second and third columns show the Chl_a predicted by STIMP and CMOMS.
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data across all positions for the northern Gulf of Mexico was 18.19%.
When imputing data, as shown in Fig. 2a, STIMP performed well
compared to other imputation methods, significantly reducing the
error by 69.42–74.88% compared to DINEOF and by 8.92–43.04%
compared to the second-best model in terms of MAE. The observa-
tions for the entire northern Gulf of Mexico were from 07 February
2015 to 02 February 2016. Our findings indicated that the correlation

between the STIMP imputed Chl_a and the ground truth data was
significantly higher than that of DINEOF imputed Chl_a and ground
truth data with rates of missing data equal to 10%, 50%, and 90%,
improving PCC by 6.77%, 24.58% and 226.74% Fig. 5a). We also
compared STIMP to MaskedAE and Lin-ITP methods (Supplementary
Fig. 3b). STIMP improved PCC by 1.07–6.77% compared toMaskedAE,
and STIMP improved PCC by 10.90% to 25.75% compared to linear
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Fig. 5 | STIMP can be applied to other coastal ocean areas.We applied STIMP to
other three representive coastal ocean areas: Northern Gulf of Mexico (a–c), Che-
sapeake Bay (d–f) and Yangtze River Estuary (g–i). a, d, g Pearson correlation
coefficient (PCC) between imputed data and ground truth data with the rates of
missing data equal to 10%, 50%, and 90%.b, e, hMAEbetween the actual values and

the predictions made by PredRNN (the first column) and STIMP (the second col-
umn). The third column indicates howmuch STIMP reduced the error compared to
PredRNN. c, f, i XGBoost, PredRNN, and STIMP predicted Chl_a at two locations.
The red scatter points represent the observations. Source data are provided as a
Source Data file.

Article https://doi.org/10.1038/s41467-025-62901-9

Nature Communications |         (2025) 16:7656 7

www.nature.com/naturecommunications


interpolation (Lin_ITP). For prediction, we showed that STIMP’s
effective data imputation accurately predicted large-scale spatio-
temporal Chl_a. STIMP predictions improved, compared to PredRNN,
for most areas of the northern Gulf of Mexico (Fig. 5b). From the
Chl_a distribution (Supplementary Fig. 6), we saw that locations close
to the river mouth had the largest Chl_a, and the outer shelf had the
smallest Chl_a. Hence, we examined results (Fig. 5c) at two positions:
1) 29°29’N, 92°11’W and 28°54’N, 91°59’W, from February 2016 to 2
February 2022. Due to the lack of open-source numerical methods,
we compared STIMP with XGBoost and PredRNN for these two
positions. At the two positions, STIMP reduced MAE by 26.55% and
16.02% compared to XGBoost and reduced MAE by 6.75% and 10.84%
compared to PredRNN. The satellite data from the northern Gulf of
Mexico had considerable noise. Predictions generated by PredRNN
tended to lose periodicity when confronted by the low signal-to-
noise ratio data. In contrast, predictions produced by STIMP suc-
cessfully captured six complete periods, which corresponded to a
period of six years.

Chesapeake Bay is one of the most productive estuaries in the
United States. The average rate of missing data across all positions in
ChesapeakeBaywas 10.49%. For imputation, as shown in Fig. 2a, STIMP
performed exceptionally compared to the other imputation methods
with regard to MAE. STIMP significantly reduced MAE by 62.08% to
75.63% compared to DINEOF and by 26.91% to 33.46% compared to the
second-bestmodel, except when the rate of missing data was 90%. We
selected observations from the entire bay from07 February 2015 to 02
February 2016 for this case study. STIMP demonstrated excellent
imputation performance compared to DINEOF, improving PCC by
5.09%, 28.17% and 264.67% (Fig. 5d), MaskedAE and Lin-ITP (Supple-
mentary Fig. 3c). Moreover, STIMP improved its predictions compared
to PredRNN for most of Chesapeake Bay (Fig. 5e). The case studies at
the two locations at 1) 29°29’N, 92°11’W and 2) 28°54’N, 91°59’W indi-
cated that STIMP more accurately predicted Chl_a than the other two
methods. STIMP reduced MAE by 72.10% and 10.39% compared to
XGBoost and reduced MAE by 44.34% and 3.99% compared to
PredRNN. Overall, STIMP improved MAE by 6.54% compared to
PredRNN.

The Yangtze River is the third longest river in the world. The river
discharges into the adjacent YangtzeRiver Estuarynear themegacities,
Shanghai and Hangzhou. The average rate of missing data across all
positions in the Yangtze River Estuary was 54.28%. For imputation, as
shown in Fig. 2a, STIMP performed exceptionally compared to the
other imputation methods, reducing the MAE by 68.31% to 90.92%
compared to DINEOF and by 15.62% to 42.67% compared to the
second-best model. The observations for the entire Yangtze River
Estuary were from 07 February 2015 to 02 February 2016. STIMP
imputed the data well compared to DINEOF (Fig. 5g), MaskedAE and
Lin-ITP (Supplementary Fig. 3d). Moreover, STIMP improved predic-
tions compared to PredRNN for most areas of the Yangtze River
Estuary (Fig. 5h), especially for the regions closest to the river mouth.
As shown in Fig. 4i, at 31°34’N, 122°31’E, STIMP reducedMAE by 45.02%
and 9.95% compared to the two baselinemethods. At 28°24’N, 123°21’E
(outer shelf), STIMP’s error improvement was relatively smaller, but
MAE still reduced by 14.45% and MAE reduced by 6.59% compared to
the two baseline methods.

To summarize, we demonstrated that STIMP can be successfully
applied to the global coastal oceans. STIMP is a versatile and effective
deep learning framework. STIMP not only reconstructs a complete
Chl_a dataset by exploring the spatiotemporal relationships in the
partial dataset of observations, STIMP also accurately predicts spa-
tiotemporal distributions at large scales. STIMP even successfully
captures periodic data when confronted with low signal-to-noise ratio
data (for example, for the northern Gulf of Mexico and the Yangtze
River Estuary).

Discussion
In this paper, we presented STIMP, an effective and versatile deep
learning framework for analysing Chl_a using satellite remote sensing
measurements. Our results demonstrated that STIMP effectively
addresses the challenges of satellite remote sensing of Chl_a when
diagnosing and prognosing coastal ocean ecosystems by overcoming
high rates of missing data, composing complex spatial heterogeneity,
and determining diverse dynamic temporal patterns.

Specifically, STIMP imputes historical partial observations before
predicting the future of Chl_a for coastal oceans, formulated as
pð~YjXobÞ= RXpΦð~YjXÞpθðXjXobÞdX.Most AImethods, such as PredRNN,
are designed to predict based on complete observational datasets.
Directly applying these other AI methods to partial datasets results in
substantial spatiotemporal relationships being disregarded. STIMP
breaks down Chl_a prediction into two steps: 1) pθ(X∣Xob) to recon-
struct a complete spatiotemporal Chl_a distribution from partial
observations; and 2) pΦð~YjXÞ to accurately predict Chl_a based on a set
of continuous and complete spatiotemporal relationships. STIMP
addresses the difficulty of the task and enables us to evaluate the
confidence intervals associated with our predictions. When we were
designing the model, we leveraged a diffusionmodel51 (an elegant and
powerful generative AI method) for the spatiotemporal Chl_a impu-
tation, i.e. pθ(X∣Xob). Using the diffusion model offered distinct
advantages for imputation compared to the traditional interpolating
empirical orthogonal function (DINEOF)52 in Geoscience and other AI-
powered data imputation methods. We designed TLT and HSGNN to
capture the diverse dynamic temporal patterns found in an entire time
series and the spatial heterogeneity of the entire coastal ocean,
respectively. STIMP demonstrated capability in large-scale spatio-
temporal Chl_a imputation and prediction in four representative
coastal oceans. The length of the time series does not affect the
superiority of STIMP. Our results indicate that imputation significantly
improved the prediction. In addition, STIMP was robust when pre-
sented with various rates of missing data, further showing that the
model could be applied to global coastal oceans with different rates of
missing data.

Despite its advantages, STIMPdoes have limitations. The advantage
of AI-based methods lies in predicting the seasonal and trend compo-
nents of time series. Many methods43,53 incorporate seasonal-trend
decompositionwithin each neural block to enhance the predictability of
time-series data54. Analogous to other AI-based time series methods,
STIMP robustly capture the seasonal and trend signals of Chl_a but is
incapable of effectively capturing anomaly peak signal. Through
extensive analysis in the Pearl River Estuary, compared to weekly and
monthly mean predictions, STIMP effectively captures fine-scale varia-
bility (Supplementary Figs. S13–S15). We also found that even though
the numerical simulationmethod CMOMS15 has a large prediction error,
it performs better than AI-based data-driven methods in predicting
extreme signals. Therefore, we believe that integrating numerical
simulation methods with AI-based data-driven methods will be a chal-
lenging yet promising direction that we need to address in the future.

Moreover, we focused on satellite remotely sensed data with a
spatial resolution of 4 km and a temporal resolution of 8 days. In
contrast to CMOMS, STIMP demonstrates low sensitivity to variations
in spatial and temporal resolutions. Yet STIMP depends on observa-
tional data to capture Chl_a’s spatiotemporal patterns. When applied
toMODIS's dailyChl_a datawith > 90%missing rates, wemight need to
incorporate additional prior information to address the issue.

In conclusion, based on available satellite observations, STIMP
significantly advances large-scale spatiotemporal analysis, diagnostics,
and prediction of coastal marine ecosystem health. We expect that
STIMP can be broadly applied to future ocean AI-measurement-
modelling studies to enhance management and mitigation of wor-
sening coastal ocean ecosystem conditions.
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Methods
Rapidly developing satellite remote sensing observations offer
opportunities to develop data-driven large-scale spatiotemporal Chl_a
prediction method. However, three major challenges must first be
solved. First, temporal variations induced by complex physical and
biogeochemical stressors are difficult to capture. Second, spatial het-
erogeneity and relationships are difficult to represent. Third, the high
rates of missing satellite observations compromise the completeness
of spatiotemporal variations of Chl_a, rendering these observations
inadequate to use for accurate prediction.

STIMP is an AI-powered unified framework composed of two
steps: 1) spatiotemporal satellite Chl_a data imputation pθ and 2) Chl_a
prediction pΦ. By doing so, STIMP effectively reconstructs the com-
plete spatiotemporal variations of Chl_a, X, from partial observations,
Xob, subsequently providing accurate large-scale spatiotemporal pre-
dictions of Chl_a ~Y across coastal oceans, such that:

pð~YjXobÞ=
Z
X
pΦð~YjXÞpθðXjXobÞdX, ð3Þ

where Xob 2 RT ×N , N denotes the number of positions and T denotes
the length of time series; ~Y 2 RT 0 ×N , T 0 denotes the predicted length.

We approximate Equation (3) by sampling a finite number of
samples and using a summation form, which is formulated as:

pð~YjXobÞ=
X
X

pΦð~YjXÞpθðXjXobÞ: ð4Þ

Here, several datasets X are generated by well-trained pθ(X∣Xob). Based
on each dataset, we trained specific pΦð~YjXÞ. Using Rubin’s rules32, the
final Chl_a prediction is obtained by averaging the prediction of
specific pΦð~YjXÞ based on different X. In this way, our STIMP method
not only improves the overall predictive performance through
accurate imputation of missing data but also provides confidence
intervals to quantify the prediction uncertainties. More details of
training pΦð~YjXÞ and pθ(X∣Xob) can be found in the following two
subsections.

Spatiotemporal satellite Chl_a data imputation
We contrived a spatiotemporal denoising diffusion model (STDDM)
that we applied to the imputation function, pθ(X∣Xob). STDDM is fun-
damentally a Denoising Diffusion Probabilistic Model (DDPM) specifi-
cally designed to approximate the spatiotemporal distributionof Chl_a
conditioned on partial observations.

The imputation function conditioned on partial observation.
Imputation function intends to leverage deep generative learning to
approximate spatiotemporal distribution of Chl_a. The primary chal-
lenge in learning the imputation function lies in the complex spatio-
temporal distribution of Chl_a, which is challenging to transform from
easy-to-sample distribution using neural networks. Inspired by DDPM,
we decompose the complex task into L simple tasks. We canmanually
set a sequence of data distributions perturbed by L levels of signal-to-
noise ratio. The objective of each task is to improve the signal-to-noise
ratio of the perturbed data distribution from σ2

l to σ2
l�1, where

0 ≈ σL < σL−1 < σ0. The final complex spatiotemporal distribution of
Chl_a is obtained by the joint distribution p(X, X1:L∣Xob) defined as a
Markov chain with learned Gaussian transitions starting at an easy-to-
sample distribution pðXLÞ=N ðXL;0, IÞ:

pθðXjXobÞ=
Z

pðX,X1:LjXobÞdX1:L =
Z

pθðXjX1:L,X
obÞpθðX1:LjXobÞdX1:L

=
Z

pðXLÞpθðXjX1,X
obÞ

Y2
l = L

pθðXl�1jXl ,X
obÞdX1:L:

ð5Þ

In contrast to the noise predictor in DDPM, STDDM is an original
data predictor which is utilized in the learned Gaussian transitions
pθ(Xl−1∣Xl, Xob). Because a time series of Chl_a data usually contain
irregular noisy components, estimating the noise is challenging. Note
that we can incorporate pθ(X∣X1, Xob) into pθ(Xl−1∣Xl, Xob) and X can be
regarded as clean samples with a signal-to-noise ratio σ0. Specifically,
we define the signal-to-noise ratio σ2

l = �αl=ð1� �αlÞ, where �αl =
Ql

i = 1αi

and [α0, ⋯ , αL] is a manually defined noise schedule in which each
element regulates the levels of added Gaussian noise to Xl−1. Then, the
objective of the learned Gaussian transition in the l-th task is for-
mulated as:

pθðXl�1jXl ,X
obÞ=N ðXl�1;

ð1� �αl�1Þ
ffiffiffiffiffi
αl
p

1� �αl
Xl +
ð1� αlÞ

ffiffiffiffiffiffiffiffiffi
�αl�1

p
1� �αl

X,
ð1� αlÞ

ffiffiffiffiffiffiffiffiffi
�αl�1

p
1� �αl

IÞ:

ð6Þ

Unfortunately, the original spatiotemporal distribution of Chl_a, X, is
unknown for pθ(Xl−1∣Xl, Xob). Hence, we contrive STDDM, an original
data predictor, to approximate X with partial observation Xob and a
perturbed Chl_a distribution,Xl, that is, p(X∣Xl,Xob). STDMM is learned
by the following objective function:

min
θ

EX0
EN ðXl ;

ffiffiffiffi
�αl

p
X0, ð1��αl ÞIÞðjjSTDDMθðXob,XlÞ � Xjj2Þ, ð7Þ

In practice, however, three challenges remain in learning the
STDMM. First, STDMM cannot differentiate between different sub-
tasks using only Xob and Xl as input, leading to difficulties in optimi-
zation. To address this issue, we incorporate the task number l as the
input to the STDMM. Second, due to we select N locations belong to
the ocean as the Xob, STDMM cannot obtain location information,
resulting in an inability to obtain spatial heterogeneity and relation-
ships. We construct the spatial graph G 2 RN ×N to maintain spatial
relationships of these locations. By default, if latitude and longitude
difference between location i and j are both less than 0.05°, we set
Gij = 1. By doing so, STIMP can extract information from adjacent
locations during the information aggregation of Heterogeneous Spa-
tial Graph Neural Network (HSGNN). Third, we cannot obtain the true
values for unobserved Chl_a as a supervised learning signal. As a
compromise, we treat the observed data asX, and furthermask part of
X with M to obtain partial observations Xob ← (1 − M) ⊙ X, where
⊙ denotes the element-wise product. Because we focus on the per-
formance of reconstructing the unobserved value, the corresponding
objective function is given by:

min
θ

EXEN ðXl ;
ffiffiffiffi
�αl

p
X, ð1��αl ÞIÞðjjM� ðSTDDMθðXob,Xl , l,GÞ � XÞjj2Þ, ð8Þ

The training process of STDDM is summarized in Algorithm 1.

Algorithm 1. Training Process of STIMP for imputation.
Input : A sample of training data, X 2 RT ×N ; Spatial Graph,

G 2 RN ×N ; the number of denoising steps, L; the number
of training iteration, M.

Output : Optimized STDDM
1. for s = 1 to M do
2. Get random mask M
3. Xob ← (1 − M) ⊙ X
4. Sample l � Unif ormð1, 2, � � � , LÞ, ϵ � N ð0, IÞ
5. Get perturbed value Xl  

ffiffiffiffiffi
�αl

p
Xob +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �αl

p
ϵ:

6. Estimate missing value with STDDMθ(Xob, Xl, l, G)
7. Update the gradient by ∇ ∣∣M⊙ (STDDMθ(Xob, Xl, l, G) − X0)∣∣2

8. end

Reconstructing themissing values with the imputation function
Nowwe showhowwe generatemissingChl_a by leveraging the learned
imputation function. During imputation, we reconstruct the missing

Article https://doi.org/10.1038/s41467-025-62901-9

Nature Communications |         (2025) 16:7656 9

www.nature.com/naturecommunications


values of satellite Chl_a data using the partial observation. Assuming
that the STDDM training was good enough to accurately simulate
p(X∣Xl, Xob), the final complex spatiotemporal distribution of Chl_a is
obtained by progressively reducing the signal-to-noise ratio. Starting
at samples XL from the Gaussian distribution, the signal-to-noise ratio
can be reduced by getting samples from the following learned Gaus-
sian transition, replacing X with STDDM(Xob, Xl, l, G) in Eq. (6):

Xl�1  
ð1� �αl�1Þ

ffiffiffiffiffi
αl
p

1� �αl
Xl +
ð1� αlÞ

ffiffiffiffiffiffiffiffiffi
�αl�1

p
1� �αl

STDDM

ðXob,Xl , l,GÞ+
ð1� αlÞ

ffiffiffiffiffiffiffiffiffi
�αl�1

p
1� �αl

ϵ

ð9Þ

where ϵ � N ð0, IÞ. We summarized the imputation in Algorithm 2.

Spatiotemporal Chl_a prediction
We predict the most probable length-T 0 sequence of Chl_a ~Y with
pΦð~YjXÞ. To achieve this goal, the data distributions in space and time
are important andwarrant careful consideration. Fortunately, wemust
obtain a complete spatiotemporal distribution of Chl_a X is obtained
by imputing the Chl_a spatiotemporal satellite data, denoted by
pθ(X∣Xob) in Eq. (3).Wemeticulously designed the network architecture
to effectively capture spatial correlations and temporal dynamics.

First, we leverage a value embedding network with a 1 × 1 kernal
convolutional layer to encode the information of historical observa-
tion of Chl_a, X:

H=ConvðXÞ: ð10Þ

Then, STIMP separately captures the spatial and temporal rela-
tionship of the inputH separately. First, the temporal featuresHtemp are
learned by a temporal dependency learning module TLT:

Htemp =TLTðHÞ, ð11Þ

Then, the spatial relationships and heterogeneity from the spatial
graph, G, are further mined by HSGNN:

Hspa =HSGNNðHtemp,GÞ: ð12Þ

Eventually, the predicted Chl_a is obtained using a two-layer fully
connected neural network:

~Y= Fpre
2 ðSiLUðFpre

1 ðHspaÞÞÞ, ð13Þ

where SiLU is activation function.
The objective function of training pΦð~YjXÞ is given by:

min
Φ

EX, ~Y�pΦð~YjXÞðjjY� ~Yjj2Þ: ð14Þ

Algorithm 2. STIMP Imputation
Input : A sample of incomplete observed data, Xob 2 RT ×N , with

observation indicator, M; Spatial Graph, G 2 RN ×N ; the
number of diffusion steps, L; and the optimized STDDM.

Output : Imputed data X
1. Set XL � N ð0, IÞ
2. For l = L to 1 do
3. Xl�1  ð1��αl�1Þ

ffiffiffiffi
αl
p

1��αl
Xl +

ð1�αl Þ
ffiffiffiffiffiffiffi
�αl�1
p

1��αl
STDDMðXob,Xl , l,GÞ

4. ϵ � N ð0, IÞ
5. Xl�1  Xl�1 +

ð1�αl Þ
ffiffiffiffiffiffiffi
�αl�1
p

1��αl
ϵ

6. end
7. X ð1��α0Þ

ffiffiffiffi
α1
p

1��α1
X1 +

ð1�α1Þ
ffiffiffiffi
�α0

p
1��α1

STDDMðXob,X1, 1,GÞ
8.X ← M ⊙ Xob + (1 − M) ⊙ X

Network structures of STDDM
STDDM does not limit the network architecture. To make the model
for suitable for spatiotemporal imputation, as shown in Supple-
mentary Fig. S16c, we leveraged TLT and HSGNN to handle temporal
and spatial relationships, respectively. Specifically, STDDM con-
catenates the time series of partial observation, Xob; perturbed
values, Xl; diffusion step, l; and spatial graph, G as the input. STDDM
utilizes a value embedding network with a 1 × 1 kernel convolutional
layer to encode the information and outputs a d-dimensional latent
representations:

H=ConvðXl jjXobÞ, ð15Þ

where H 2 RL×N ×d . The diffusion step, l, is specified by adding the
Transformer sinusoidal position embedding (PE)55 to H:

Hin =H+DEðPEðlÞÞ, ð16Þ

whereDE project consists of two fully connected layers and a Sigmoid
Linear Unit (SiLU) function as the activation layer, and we broadcast
this embedding vector over timesteps and positions L × N.

To comprehensively capture the global spatiotemporal and geo-
graphic relationship of input Hin, the temporal features, Htemp, is
learned using the temporal dependency learning module TLT, and
then the temporal features are aggregated through a spatial depen-
dency learning module HSGNN:

Htemp =TLTðHinÞ
Hspa =GNðHtemp +HSGNNðHtemp,GÞÞ,

ð17Þ

whereGNmeans Group Normalization56 to stabilize the training. More
of the original information Htemp is preserved for Hspa.

Hout is obtained by leveraging the gated activation unit in CSDI37,
which is formalized as:

Hout = sigmoidðConvðHspaÞÞ*tanhðConvðHspaÞÞ, ð18Þ

where Conv is a convolutional layer with a 1 × 1 kernel. Finally, the
predicted imputation target is obtained with

X =FimpðHoutÞ, ð19Þ

where Fimp is a fully connected layer.

Network structures of TLT
TLT is dedicated to effectively capturing the temporal relationships of
Chl_a. In TLT, each element in the time series will compute attention
with all other elements, thereby preserving and propagating essential
information throughout the extended sequence55. The long- and short-
term temporal dependencies captured by TLT significantly enhance
the accuracy of large-scale spatiotemporal Chl_a imputations and
predictions.

Specifically, TLT takes the representations of Chl_a from a time
series Hin 2 RL×N ×d as input, yielding the enriched temporal repre-
sentation Htemp 2 RL×N ×d by encoding the time dependency in Hin.
Two key modules in TLT are the Multi-head Self-Attention (MSA) and
Position-wise Feed-Forward (PFF).MSA ismainly in chargeof capturing
temporal relationships and PFF endows the model with nonlinearity.
We mathematically represent the overall procedure of TLT as a func-
tion as follows:

Htemp = LNðPFFðLNðMSAðHinÞÞÞÞ, ð20Þ

where LN is the standard normalization layer. The key component in
MSA is self-attention (SA) along the temporal dimension L, which is
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defined as follows,

SAðQ,K ,V Þ= sof tmaxðQK
Tffiffiffi
d
p ÞV , ð21Þ

where Q = HinW Q; K = HinW K; V = HinW V represent the queries, the
keys, and the values, respectively, which are converted
from Hin, WQ, WK, and WV 2 Rd ×d are learnable projection para-
meters. Essentially, MSA computes the dot product of Qi and Kj to
generate a weight that measures the relevance between Chl_a at
times i and j.

MSA utilizes several SA layers: MSA(Hin) = Concat(h1, h2, ⋯ , hn)
WO + Hin where hi = SA(Q, K, V). The residual is introduced to preserve
more original Chl_a information. The added PFF networks consist of a
fully connected layer and a Rectified Linear Unit(ReLU) function as and
activation layer.

Network structures of HSGNN
To leverage the spatial dependency of Chl_a, we contrived HSGNN to
obtain the enriched spatiotemporal representation,Hspa 2 RL×N ×d by
encoding the spatial dependency in Htemp with the assistance of G:

Hspa =FspaðW �Htemp � GÞ: ð22Þ

As shown in Supplementary Fig. S16d (a), the time series exhibits
spatial heterogeneity, with significantly different means and variances
of Chl_a at different locations. Hence, the same parameter W for dif-
ferent locations does not meet the requirements.

However, it is impractical to design a separate set of parameters
for each different position. For the spatial parameter space,
θspa 2 RN ×d ×d , directly optimizing this parameter spaces brings huge
computational burden and data demand, especially when N is large.
Instead, we provide a simple yet effective way to maintain a small
parameters pool,P 2 Rk ×d ×d , which contains kparameter prototypes.
k is defined to be much smaller than N. We can generate a spatial
embeddingQ 2 Rk ×N as a query for all positions, and we can obtain a
location-specific parameter using a weighted combination of the
parameter prototypes:

Wspa =QT � P: ð23Þ

Because spatial heterogeneity is mainly reflected in the mean and
variance of the Chl_a time series across different positions, we gen-
erate a query,Q, for all positions according to each location, L 2 R1 ×N ,
mean, μ 2 R1 ×N , and variance, ς 2 R1 ×N :

Q =HT

L

μ

ς

2
64

3
75, ð24Þ

where H 2 R3 × k . In doing so, the learned parameter reduces from
θspa 2 RN ×d ×d to H 2 R3× k and P 2 Rk ×d ×d .

Then, we leverage Wspa 2 RN ×d × d to replace the original para-
meters W 2 Rd ×d in Equation (22), introducing the spatial hetero-
geneity using location specific parameters:

Hspa =FspaðWspa �Htemp � GÞ, ð25Þ

where Fspa is a fully connected network. Now, each position obtains
information from an adjacent position through Htemp ⋅ G. Meanwhile,
location-specific parameters, Wspa, are utilized to embed the spatial
heterogeneity into Hspa. As shown in Supplementary Fig. S16d, we
leveraged the learned spatial heterogeneous embeddingQ to partition
the Pearl River Estuary. The results of the partition were generally
consistent with the the isobaths at 30m and 50m below sea level,
showing that STIMP indeed captured the spatial heterogeneity of
different locations in the Pearl River Estuary.

More training details
STIMP employs Adam for stochastic optimization during model
training. Bydefault, the number of training epochs in STIMP is 500 and
200 for imputation and prediction respectively, with learning rate
lr = 0.0001 and a weight decay parameter λ = 0.00001.

Computational demands
We computed the computational demands of STIMP, including FLOPs
(floating-point operations), MACs (multiply-add operations) and
Parameters, with Calflops (https://github.com/MrYxJ/calculate-flops.
pytorch.git) on Pearl River Estuary. Moreover, we recorded the GPU
memory usage of STIMP. Note that we set the batch size of training
data is equal to 1 when calculating FLOPs, MACs and GPU memory,
which means the minimum computational requirements for running
STIMP. The hardware requirements analysis in Table 1 reveals that
STIMP maintains low GPU memory demands (≥1.5 GB), compatible
with obsolete consumer hardware, including NVIDIA’s GTX 1050 (2016
release). This highlights the framework’s practical deployability even
with limited computational resources.

Data availability
TheMODIS Chl_a data used in this study have been publicly available
in the Moderate Resolution Imaging Spectroradiometer (MODIS)
Aqua projects33 (https://search.earthdata.nasa.gov/search?q=10.
5067/AQUA/MODIS/L3M/CHL/2022). The processed MODIS Chl_a
data is available on Zenodo at https://doi.org/10.5281/zenodo.
14638405. Source data are provided with this paper. We also uploa-
ded all scripts and materials to reproduce all the analyses at https://
stimp-tutorials.readthedocs.io/en/latest/. Source data are provided
with this paper.

Code availability
The STIMP software package and source code are available on GitHub
at https://github.com/YangLabHKUST/STIMP.git. We also uploaded all
scripts andmaterials to reproduce all the analyses at the samewebsite.
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