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This work studies the nonlinear formation and secondary instability of jet meanders
due to baroclinic instability. The continuously stratified current-undercurrent system in the
Western Pacific Ocean is extracted as an idealized model problem. Two-dimensional linear
eigenmode analysis identifies surface (upper) and subsurface (lower) amplified baroclinic
modes for the two currents, respectively. A weakly nonlinear instability framework is
developed to resolve the temporal evolution of the most unstable eigenmode, its smaller-
scale harmonics and the mean flow distortion under the quasigeostrophic scaling. After
initial rapid amplification, these modes reach amplitude saturation and phase locking due to
nonlinear interaction. The saturation of the upper mode results in upper-current meanders,
whereas it can split the undercurrent into multiple cores. In comparison, the saturation
of the lower mode leads to undercurrent meanders, which drive deeper waters to flow in
the undercurrent direction but negligibly affect the upper layer. The two saturation states
succumb to modest secondary instability, which is identified through a Floquet-based sec-
ondary instability analysis for a fully three-dimensional shape function. The fundamental
resonance is found to dominate the upper-mode case, where the perturbation takes the
form of mesoscale cyclones and anticyclones. Conversely, significant detuned resonance is
identified for the lower-mode case, which quickly induces aperiodic motions in terms of
the meanders. Implications for realistic oceanic flows are also discussed.
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I. INTRODUCTION

Oceanic flows cover an extremely vast range of temporal and spatial scales, but most of the
kinetic energy resides in mesoscale eddies [1], whose characteristic scales are ∼10–100 km in the
horizontal. A large portion of these eddies are initially formed by baroclinic instability (BCI), which
extracts available potential energy from vertically sheared mean fields. Therefore, BCI has long
been one of the central problems in geophysical fluid dynamics [2]. The linear mechanisms of BCI
are generally well understood. The CSP (after Charney and Stern [3] and Pedlosky [4]) necessary
condition was summarized for inviscid zonal flows, which judges BCI based on the sign change of
the potential vorticity (PV) gradient of the basic flow. Furthermore, Smith [5] (also Feng et al. [6])
processed realistic profiles to show that virtually the entire ocean is baroclinically unstable. They
also provided a view of how different types of BCIs were distributed globally. The linear instability
problem is designed for infinitesimal perturbations, whereas nonlinearity becomes nonignorable
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after the perturbation grows to a finite amplitude [7]. In fact, Chelton et al. [8] demonstrated that
essentially all the observed mesoscale eddies in global oceans were nonlinear. Compared to the
linear problem, the nonlinear mechanism of BCI is more complicated and less well understood.

Weakly nonlinear theories for BCI were first developed based on perturbation expansions around
the point of marginal instability. Pedlosky [9,10] analyzed the interaction between a baroclinic wave
and the mean zonal flow in a quasigeostrophic (QG) model for one-dimensional (1D) basic flow, and
revealed that the equilibrated finite-amplitude state exhibits an oscillation when excluding dissipa-
tion. Meanwhile, the eddy-induced fluxes can reduce the mean vertical shear, hence stabilizing the
baroclinic system [11,12]. Although 1D basic flow (usually zonal on a β plane) serves as an ideal
theoretical model, cross-stream variation of the basic flow, e.g., in a jet flow, is ubiquitous in realistic
oceans. The perturbation evolution in the latter system involves an interplay between baroclinic and
barotropic instabilities, where a mechanism of baroclinic growth and barotropic decay was revealed
by Simmons and Hoskins [13] using the primitive equations (PEs). Moreover, the nonlinear BCI,
coupled with barotropic and topographic effects sometimes, can lead to flow meanders and eddy
detachment [14–16]. Such a mechanism is successful in explaining the current meanders widely
observed in a number of regions, including the Gulf Stream [17–19], Antarctic Circumpolar Current
[20], Kuroshio Current (KC) [21], and Brazil Current system [22]. The along-current wavelength
of the meanders was shown to well match the most unstable baroclinic mode [22,23], suggesting its
dominant role in the initially linear growth regime. Meanwhile, harmonics of the unstable baroclinic
modes rapidly grow due to nonlinearity, which distorts the mean flow and excites smaller-scale
motions [15,24,25].

The primary methodology in these works on nonlinear meanders is directly solving the QG
equations or PEs in the physical space. This is powerful because of the capability to incorporate
strong nonlinearity, complex topography, multiple scales, and other factors. On the other hand, it can
be interesting, from the theoretical perspective, to develop a nonlinear instability framework, which
solves the linearized equations for each perturbation mode and its harmonics with nonlinear terms as
the forcing. Such a framework is less applicable to realistic flows, but it can help understand modal
interactions and be efficient when only several leading modes dominate the system, thus providing
guidance for reduced-order modeling and to explore the underlying physics. This thought has been
adopted (e.g., Pedlosky [10]) for 1D basic flows, but is less explored in two-dimensional (2D) or
more complex flows such as the jet flow meanders. Developing such a nonlinear analysis framework
for baroclinic meanders is one of the central tasks of this work.

There are two more interesting points regarding baroclinic meanders of currents. The first point
is whether the meander can be stably sustained, which constitutes a secondary instability problem
in the sense that the formation of meanders through nonlinear BCI is the primary instability. It
is observed in some numerical simulations that mesoscale eddies can be generated and pinched
off the meanders [15,18], but they are not directly related to the instability of meanders through
systematic instability analysis. On the other hand, a baroclinic meandering jet as the basic flow
is inhomogeneous in all three spatial directions (and even temporarily varying), so the secondary
instability analysis (SIA) requires a three-dimensional (3D) shape function with extremely high
computational cost. By assuming periodicity in the along-current and temporal directions, the
Floquet theory can simplify the system to some extent [26,27]. However, the final eigenvalue
problem is still essentially three dimensional, which, in the language of global instability [28],
is a triglobal problem: the final discretized matrix for the eigenvalue computation is of dimensions
(Nx × Ny × Nz )2 with Nx,y,z the grid numbers. Though requiring huge computational cost, 3D SIA
is valuable to obtain an overall understanding of the instability of baroclinic meanders over a
large wavenumber space. Therefore, realizing 3D Floquet-based SIA for the present continuously
stratified system is another objective of this work, targeted for the baroclinic meanders obtained
from the above nonlinear instability framework.

The second interesting point is the effect of upper-layer current meanders on deep waters. For
example, Donohue et al. [29] reported observationally that deep eddy kinetic energy experienced
a marked increase coincident with the growth of upper-layer meanders. Ikeda [15] also noted that
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FIG. 1. Annual mean cross section of the (a) zonal velocity (m/s) at 130 ◦E [using the Hybrid Coordinate
Ocean Model (HYCOM) data [32]), and (b) meridional velocity (m/s) at 18 ◦N from the China Sea multi-
scale ocean modeling system (CMOMS) [31,33]. NEC, North Equatorial Current; NEUC, North Equatorial
Undercurrent; KC, Kuroshio Current; and LUC, Luzon Undercurrent.

though the upper-layer meanders kept moving eastward like the initial field, the lower-layer water
could move westward except for the regions near the layer center. This interaction between layers
becomes more interesting in the presence of an undercurrent, which is the focus of this work.
The two currents flowing in opposite directions are expected to experience baroclinic meanders
separately, whereas their linear and nonlinear interactions can possibly reshape each other. The
current-undercurrent system widely exists in global oceans, and plays crucial roles in subsurface
circulation. Some well-known examples are the eastward Equatorial Undercurrent, and the under-
current system in the Western Pacific Ocean (WPO) [30]. Figure 1 illustrates two different forms
of undercurrents in the WPO. The first example is the North Equatorial Current (NEC) and North
Equatorial Undercurrent (NEUC) taking the form of isolated jets away from lateral boundaries.
The second example is the KC–Luzon Undercurrent (LUC) system acting as western boundary
currents. Currently, the dynamics of these undercurrents are not fully understood. It is believed
that barotropic and baroclinic instabilities have joint contributions, and the latter is crucial in the
formation and maintenance of the undercurrent system [31]. Therefore, the present work extracts
an idealized model from the WPO undercurrent system, to further understand the dynamics and
current-undercurrent interaction due to intrinsic BCI.

We start from a smooth basic flow (horizontal scale ∼300 km and depth ∼2000 m), obtained
from the annual mean results of the China Sea multiscale ocean modeling system (CMOMS)
developed in the present authors’ group for the WPO and marginal seas [33,34]. The basic flow
is subject to two types of BCIs, and the two most unstable eigenmodes are separately initiated. The
perturbation grows linearly and then nonlinearly to form the baroclinic meanders for the current
and undercurrent, respectively. A saturation state is finally reached, which succumbs to different
types of secondary instabilities, leading to the formation of aperiodic smaller-scale (still mesoscale)
motions. We adopt a continuously stratified QG model for this problem, whose justification will be
presented in later sections. The value of this work is in three aspects. First, we develop a weakly
nonlinear framework to track the temporal evolution of the perturbation mode, its harmonics, and the
along-stream mean flow, which benefits the interpretation of modal interactions and reduced-order
modeling. Second, we develop a Floquet-based secondary instability framework to analyze the
instability of the saturated meanders, which is a full 3D instability (triglobal) calculation scarcely
explored before. Third, we intend to reveal the unique interaction between the current and under-
current due to nonlinear and secondary instabilities. The remaining parts are organized as follows.
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FIG. 2. Basic flow distribution: vertical profiles of (a) the meridional velocity and buoyancy frequency,

(b) the Richardson number at the jet center (x = 0), and (c) the contours of the meridional velocity (m/s) and
buoyancy (green lines).

Section II describes the problem setup, and the formulation of nonlinear and secondary instability
analyses. Section III presents the linear eigenmode results, which provide the parameter ranges for
subsequent nonlinear calculations. The effects of non-normality and inertial gravity waves are also
discussed. Afterwards, the nonlinear and secondary instability results are discussed in Secs. IV and
V, respectively. The work is finally summarized in Sec. VI.

II. PROBLEM FORMULATIONS

A. Flow setup and governing equations

As mentioned in Sec. I, we extract an idealized current-undercurrent model from the WPO to
study the role of intrinsic instability. Therefore, a periodic channel is configured to exclude the
effects of topography. The two currents are modeled as jets, whose initial basic state is assumed
geostrophic and meridionally uniform (justified later). Specifically, the basic stream function is
�B = �B(x, z), the zonal and meridional velocities are UB = 0, VB = VB(x, z), and the buoyancy
field is BB = BB(x, z), where x and z are the zonal and vertical coordinates. We take two steps to
construct the basic flow. First, we obtain the jet centerline profile V ∗

B,1D(z∗) and N2∗
B (z∗) from the

CMOMS, as shown in Fig. 2(a). Here, NB is the buoyancy frequency and the superscript ∗ denotes
dimensional variables. The upper-layer current (depth less than 470 m) flows northward with
the peak velocity at the surface. The subsurface undercurrent flows southward, whose maximum
velocity amplitude is 0.15 m/s at depth 780 m; this location is termed the undercurrent core hereafter.
In the second step, a jetlike flow is formulated as V ∗

B (x∗, z∗) = V ∗
B,1D(z∗) exp[−(x∗ − X ∗

c )2/X 2∗
W ],

where X ∗
c = 0 is the location of the jet center and X ∗

W is the jet half-width. As a practical measure,
the width 2X ∗

W is set to 130 km. The resulting basic flow is displayed in Fig. 2(c), where the buoyancy
field (isopycnals) is built upon the thermal-wind relation f ∗∂V ∗

B /∂z∗ = ∂B∗
B/∂x∗, f ∗ = f ∗

0 + β∗y∗
is the Coriolis frequency, and β∗ = ∂ f ∗/∂y∗. The computational domain spans 560 km in the zonal
direction, and is truncated at depth 2000 m, where V ∗

B drops to zero.
The geostrophy of the basic flow is evaluated using the Richardson and vorticity Rossby numbers,

Ri = N∗2

(∂U ∗/∂z∗)2 + (∂V ∗/∂z∗)2
, Roζ = ζ ∗

f ∗ = 1

f ∗

(
∂V ∗

∂x∗ − ∂U ∗

∂y∗

)
, (1)

where the subscript ζ is to distinguish from the Ro used for later nondimensionalization. These
two parameters also measure the strength of vertical and horizontal shears, respectively. The Ri
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TABLE I. Dimensional parameters for the present case.

Latitude L∗
0 (km) H∗

0 (m) U ∗
0 (m/s) t∗

0 (day) N∗
0 (1/s) w∗

0 (mm/s) C∗
H (m2/s)

18 ◦N 111.2 2000 1.000 1.287 2.505×10−3 3.589 10.00

distribution at the jet center is shown in Fig. 2(b). The minimum Ri is 9.9 in the upper layer, so
balanced baroclinic modes are anticipated to dominate over other types [35]. In the undercurrent
region, Ri is higher (more geostrophic) and tends to infinity around the undercurrent core with
minimal vertical shear. In terms of Roζ , it is less than 0.05 in the undercurrent region, and reaches
its maximum 0.29 at the surface where the horizontal shear intensifies. The temporal evolution of
Ri and Roζ will be monitored when the basic flow is disturbed due to instability.

Considering the relatively large scale of the flow and the ranges of Ri and Roζ , we adopt a
QG model, as widely considered before for baroclinic jet and meander problems at similar scales
[25,36–38]. The surface mixed layer is thus not modeled. Comparison with a linear PE model will be
presented in Sec. III to demonstrate the minor role of inertial waves during linear transient growth.
For the nonlinear regime, Spall and Robinson [18] noted, in their cases of Gulf Stream meanders,
that both the QG and PE models reproduced the major dynamic events, which is the main concern
here, whereas ageostrophic advection in the PE model contributed to reproduce more realistic ring
structures. Analogous conclusions were reached by Klein et al. [39] and Zurita-Gotor and Vallis
[40] for nonlinear BCI problems. More discussions on this point will be presented in Sec. VI.

The central variable in the QG model is the stream function ψ ; then u∗ = −∂ψ∗/∂y∗, v∗ =
∂ψ∗/∂x∗, and b∗ = f ∗∂ψ∗/∂z∗. For numerical convenience, we introduce the following nondimen-
sionalization:

(x, y) = (x∗, y∗)

L∗
0

, z = z∗

H∗
0

, t = t∗U ∗
0

L∗
0

= t∗

t∗
0

, f = f ∗

f ∗
0

= f0 + βy, N = N∗

N∗
0

,

ψ = ψ∗

U ∗
0 L∗

0

, (u, v) = (u∗, v∗)

U ∗
0

, w = w∗N̄∗2H∗
0

f ∗
0 U ∗2

0

= w∗

w∗
0

, b = b∗H∗
0

f ∗
0 U ∗

0 L∗
0

. (2)

Here, L∗
0 and H∗

0 are the horizontal and vertical length scales such that z ∈ [−1, 0], U ∗
0 and N∗

0
are the reference velocity and buoyancy frequency, and w is the vertical velocity. As a result, the
nondimensional PV is

q = βy + �hψ + f 2
0

Bu

∂

∂z

(
1

N̄2

∂ψ

∂z

)
, Bu = Ro2

Fr2 = N̄∗2
0 H∗2

0

L∗2
0 f ∗2

0

, (3)

where �h = ∂2/∂x2 + ∂2/∂y2, N̄ (z) is the horizontally averaged buoyancy frequency under the QG
scaling, and Bu and Fr are the Burger and Froude numbers. The computational parameters are
summarized in Table I; N∗

0 is determined as listed so that Bu = 1.
We consider a rigid-lid vertical boundary, i.e., w = 0 at z = −1, 0, so the nondimensional QG

equation takes the form of

∂q

∂t
+ u

∂q

∂x
+ v

∂q

∂y
= Fq + Dq, −1 < z < 0,

∂b

∂t
+ u

∂b

∂x
+ v

∂b

∂y
= Fb + Db, z = −1, 0, (4)

where F and D represent the forcing and dissipation terms. For the present periodic channel setup,
the relaxational restoring force is the most widely used form of forcing, which can be regarded as a
highly idealized parametrization for large-scale unresolved processes that maintain the flow (or the
factors that form the current like the upstream effects) [38–41]. The restoring force thus acts to pull
the flow back to the prescribed basic state in Fig. 2, as Fq = −rR(q − QB) and Fb = −rR(b − BB),
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where the crucial parameter rR is defined as the restoring rate. As will be shown in Sec. IV,
the restoring force is significant in the present model for the formation of saturated meanders.
The dissipation term contains explicit diffusion (coefficient CH ) posed in the numerical model
(CMOMS), and small-scale mixing (e.g., Ref. [25], coefficient CD = 10−7) for numerical stability,
as Dq = CH�hq − CD�2

hq. The dissipation coefficients for b are related through a unity Prandtl
number. The dissipation effects will be quantified through the energy budget analysis (Sec. II D).
For later use, Eq. (4) is expressed in an operator form as Q(ψ ) = 0.

B. Nonlinear instability analysis

To analyze the perturbation behavior, we decompose the field into the basic part and the
perturbed part, ψ (x, y, z, t ) = �B(x, z) + ψ ′(x, y, z, t ). From Eq. (4), the linearized perturbation
equation around the basic state is Q(�B + ψ ′) − Q(�B) = 0, which is explicitly written as

∂q′

∂t
= −

[(
VB

∂

∂y
+ rR − CH�h + CD�2

h

)
q′ + QB,xu′ + βv′

]
−

(
u′ ∂q′

∂x
+ v′ ∂q′

∂y

)
, for − 1 < z < 0

∂b′

∂t
= −

[(
VB

∂

∂y
+ rR − CH�h + CD�2

h

)
b′ + f0VB,zu

′
]

−
(

u′ ∂b′

∂x
+ v′ ∂b′

∂y

)
, for z = −1, 0, (5)

where QB,x is the zonal gradient of QB and VB,z is the vertical shear. The β effect is shown to
have a minor influence on the modes and length scales of interest (detailed in Appendix B), so a
simpler f plane is further assumed, which enables a zonally periodic boundary condition to simplify
the treatment of high-order horizontal boundary conditions introduced by dissipation. Equation (5)
is written in an operator form in terms of ψ ′ as B∂ψ′/∂t = Cψ′ + F′, where B and C are linear
operators, ψ′ is the global vector containing all the variables, and F′ denotes the eddy-induced
nonlinear term.

In the Fourier space, ψ ′ is decomposed in the meridional direction as

ψ ′(x, y, z, t ) =
M∑

m=−M

ψ̂ ′
m(x, z, t ) exp(imkyy), (6)

where M is the truncation order, ψ̂ ′
m is the shape function, and ky is the fundamental meridional

wavenumber. Since the volume transport of a current is often of particular interest, we introduce the
notation ψ̄ ′ = �B + ψ̂ ′

0 for the meridionally mean field averaged over one fundamental wavelength
Ly = 2π/ky. From Eq. (5), the governing equation for each Fourier component (m = −M, . . . , M)
is

∂

∂t
ψ̂

′
m = Lmψ̂

′
m + N̂

′
m, where Lm ≡ B−1

m Cm, N̂
′
m ≡ B−1

m F̂
′
m. (7)

Here, F̂
′
m is the Fourier component of F′ obtained after a convolution operation. A symmetry

ψ̂ ′
−m = ψ̂ ′†

m exists, where † denotes complex conjugate.
Following the procedures in Sec. I, we first consider linear eigenmodes for infinitesimal pertur-

bations. A temporal stability problem is established after expanding the temporal derivatives using a
factor exp(−iωt ) and neglecting the nonlinear terms. The modes of different m are hence decoupled,
and the resulting complex eigenvalue problem is Lψ̂ ′ = −iωψ̂ ′. The real and imaginary parts of
the eigenvalue, ωr and ωi, represent the frequency and growth rate, respectively. This is a 2D, or
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biglobal, stability problem (e.g., Ref. [42]) since the eigenfunction is 2D (x, z). The non-normality
of L may play a role in the perturbation transient growth [43], which will be discussed in Sec. III.

Next, we discuss the weakly nonlinear problem. If the basic flow is uniform across the stream
(zonal here; XW → ∞), then the most unstable eigenmode is the strict solution to Eq. (7) under
negligible viscous dissipation. In other words, the eigenmode can linearly grow regardless of its
amplitude, since the nonlinear term keeps absent (N̂

′
m = 0, due to v′ = ∂/∂x = 0). This is the setup

of Pedlosky [26] and Radko et al. [44] to study the secondary BCI. Due to the zonal variation of VB

in the present case, N′ is not zero and introduces nonlinear effects during the linear amplification
of the fundamental mode (m = 1). Since F′ is quadratic, harmonic modes mky (m = 0, 2, 3, . . .) are
generated. The |m| > 1 modes have shorter length scales than the fundamental one, while the m = 0
mode serves as a modification to the meridionally mean flow, which is termed the meridionally mean
flow distortion (MFD) mode. Thereby, we can construct a set of nonlinear equations for ψ̂ ′

m based
on Eq. (7), to obtain the temporal evolution of different modes.

Through further inspection, ψ̂ ′
m varies temporarily in both amplitudes and shapes. The complex

amplitude part behaves as an oscillatory wave which grows or decays exponentially. Therefore,
we introduce a regularity condition, inspired by the spatial nonlinear instability problems [45].
This condition enables more physical interpretation of the modes’ evolution, and also reduces the
numerical stiffness of the nonlinear equations. Specifically, ψ̂ ′

m is decomposed as

ψ̂ ′
m(x, z, t ) = �̂ ′

m(x, z, t )Am(t ), where Am(t ) ≡ exp

[
−i

∫ t

0
ωm(t )dt

]
. (8)

The amplification of ψ̂ ′
m can be absorbed in the amplitude function Am, to make |�̂ ′

m| slowly
vary with time using a closure condition specified later. Combining Eqs. (7) and (8) leads to the
equation for �̂ ′

m as

∂�̂
′
m

∂t
= (Lm + iωmI)�̂

′
m + N̂

′
m

Am
, (9)

where I is the identity matrix. For practical use, a norm is required to measure the amplitude of ψ̂ ′
m

(or �̂ ′
m). A natural choice is the energy norm, comprised of the perturbation kinetic energy (KE, K̂ ′

m)
and (available) potential energy (P̂′

m), as

Ê ′
m(t ) = 1

2
‖�̂ ′

m‖E = 1

2

∫∫



(
û′†

mû′
m + v̂′†

m v̂′
m + f0

Bu

b̂′†
mb̂′

m

N̄2

)
dxdz = K̂ ′

m + P̂′
m, (10)

where 
 stands for the whole domain. Note that u′
m, v′

m and b′
m in Eq. (10) are obtained

from �̂ ′
m (hereinafter) rather than ψ̂ ′

m. The energy norms for ψ̂ ′
m and �̂ ′

m differ by a factor A†
mAm,

i.e., ê′
m = ‖ψ̂ ′

m‖E/2 = A†
mAmÊ ′

m. The algorithm details regarding the inner and outer iterations are
listed in Appendix A.

Regarding the numerics, both the Chebyshev collocation points and high-order finite difference
schemes can be used in the vertical direction. The former scheme requires fewer grids to reach grid
independence, but using the latter can save considerable memory and computational cost for the
triglobal SIA (next section) at equivalent accuracy [46]. Thereby, the fourth-order finite difference
scheme is used, and more points are clustered near the surface due to the larger gradients there.
Moreover, Fourier spectral methods are adopted in the zonal direction. For the MFD mode, the
discretized Eq. (9) is singular since an arbitrary constant can be added to �̂ ′

0 with the equation sat-
isfied. Though its derivatives û′

0, v̂′
0, and b̂′

0 are unaffected by the constant, we supplement one
auxiliary boundary condition,

∫
�̂ ′

0 dx = 0 at z = 0, for mathematical well-posedness [7]. Besides, a
relaxation technique analogous to that by Zhao et al. [47] is adopted for |N̂′

m| to enhance robustness.
Notably, Eq. (9) is linearized around the initial basic state �B, not the temporally varying

mean state ψ̄ ′, so Lm remains unchanged during the temporal marching, which is numerically
convenient. To fully validate this treatment of linearization and the above nonlinear framework,
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we also implement a solver for directly solving Eq. (4) in the physical space, which is termed fully
nonlinear simulation (FNS). The spectral methods are employed in all three spatial directions [48]:
the Fourier discretization in the horizontal and the Chebyshev method in the vertical. Time stepping
is realized through a third-order Runge-Kutta scheme. Comparison between the FNS and nonlinear
instability results will be presented in Sec. IV.

C. Secondary instability analysis

The flow driven by the primary instability will reach saturation (|ψ̂ ′
m| nearly unvaried, or ωm,i ≈ 0;

see Sec. IV). It is of interest to study whether the meridionally periodic saturation state is stable,
i.e., whether the saturation can be sustained. Therefore, SIA is introduced to study the stability of
the primary saturation [26,49–52].

The new basic flow of interest is from Eqs. (6) and (8), taking the form of

ψ̃ ′(x, y, z, t ) = �B +
M∑

m=−M

�̂ ′
m exp

(
imkyy − i

∫ t

0
ωm dt

)
. (11)

The secondary instability perturbation ψ ′′
s satisfies Q(ψ̃ ′ + ψ ′′

s ) − Q(ψ̃ ′) = 0 (the operator Q is
defined in Sec. II A). Since we are concerned with normal modes, the nonlinear terms of ψ ′′

s are
dropped, and the linear governing equation for ψ ′′

s is

∂q′′
s

∂t
+ ũ′ ∂q′′

s

∂x
+ ṽ′ ∂q′′

s

∂y
+ ∂ q̃′

∂x
u′′

s + ∂ q̃′

∂y
v′′

s = −rRq′′
s + CH�hq′′

s − CD�2
hq′′

s , for − 1 < z < 0

∂b′′
s

∂t
+ ũ′ ∂b′′

s

∂x
+ ṽ′ ∂b′′

s

∂y
+ ∂ b̃′

∂x
u′′

s + ∂ b̃′

∂y
v′′

s = −rRb′′
s +CH�hb′′

s −CD�2
hb′′

s , for z = −1, 0. (12)

Compared with Eq. (5), zonal velocity and the meridional derivatives of the basic flow are present.
Meanwhile, Eqs. (12) cannot be directly solved as in Sec. II B, because the basic-flow coefficients
additionally vary with t and y.

Fortunately, the following two observations regarding the saturation state in the present model
help make ψ ′′

s solvable. First, for a moment ts during the saturation regime, the amplitude variation
of ψ̃ ′ around ts is negligible considering the minimal primary growth rates ωm,i ≈ 0. As will be
shown later, the growth rates of different primary instability modes in the saturation regime can be
one order of magnitude lower than those of the secondary instability modes, making this “slowly
varying” condition valid. Second, it is found that at saturation, the fundamental and harmonic modes
have nearly the same phase velocities, i.e., cr,m ≈ cr,1 = ωr,1/ky. As a result, Eq. (11) can be written,
after some simple algebra, as

ψ̃ ′(x, y, z, t ; ts) = �B +
M∑

m=−M

Gm(ts)�̂ ′
m(x, z; ts) exp[imky(y − crt )], (13)

where the complex amplitude is Gm(ts) = exp(−i
∫ ts

0 ωm dt + iωm,rts), and the subscript 1 in cr,1

or ωr,1 is omitted. Notably, Gm and �̂ ′
m are independent of y and t , so ψ̃ ′ is periodic in terms of

a reference coordinate yc = y − crt , i.e., ψ̃ ′(x, yc + λy, z; ts) = ψ̃ ′(x, yc, z; ts). Mathematically, the
differential equation with periodic coefficients can be solved through the Floquet theory; for more
details, one can refer to Herbert [53] and Wolfe and Samelson [54]. Consequently, the solution for
the temporal SIA takes the form of

ψ ′′
s (x, y, z, t ) = exp(σst )

Ms∑
m=−Ms

ψ̂ ′′
s,m(x, z) exp[i(m + εd )(kyy − ωrt )]. (14)
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Here, σs = σs,r + iσs,i is the characteristic exponent, σs,r is the mode growth rate, and σs,i is the
shift in circular frequency relative to ωr ; Ms is the truncated order, not necessarily equal to M in
Eq. (13); ψ̂ ′′

s,m is the shape function; and εd is the detuning parameter, representing the differences
in wavelength and frequency between the secondary basic flow and modal fluctuations. For a
converged series, Eq. (14) gives identical results when εd is varied by an integer, so we only need to
consider −0.5 < εd � 0.5. The criteria to truncate Eq. (14) will be discussed in Sec. V. According
to the wavenumber relation between ψ̃ ′ and ψ ′′

s , the secondary instability modes can be classified
into three types [53], namely, the fundamental (εd = 0), subharmonic (εd = 0.5), and detuned
(other εd ) types. In particular, the detuned resonance is responsible for inducing the perturbation
aperiodic in terms of ψ̃ ′ and continuous in spectra, but this mechanism is rarely explored in previous
geophysical applications.

After substituting Eqs. (13) and (14) into Eq. (12), we arrive at a generalized eigenvalue problem
for σs in an operator form as

B̂
′ ∂

∂t
ψ̂

′′
s − Ĉ

′
ψ̂

′′
s = 0, → σsB̂

′
ψ̂

′′
s = [Ĉ

′ + i(m + εd )ωrB̂
′
]ψ̂

′′
s . (15)

Here, the global matrices B̂
′

and Ĉ
′

are related to ψ̃ ′, ky, ωr , and εd . Since ψ̃ ′ and ψ ′′
s are both

expanded in series, their product in Eq. (12) involves a convolution, so the equations for ψ̂ ′′
s,m

(m = −Ms, . . . , Ms) cannot be decoupled. Therefore, the global vector ψ̂
′′
s = [ψ̂ ′′

s,−Ms
, . . . , ψ̂ ′′

s,Ms
]T

contains all the perturbation shape functions, and the matrix dimension in Eq. (15) is up to
(Nx × Ny × Nz )2, where Ny = 2Ms for the subharmonic type and Ny = 2Ms + 1 for the other two
types (see Ref. [53] for details). Consequently, Eq. (15) represents a full 3D, or triglobal, instability
problem of extremely high computational cost. In oceanic applications, such 3D instability calcu-
lations were realized by Wolfe and Samelson [54], Berloff et al. [49], and Shevchenko et al. [55]
for two- or three-layer QG models, whereas it has been scarcely explored before in continuously
stratified flows as in the present case. For the sake of affordability, only a set of (∼10–20) discrete
eigenmodes of leading growth rates, instead of the whole spectrum, are solved. The Krylov-Shur
algorithm is employed to reduce the cost [56]. The SIA solver is verified through an atmospheric
Eady-type case studied by Stevens and Hakim [57], as detailed in Appendix B.

D. Energy budget analysis

The energy budget analysis is frequently employed to provide insights into flow dynamics. The
diagnostic budgets for KE and potential energy are readily obtained from the perturbation vorticity
(ζ = �hψ) and buoyancy equations for the primary and secondary instabilities, respectively. For
the primary instability, the budget equations for KE, potential energy, and total energy (TE) after
spatial integral are written as

∂K̂ ′
m

∂t
+ 2ωm,iK̂

′
m =

Restoring︷ ︸︸ ︷
−2rRK̂ ′

m +
Barotropic︷ ︸︸ ︷

〈−VB,xRe(v̂′†
m û′

m)〉

+ 1

Bu
〈Re(b̂′†

mŵ′
m)〉︸ ︷︷ ︸

Buoyancy flux

+〈Re(�̂ ′†
m D ′

ζ ,m)〉︸ ︷︷ ︸
Dissipation

+〈Re(−�̂ ′†
m F′

ζ ,m/Am)〉︸ ︷︷ ︸
Nonlinear

, (16a)

∂P̂′
m

∂t
+ 2ωm,iP̂

′
m =

Restoring︷ ︸︸ ︷
−2rRP̂′

m +

Baroclinic︷ ︸︸ ︷
f0

Bu

〈
−VB,z

N̄2
Re(b̂′†

mû′
m)

〉
− 1

Bu
〈Re(b̂′†

mŵ′
m)〉︸ ︷︷ ︸

Buoyancy flux

+ 1

Bu

〈
1

N̄2
Re(b̂′†

mD ′
b,m)

〉
︸ ︷︷ ︸

Dissipation

+ 1

Bu

〈
1

N̄2
Re(b̂′†

mF′
b,m/Am)

〉
︸ ︷︷ ︸

Nonlinear

, (16b)
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∂Ê ′
m

∂t
+ 2ωm,iÊ

′
m =

Restoring︷ ︸︸ ︷
−2rRÊ ′

m +
Barotropic︷ ︸︸ ︷

〈−VB,xRe(v̂′†
m û′

m)〉

+ f0

Bu

〈
−VB,z

N̄2
Re(b̂′†

mû′
m)

〉
︸ ︷︷ ︸

Baroclinic

+〈Re(�̂ ′†
m D ′

q,m)〉︸ ︷︷ ︸
Dissipation

+〈Re(�̂ ′†
m F′

q,m/Am)〉︸ ︷︷ ︸
Nonlinear

, (16c)

where Re(·) denotes the real part of complex, and 〈·〉 is the volume integral as in Eq. (10). Note that
the pressure work term ( f0/Bu)〈∂Re(�̂ ′†

m ŵ′
m)/∂z〉 is zero subject to the rigid-lid boundary condition;

also, the integrated contribution of the β effect is zero. The physical meanings of each term are
labeled accordingly, reflecting the contributions from the restoring force (RF), barotropic (BT),
baroclinic (BC), dissipation (DP), and nonlinear (NL) components. The BT and BC terms stand for
direct energy transfers between the basic flow and the perturbation, while NL describes interscale
transfers. Besides, the buoyancy flux (BF) term represents the energy transfer between KE and
potential energy, which is canceled out in Eq. (16c).

The left-hand sides of Eqs. (16) represent the temporal growth rates measured by KE, potential
energy, and TE, respectively, so Eqs. (16) suggest a decomposition of the perturbation growth rate
[58]. Taking Eq. (16c) as an example, the growth rate measured by ‖ψ̂ ′

m‖1/2
E and the growth rate

contribution of, e.g., the barotropic components are

χE ,m = ωm,i + 1√
Ê ′

m

∂

√
Ê ′

m

∂t
= ωm,i + 1

2Ê ′
m

∂Ê ′
m

∂t
, and χE ,BT,m = − 1

2Ê ′
m

〈VB,xRe(v̂′†
m û′

m)〉, (17)

respectively. The contributions of other terms are defined likewise. Consequently, the contribution
of each physical process to the perturbation growth is quantified.

The energy budget equations for the secondary instability perturbations can be similarly derived
as in Eqs. (16). The energy norm now takes the form of

E ′′
s = 1

2
‖ψ ′′

s ‖E = 1

2
exp(2σs,rt )

∑
m

∫∫



(
û′′†

s,mû′′
s,m + v̂′′†

s,mv̂′′
s,m + f0

Bu

b̂′′†
s,mb̂′′

s,m

N̄2

)
dxdz, (18)

and the budget equation for the total energy is

2σs,rE ′′
s =

Restoring︷ ︸︸ ︷
−2rRE ′′

s +
Barotropic︷ ︸︸ ︷

〈Re(T ′′
s )〉 +

Baroclinic︷ ︸︸ ︷
〈Re(C ′′

s )〉+
Dissipation︷ ︸︸ ︷

〈Re(ψ ′′†
s D ′′

q,s)〉,

T ′′
s = −

[(
∂ ũ′

∂x
− ∂ ṽ′

∂y

)
u′′†

s u′′
s − v′′†

s v′′
s

2
+

(
∂ ũ′

∂y
+ ∂ ṽ′

∂x

)
v′′†

s u′′
s

]
, (19)

C ′′
s = − f0b′′†

s

BuN̄2

(
∂ ṽ′

∂z
u′′

s − ∂ ũ′

∂z
v′′

s

)
.

The budget equations for KE and potential energy, and the growth-rate decomposition as in Eq. (17),
can be similarly defined.

III. LINEAR EIGENMODE RESULTS

The linear eigenmode is computed first to determine the dominant perturbation mode, which
provides the parameter ranges for subsequent nonlinear calculations. A grid convergence study
suggests a mesh Nx × Nz = 64×101 to obtain grid-independent results. Two primary unstable
modes are identified, whose growth rates and phase velocities are plotted in Fig. 3 as functions
of ky (rR = 0). Other modes of relatively low growth rates (gray lines) will not be considered
hereafter. The mode amplified in the upper layer is termed the upper mode. It propagates northward
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FIG. 3. Linear eigenmode results: (a) growth rates, (b) phase velocities, and (c) energy budgets of the upper
and lower modes, and the contours of [(d), (g)] Re(b̂′†û′) and [(e), (h)] Re(v̂′†û′) for the most unstable [(d), (e)]
upper (k∗

y = 0.016 km−1) and [(g), (h)] lower (0.046 km−1) modes, respectively. The grey dashed lines in the
right-hand panels denote the basic velocity. Panels (f) and (i) are the contours of QB,x and VB,z for reference,
where x and z denote partial derivatives as in Sec. II.

(cr > 0), resides in the relatively long wave region (λ∗
y > 250 km), and reaches the highest growth

rate among other modes. In comparison, the lower mode amplifies in the undercurrent region, and
propagates southward in line with the basic flow. It is active at a shorter wavelength than the upper
one, consistent with the local higher Ri according to the Eady scaling [35].

The growth rates are decomposed in Fig. 3(c) to classify different modes. The viscous dissipation
term contributes negligibly (<3×10−4 day−1) to the total growth for both modes, and hence is not
shown. The barotropic component is mildly destabilizing for the upper mode, and slightly stabilizes
the lower mode. In comparison, the baroclinic component is the dominant one for both the upper
and lower modes, implying that they two are primarily baroclinic modes. These baroclinic modes
can be further classified based on the behavior of the mean PV, according to the CSP condition.
As a result, the surface-amplified upper mode is of the Charney type, where QB,x and VB,z have
opposite signs at the surface [see Figs. 3(f) and 3(i)]. The subsurface lower mode is of the Phillips
type, where QB,x changes sign in the interior. The spatial distributions of BC and BT for the most
unstable upper and lower modes are also displayed in Fig. 3. The baroclinic component, as reflected
from the horizontal buoyancy flux Re(b̂′†û′), is mainly distributed around the jet center where the
vertical shear is the strongest. In comparison, the barotropic part, reflected from the Reynolds stress
Re(v̂′†û′), is located at the jet flanks with pronounced horizontal shear.

In addition to baroclinic modes, inertial modes such as inertial gravity waves (IGWs, also known
as Poincaré waves) may play a role in the perturbation evolution, but they are excluded in the QG
model. Therefore, the linear PE model, as detailed in Appendix C, is also solved to distinguish the
effects of inertial modes, and justify the usage of the QG model. Note that we consider the 1D basic
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FIG. 4. (a) Global eigenmode spectrum (rR = 0) and (b) the energy amplification factors in TGA at
different r∗

R (day−1) by the QG and PE models (k∗
y = 0.016 km−1). The orange dashed lines in panel (b) are the

upper eigenmode results from QG. The basic flow for this figure is the 1D profile in Fig. 2(a) with kx = 0.

flow in Fig. 2(a) for Fig. 4, which will be explained later. First, the mode spectra are compared in
Fig. 4(a) between the two models, at k∗

y = 0.016 km−1 when the baroclinic mode in Fig. 3 is the
most unstable (zero zonal wavenumber kx). Neutral and non-neutral balanced modes appear in the
range min VB � ωr/ky � max VB, and the eigenvalues from the QG equations well match those from
PE, as expected from the relatively large Ri � 1 [35]. Besides the balanced modes, two branches
of neutral IGWs are present in the PE model. A rough estimation of their wavenumber ranges
is [59]

ωr = kyVB ± (1/Ro)
√

f 2 + BuN2
B

(
k2

x + k2
y

)/
k2

z , (20)

where kz is a virtual vertical wavenumber introduced to make the perturbation equation solvable.
As shown in Fig. 4(a), Eq. (20) in the kz → ∞ limit well predicts the frequency ranges of
the IGWs.

Though neutral, IGWs may affect the perturbation evolution through non-normality and modal
interaction with balanced modes. To quantify the collective contributions of these IGWs to the
perturbation linear growth, we adopt the transient growth analysis (TGA) [43], which solves a linear
initial value problem G(t ; kx, kz ) = maxt (‖ψ̌ ′(t )‖E/‖ψ̌ ′(0)‖E ) considering all the eigenmodes; G is
the energy amplification ratio and ψ̌ ′ is a linear combination of all the eigenmodes. TGA requires
an accurate resolution of all eigenmodes, so a dense mesh Nz = 301 is needed for the present case
to obtain grid-independent TGA results. Since the whole spectrum is required, only the 1D basic
flow at x = 0 is considered in Fig. 4 for numerical affordability, which can at least partially serve
our purpose. The TGA results of the QG and PE models are shown in Fig. 4(b) at two rR, which
are selected so that the perturbation is asymptotically unstable and stable, respectively. For the two
rR cases, G grows faster than the most unstable eigenmode before day 13, suggesting mild transient
growth due to modal linear interactions. Regarding the effects of IGWs, the QG and PE models
give nearly identical G after day 2. The IGWs indeed lead to a higher energy growth at the initial
moment (PE results), but they rapidly decay within the first one or two days. This is consistent
with the results of Heifetz and Farrell [60], and is ascribed to the fact that the IGWs are nearly
perpendicular to the balanced modes at high Ri. Therefore, we conclude that the unstable baroclinic
upper and lower modes, well described by the QG model, dominate the linear temporal evolution of
the perturbation.
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FIG. 5. Upper-mode cases: temporal evolution of the [(a), (d)] amplitudes and [(b), (e)] phase velocities of
different Fourier modes, and the [(c), (f)] mean and eddy energies. Panels (a), (b), (d), and (e) share the same
legends, and so do panels (c) and (f). Panels (a)–(c) are for the r∗

R = 0.050 day−1 case, and panels (d)–(f) are
for 0.075 day−1. The linear (lin.) instability results are also shown in dotted lines for reference.

IV. NONLINEAR INSTABILITY AND SATURATION

Nonlinear interactions come into play when the perturbation is linearly amplified to a certain
value. Since the linear growth is exponential, the most unstable mode in Fig. 3 is more likely to
dominate the linear regime. Therefore, we focus on the nonlinear growth of the most unstable upper
and lower modes. Notably, it is highly idealized that the initiated perturbation is monochromatic in
terms of ky; it is inevitably broadband with random noise. Nevertheless, the present idealized model
can be insightful for studying modal interactions and represents a universal formation mechanism
of meanders and smaller-scale motions.

A. Upper-mode case

The upper-mode case is studied first, and three representative values r∗
R = 0.050, 0.075, and

0.10 day−1 are selected. The initial perturbation is the k∗
y0 = 0.016 km−1 upper mode obtained from

Sec. III. Its initial amplitude A1(0) = [‖ψ̂ ′
1(0)‖]1/2 is set to 1% for all cases to allow linear growth

initially, where the subscript 1 denotes the fundamental mode ky = ky0. The harmonic modes mky0

(m = 0, 2, 3, . . .) are later generated by the nonlinear forcing and are rapidly amplified, as shown
in Fig. 5(a). The amplitude of the fundamental mode (A1) deviates from its linear trace by 10% at
day 25 and starts to saturate. After day 45, A1 only slightly varies and remains around 0.3. Other
harmonic modes have similar experiences of first rapid growth and then saturation. The MFD mode
(ky = 0) reaches a comparable amplitude with the fundamental mode, suggesting severe distortion
of the meridionally mean flow. In comparison, the modes 2ky0, 3ky0, . . ., have increasingly low
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FIG. 6. Growth-rate decomposition based on TE for the (a) fundamental, (b) ky = 2ky0, and (c) ky = 3ky0

modes in the upper-mode r∗
R = 0.075 day−1 case. The dotted lines in panel (a) are the linear reference. The

term notations are defined in Sec. II D, repeated here as BC, baroclinic; BT, barotropic; NL, nonlinear; RF,
restoring force; and DP, dissipation.

amplitudes in the saturation regime, and Am�2 are at least one order of magnitude smaller than
A1 and A0. This is beneficial to construct a simple model considering only three or four modes to
well represent the process in Fig. 5, as will be discussed in Sec. IV C. To fully verify the nonlinear
instability results, the FNS solver is employed on an Nx × Ny × Nz = 80×80×101 mesh to run the
QG simulation from the same initial field at t = 0. As shown in Fig. 5, the temporal evolution
of Am from FNS is in perfect agreement with the nonlinear instability analysis, demonstrating the
reliability and accuracy of the latter method.

The temporal evolution of the perturbation total energy e′ = ∑
m �=0 ê′

m, termed eddy TE (ETE)
here, is plotted in Fig. 5(c), along with the kinetic and potential parts. Accordingly, the kinetic
energy of the meridionally mean flow ψ̄ ′ is termed MKE here. It is observed that EKE quickly
surpasses MKE, and the three eddy energies all slowly decrease in the saturation regime. A nearly
equal partitioning between EKE and EPE is reached throughout because the horizontal scale of the
basic flow is comparable with the baroclinic deformation radius [61]. In fact, the saturation of the
eddy energies due to nonlinear BCI is a universal mechanism [23,24,39].

Another variable of interest is the phase velocity of different modes, as displayed in Fig. 5(b).
Due to nonlinear interactions, cr,1 is lowered by up to 50% in the saturation regime, compared to
its linear counterpart. More importantly, cr,m (m � 2) of the harmonic modes are quickly adjusted
to follow cr,1 in the first few days after their emergence. The relation cr,m ≈ cr,1 holds after day 20,
meaning that these modes propagate northward at approximately the same speed. Consequently, the
fundamental and harmonic modes are in a phase-locking state, as also observed by Sutyrin et al. [19]
in their PE model for the Gulf Stream jets. In fact, such a phase-locking mechanism between the
fundamental mode and its temporal or spatial harmonics is quite universal in nonlinearly evolving
shear flows [62], which allows a powerful nonlinear interaction to occur within the critical layers
where cr ≈ VB.

The results of the r∗
R = 0.075 day−1 case are shown in Figs. 5(d)–5(f), which share the same

qualitative features with the r∗
R = 0.050 day−1 case. Since the linear growth rate is lower, the pertur-

bation in the r∗
R = 0.075 day−1 case experiences a longer growth before saturation. Meanwhile, the

locked phase velocity retains at a higher value, and the perturbation energy at saturation is lower,
suggesting milder distortion to the basic flow.

The energy budget is analyzed to provide insights into the dynamics in Fig. 5. The growth-
rate decomposition results for case r∗

R = 0.075 day−1 are shown in Fig. 6 based on TE. For the
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FIG. 7. Temporal sequence of the meridionally averaged meridional velocity (m/s) for the upper-mode
[(a)–(d)] r∗

R = 0.075 day−1 case, [(e), (f)] 0.050 day−1 case, and [(g), (h)] 0.10 day−1 case.

fundamental mode, χE ,BC slightly varies and remains the largest throughout, while BT keeps
contributing positively. Nevertheless, the total growth rate ωi is gradually dragged down to zero
(reaching saturation) by NL. The nonlinear term is conservative among all scales, so the loss of
NL by the fundamental mode converts to the forcing to MFD and other harmonic modes. For the
2ky0 and 3ky0 modes, BT is increasingly stabilizing with the rise of ky before saturation, suggesting
barotropic decay due to strong momentum fluxes [13,63]. Meanwhile, BC contributes negligibly
or negatively, and both BC and BT tend to diminish, so the saturation of these harmonic modes is
primarily a balance between NL and RF. In addition, DP has small negative contributions to the
three modes, but it tends to be more pronounced with m increased due to the decreasing scale of
motions.

As mentioned in Sec. I, an important question is whether the current and undercurrent can be
sustained subject to nonlinear BCI. Therefore, the meridionally mean field and flow structures are
studied at different rR. First, the temporal sequence of the averaged velocity V̄ ′ (defined in Sec. II B)
is displayed in Figs. 7(a)–7(d) for the r∗

R = 0.075 day−1 case. The averaged velocity retains its shape
in the first 40 days, but rapidly deforms later on. The upper-layer current gradually decreases in
strength and becomes broadened due to the down-gradient eddy fluxes [11,12]. Meanwhile, the
undercurrent is weakened and develops into a multipeak pattern aligned zonally. At day 90, for
example, three velocity peaks (∼−0.05 m/s) are present within a zonal distance of 210 km. This
MFD structure is maintained by the balance between NL and RF (note that BC and BT are always
zero for MFD because û′

0 = Ū ′ = 0). As the MFD mode becomes saturated after day 70, V̄ ′ also
retains its shape, indicating steady meridional volume flux. The time sequences of V̄ ′ in the other
two cases are shown in Figs. 7(e)–7(h). In the case r∗

R = 0.050 day−1, the upper-layer current is more
severely weakened than in the case r∗

R = 0.075 day−1, but it still remains one core. In comparison,
the undercurrent develops into a two-core structure in the saturation regime with the core centers far
apart. This signifies a prominent passive response of the undercurrent to the upper-layer instability,
as the undercurrent is much weaker in strength than the upper one. On the other hand, the MFD
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FIG. 8. 3D view of the instantaneous [(a)–(c)] meridional velocity (m/s) and [(d)–(f)] buoyancy (m/s2)
fields in the saturation regime for the upper-mode [(a), (d)] r∗

R = 0.10 (day 110), [(b), (e)] 0.075 (day 80), and
[(c), (f)] 0.050 day−1 (day 60) cases. The isosurfaces in panels [(a)–(c)] are 0.3 m/s (upper) and −0.06 m/s
(lower), respectively.

growth in the r∗
R = 0.10 day−1 case is much milder than the other two cases, because of the low

linear growth rate and low perturbation amplitudes in the saturation regime. Consequently, V̄ ′ only
slightly differs from the initial field, and the undercurrent remains one core.

The instantaneous velocity and buoyancy fields (Ṽ ′ and B̃′) in the saturation regime are depicted
in Fig. 8 for the three rR cases. The meridionally varying perturbations lead to the classic meandering
pattern of velocity and buoyancy. The phase-locking state of different Fourier modes suggests that
the meander moves northward as a whole. Meanwhile, a clear trend is that as rR decreases, the flow
experiences stronger meanders due to the diminishing restoring force. In the case r∗

R = 0.050 day−1,
the zonal meander scale of the upper-layer current is already comparable to the meridional scale
λy. Furthermore, the undercurrent is more severely affected by the nonlinear eddy forcing than
the upper-layer current, as observed in Fig. 7, so that it is divided into two separate water masses
staggered meridionally in Fig. 8(c). Also, the subsurface flow is filled with northward and southward
eddies, so the undercurrent is hardly identified. Since the current and undercurrent are largely
weakened in the r∗

R = 0.050 day−1 case, the isopycnals are zonally flattened, especially in the upper
layer; instead, the strong tilting of isopycnals shifts to the meridional direction (seen from the surface
contours).

The dynamics of the meanders are further studied by analyzing the energy budget. As noted
earlier, the meridionally mean field in the saturation regime is maintained primarily by NL and RF,
so we first plot the nonlinear term F̂

′
0 of the MFD mode in Fig. 9(a). The restoring force (−rRq̂′

0)
exhibits a nearly identical distribution except for opposite signs, so q̂′

0 is directly reflected. The

vertical distribution of F̂
′
0 (and q̂′

0) well corresponds to QB,x in Fig. 3(f). The undercurrent and even
deeper waters cannot resist the intense eddy momentum fluxes from the strong upper-layer current,
so multiple velocity peaks are generated (see also Fig. 8). In addition to the budget of the MFD
mode, the instantaneous eddy fluxes u′q′ and v′q′ at the surface are plotted in Figs. 9(b) and 9(c).
Although instantaneous fluxes are generally of less interest for parametrization than the averaged
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FIG. 9. Vertical section of (a) the nonlinear term F̂
′
0 for the MFD mode, and the horizontal sections of the

eddy fluxes (b) u′q′ and (c) v′q′ at the surface in the upper-mode r∗
R = 0.075 day−1 case (day 80). The black

lines in panel (a) denote V̄ ′ as in Fig. 7, and those in panels (b) and (c) denote contours of the stream function.

ones, u′q′ and v′q′ are focused on because they represent a kind of phase-averaged value relatively
static to the meander, which is attributed to the saturation and phase-locking state. The other two
commonly used fluxes u′b′ and v′b′ are not displayed because they look qualitatively similar to the
PV counterparts except for opposite signs, which aligns with the parametrization suggestion [64]
under a minor BT contribution. The eddy fluxes in Fig. 9 indicate a down-gradient tilting of the
meander, which is finally balanced by the prescribed forcing.

B. Lower-mode case

Compared to upper-layer currents, the nonlinear BCI for undercurrents has been rarely studied
before. Here, the lower-mode case is investigated, which has important distinctions from the upper-
mode cases. For convenience of studying the interaction between the upper and lower modes, the
wavenumber of the lower mode is selected to be three times the most unstable upper one, i.e.,
k∗

y0 = 0.048 km−1, which is close to the most unstable lower mode (see Fig. 3). Only one case r∗
R =

0.010 day−1 is computed due to its relatively low linear growth rate. Similar to Fig. 5, the temporal
evolution of the amplitudes and phase velocities of different Fourier modes are shown in Fig. 10.
The FNS results are displayed as well to demonstrate the reliability of the nonlinear instability
calculation. As in the upper-mode cases, the lower fundamental mode also reaches saturation after
a weak linear amplification; the maximum A1 and A0 are only ∼0.04 and ∼0.06. Meanwhile, the
fundamental mode and its harmonics are phase locked in the saturation regime, flowing at a common
cr ≈ −0.05 m/s southward. Nevertheless, nearly all the modes start to decay after day 70, and their
phase velocities begin to differ, suggesting a phase-(re)unlocking process.

The temporal sequence of meridionally mean flow is displayed in Fig. 10(c). Interestingly, the
upper-layer current is negligibly affected by the nonlinear growth of the lower mode. Figure 11(a)
further suggests that the upper-layer current experiences little meanders throughout, which is jointly
contributed by two factors. First, the lower mode is active near the undercurrent bottom according
to the PV distribution, away from the upper layer (Fig. 3). Second, the undercurrent is much
weaker than the upper-layer one. The lower-mode perturbation grows to distort the undercurrent,
and even pump deeper water (>1400 m) southward at V̄ ′∗ ≈ −0.05 m/s. As shown in Fig. 11, the
instantaneous velocity isosurface of the undercurrent is toothlike. Strong meanders are present with
the zonal scale comparable to λ∗

y = 130 km. Nevertheless, the undercurrent is not split into multiple
cores, and remains in a much narrower region (�200 km), compared with the upper-mode case.

Next, the energy budget of the lower-mode case is investigated. The growth-rate decomposition
for different modes based on TE is plotted in Fig. 12. A clear distinction from the upper-mode
cases is that the damping effect of DP is prominently enhanced, simply due to the much smaller
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FIG. 10. Lower-mode case: temporal evolution of the (a) amplitudes and (b) phase velocities of different
modes, and the (c) temporal sequence of the meridionally averaged meridional velocity (V̄ ′∗, m/s) for the case
r∗

R = 0.010 day−1. The linear results are also shown in panels (a) and (b) for reference.

meridional length scales of the lower mode and its harmonics. For the ky = 3ky0 mode in Fig. 12(c),
DP becomes the largest energy sink after day 20, and such damping effects are more severe for
higher harmonics (ky � 4ky0). Consequently, the pronounced viscous effects lead to an overall decay
of different modes in the late stage and also the phase unlocking, because DP is highly sensitive to
the modal length scales. For the fundamental mode, the BC component, which drives the initial
linear growth, continuously decreases and finally falls to negative. Accordingly, the total growth
rates of the fundamental and other modes keep dropping, so there are no strict equilibrium regions
ωi ≈ 0 as in Fig. 6.

Finally, we highlight that there are indeed some indications of the above nonlinear instability
process in model observations. In Fig. 1, the two NEUC jets at ∼9 ◦N and ∼12 ◦N are distributed
on the two sides of the NEC (centered at ∼10 ◦N), resembling the patterns in Fig. 7(f). Also, the
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FIG. 11. (a) 3D visualization of the instantaneous meridional velocity (Ṽ ′∗, m/s) in the saturation regime
(day 60) for the lower-mode r∗

R = 0.010 day−1 case. (b) The horizontal section at depth 780 m and (c) the y-z
section at x = 0. The black lines denote contours of the stream function.
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term notations are the same as in Fig. 6.

three NEUC jets all extend deeply over 2000 m depth, reminiscent of the phenomenon in Fig. 10(c).
Further clarification on this point is still anticipated in future work.

C. Model with minimal modes

It is observed in Secs. IV A and IV B that the amplitudes of the high-ky harmonic modes are
orders of magnitude smaller than the fundamental and MFD modes, so it is interesting to explore a
model of minimal modes that is adequate to describe the nonlinear saturation process. Such a simple
model can also maximize the advantage of the developed nonlinear instability framework.

The simplest choice is a three-mode model (M = 2), comprised of the fundamental, MFD, and
the lowest harmonic ky = 2ky0 modes. For reference, the computation in the previous sections with
M = 10 is termed the full model. The temporal evolution of different modes is examined in Fig. 13
for representative upper- and lower-mode cases, respectively. Even with only three modes, this
reduced model can well predict the nonlinear growth and saturation amplitude of the fundamental
and MFD modes. However, the harmonic mode and the cr of the fundamental mode cannot be well
resolved, which strongly oscillate around or above the full-model values. This is ascribed to the
imbalance of the nonlinear term, where the interaction of higher harmonics is truncated and thus
cannot be “received” by the three activated modes. Observing the rapid decrease of Am with m, we
additionally include the ky = 3ky0 mode, which constructs a four-mode model. As shown in Fig. 13,
the oscillations of cr and A2 are clearly suppressed in both the upper- and lower-mode cases, so
they are quite close to the full model results. Nevertheless, cr in the four-mode model tends to be
overpredicted near the end of the saturation, due to the slow decay of the fundamental and MFD
modes.

In short, the nonlinear growth and saturation of the present current-undercurrent system is
governed by the leading (in terms of ky) few modes. Using only a three-mode model can well predict
the saturation amplitude of the perturbation, while adding the fourth mode can largely improve the
prediction of phase velocity and higher harmonics.

V. SECONDARY INSTABILITY RESULTS

Although Sec. IV indicates that the baroclinic unstable modes result in nonlinear saturation of
the current and undercurrent, it is important to study the instability of the saturation state, i.e., its
secondary instability, to answer whether the saturation can be sustained. Moreover, we intend to
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reveal the prominent role of detuned resonance for undercurrents, which received little attention
before.

A. Upper-mode case

The r∗
R = 0.050 day−1 case is studied first, which experiences the strongest meanders. The

saturation state at day 60 is focused on. Due to the high cost of SIA, it is important to determine the
number of terms truncated, Ms or Ny, in the Floquet series in Eq. (14). We use three convergence
criteria to determine Ms: (i) the subharmonic case gives identical results (relative error of σs less
than 1%) as the εd = 0.5 detuned case; (ii) the detuned case gives identical results when εd is varied
by an integer (the same criterion for σs; εd ranged from −1 to 1); and (iii) the energy portion of the
highest |m + εd | mode to Ê ′′

s is less than 0.1% (see Table II for details). In general, Ms = 5 (Ny = 10
or 11) is adequate for the present calculations.

Figure 14 presents an overview of the SIA results as a function of εd , where several unstable
modes are identified. Since σs is a continuous function of εd , we classify these modes according to
the location of their peak growth rates. The most unstable mode peaking at εd = 0 reflects the
fundamental resonance, so it is termed the F1 mode. Meanwhile, this mode has a comparable
frequency with the basic flow (σs,i ≈ 0) when highly unstable (|εd | < 0.25). There are three

TABLE II. Energy portion of each wavenumber component for the most amplified fundamental (F1),
subharmonic (S1) and detuned (F1, εd = 0.24) secondary modes, for the upper-mode r∗

R = 0.050 day−1 case.

Fundamental Wavenumber (m + εd ) −4.00 −3.00 −2.00 −1.00 0.00 1.00 2.00 3.00 4.00
Energy portion (%) 0.4 1.1 3.2 31.8 26.6 31.8 3.2 1.1 0.4

Subharmonic Wavenumber (m + εd ) −3.50 −2.50 −1.50 −0.50 0.50 1.50 2.50 3.50
Energy portion (%) 0.6 2.1 24.7 9.1 53.2 7.7 1.9 0.8

Detuned Wavenumber (m + εd ) −3.76 −2.76 −1.76 −0.76 0.24 1.24 2.24 3.24 4.24
Energy portion (%) 0.6 1.8 6.1 18.3 38.7 31.2 2.2 0.8 0.4
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FIG. 14. (a) Growth rates and (b) frequency shifts of different secondary instability modes as a function
of the Floquet detuning parameter for the upper-mode r∗

R = 0.050 day−1 case. [(c)–(f)] Growth-rate decompo-
sition based on TE for the F1, S2, S3, and D1 modes; F, S, and D represent fundamental, subharmonic, and
detuned modes, respectively. The term notations are the same as in Fig. 6.

unstable modes most amplified at εd = 0.5 or −0.5, so they are termed the S1–S3 modes (“S” for
subharmonic). Besides, a D1 mode reflecting the detuned resonance exists, which is most unstable
at εd = 0.32. The growth rates of these modes are lower than the primary instability, so rapid
breakdown of the saturated meanders is not anticipated. This essentially differs from, e.g., the
inertia-dominated bottom boundary layer case [53], where σs,r can be an order of magnitude higher
than the primary instability. This modest secondary instability also explains why the FNSs in Fig. 5
stay saturated without breakdown, though exposed to various random fluctuations. The growth-rate
decompositions of these modes are shown in Fig. 14, where BC contributes the most energy to all
modes throughout εd . Also, BT has pronounced contributions to modes F1, S1, and S2, so they can
be regarded as a mixed BC-BT type. This mechanism of joint BC and BT contributions to secondary
instability also exists in the atmospheric cyclogenesis in localized baroclinic zones [65]. Besides,
DP has minor effects throughout, as for the primary instability (upper-mode case).

Next, the structures of these secondary instability modes are discussed. Table II lists the energy
ratios of the leading Floquet waves to the total perturbation energy Ê ′′

s for the three modes of
high growth rates. Over 90% of Ê ′′

s resides in the leading three Floquet waves, because of the
rapid decrease of Am with m in the primary instability. These secondary instability modes are most
amplified near the surface, so the ψ̂ ′′

s contours of these three modes are depicted in Fig. 15 at
the surface and around the undercurrent core, which are normalized as Ê ′′

s = 1. The F1 mode has
the same meridional wavenumber as the basic flow. The perturbation takes the form of cyclones
(ψ̂ ′′

s peaks) and anticyclones (valleys) around the meander, as previously reported in numerical
and observational works [19,57,65]. These cyclones and anticyclones have comparable zonal and
meridional sizes of ∼200 km, and appear where the current has strong cross-stream motions. They
move northward at the same phase speed as the basic flow since σs,i ≈ 0, and can reach down to
the subsurface region to further distort the undercurrent. In comparison, for the S1 mode, the ky

of the leading Floquet wave is two times the meander, and the surface cyclones are oblique and
compressed. For more insights into the structures of these modes, the horizontal and vertical shear
of the secondary basic flow are depicted in Figs. 15(e) and 15(f), whose expressions are indicated by
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FIG. 15. Horizontal sections of the secondary perturbation stream function (ψ̂ ′′
s ) for the most amplified

(a) fundamental (F1), (b) subharmonic (S1) and [(c), (d)] detuned modes (F1, εd = 0.24), for the upper-mode
r∗

R = 0.050 day−1 case. Panels (a)–(c) are at the surface and panel (d) is at depth 780 m. The last two panels
are the (e) horizontal shear (H = (∂ ũ′∗/∂x∗ − ∂ ṽ′∗/∂y∗)/ f ∗

0 ) and (f) vertical shear (V = [(∂ ũ′∗/∂z∗)2 +
(∂ ṽ′∗/∂z∗)2]1/2/N∗

0 ) of the basic flow at the surface. The black dotted lines are the contours of the basic-flow
stream function.

budget equation (19). Since the F1 and S1 modes are BC dominated, the locations of the cyclones
and anticyclones well correspond to those of strong vertical shear. Also, the regions of intense
horizontal shear are surrounded by enriched perturbations, reflecting the notable contribution of BT.
The above connection between cyclonic perturbations and the horizontal and vertical shear of the
mean flow can be utilized to identify secondary instability in observational and simulation results.
Finally, the detuned case is displayed in Figs. 15(c) and 15(d). Cyclones and anticyclones can still
be observed, but they are out of phase with the basic flow due to their detuned frequencies and
wavenumbers. Consequently, the meander can quickly become meridionally aperiodic. Therefore,
the SIA not only reveals the forms of the perturbation that meanders are most susceptible to, but
also reflects the mechanism of how wideband aperiodic cyclones are induced.

For the cases r∗
R = 0.075 and 0.10 day−1, the secondary instability is much weaker, due to the

weaker meanders and stronger restoring force. Consequently, no unstable modes are found in the
latter case (0.10 day−1); only a weak F1 mode is identified in the former case, which shares a lot of
common features with that in Fig. 15, but the maximum growth rate is only 0.005 day−1. Therefore,
the secondary instability results for these two cases are not further discussed.

B. Lower-mode case

The secondary instability of undercurrents has been rarely investigated before, so we proceed to
study the lower-mode r∗

R = 0.010 day−1 case. As discussed in Sec. IV B, the meander experiences a
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FIG. 16. (a) Growth rates and (b) frequency shifts of different secondary instability modes as a function of
the Floquet detuning parameter for the lower-mode r∗

R = 0.010 day−1 case. [(c)–(f)] Growth-rate decomposi-
tion based on TE for the Us, F1, D1, and S1 modes, respectively. The results in the synchronization region (see
text) between Us and F1 are plotted in dotted lines.

decay after reaching saturation, so we select day 65 for SIA, when the fundamental mode reaches its
maximum amplitude (ωi,1 ≈ 0). In later stages when the saturation decays, the secondary instability
modes may not dominate because of their lower growth-rate amplitude than the primary instability.

As in Sec. V A, a series of unstable modes are identified in Fig. 16. A significant distinction is
that there appears a detunedlike mode whose maximum growth rate is over two times the lower
mode in the primary instability. In fact, we confirm that this mode is the counterpart of the upper
mode in the primary instability, thus termed the Us mode, simply because the upper-layer current
remains nearly unaltered by the nonlinear evolution of the lower mode (recall Fig. 11). As a result,
the upper-layer current still succumbs to the upper-mode primary instability. For a more quantitative
comparison, we replot the upper-mode results from Fig. 3 using the conversion relation

ky,upper ↔ ±εd ky,lower,

−i(±ωr,upper + iωi,upper) ↔ ±i(σs,i − εdωr,lower) + σs,r, (21)

deduced from Eq. (14), where ± represents conjugate modes. The frequencies of Us and the upper
mode match well with each other, but the Us mode has a lower growth rate. This is reasonable
because the basic undercurrent in the Us case has reached saturation, which consumes part of the
energy and thus is stabilizing. Thereby, the Us mode results reflect an interaction between the upper
and lower modes. Figure 16(c) gives the growth-rate decomposition of the Us mode, which closely
resembles the upper mode results in Fig. 3(c). Table III and Fig. 17 provide the energy distribution
among Floquet waves and the perturbation structure for the most unstable Us mode. Over 96% of
the energy resides in the leading m + εd = 0.32 waves, which is surface amplified and meridionally
aligned as the upper mode. Down to the undercurrent region, small-amplitude tilted cyclones and
anticyclones are present around the narrow undercurrent meander.

The other modes in Fig. 16 besides Us are subsurface amplified, so they result directly from the
secondary instability of the undercurrent meanders. According to the εd location of their maximum
growth rate, these modes are termed the D1, D2, F1, and S1 modes, respectively. A notable point is
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TABLE III. Energy portion of each wavenumber component for the most amplified detuned (Us, εd = 0.32),
detuned (D2, εd = 0.22), and subharmonic (S1) secondary modes, in the lower-mode r∗

R = 0.010 day−1 case.

Detuned (Us) Wavenumber (m + εd ) −3.68 −2.68 −1.68 −0.68 0.32 1.32 2.32 3.32 4.32
Energy portion (%) 0.0 0.0 0.2 2.6 96.1 0.7 0.1 0.0 0.0

Detuned (D2) Wavenumber (m + εd ) −3.78 −2.78 −1.78 −0.78 0.22 1.22 2.22 3.22 4.22
Energy portion (%) 0.2 0.6 2.1 43.8 27.4 23.8 1.4 0.6 0.1

Subharmonic Wavenumber (m + εd ) −3.50 −2.50 −1.50 −0.50 0.50 1.50 2.50 3.50
Energy portion (%) 0.3 1.4 11.7 32.6 50.1 2.5 1.1 0.2

that the detuned resonance dominates the secondary instability of undercurrents. From the energy
budget, the DP term is evidently stabilizing for the above four modes, as in the primary instability.
The S1 mode is classified as a baroclinic mode, while the D1, D2, and F1 modes are more like a
BT-BC mixed type. Therefore, the significant role of the BT component for the restricted undercur-
rent meanders contributes to the dominant detuned resonance. Since they are subsurface amplified,
only the perturbation structures around the undercurrent region are shown in Figs. 17(b) and 17(c)
for the most unstable D1 and S1 modes. The secondary cyclones and anticyclones are confined
in the narrow region of the undercurrent meanders, exhibiting strong aperiodicity in terms of the
basic flow. The scales of these cyclones are down to below 100 km, so more enhanced ageostrophy
is anticipated subsequent to the secondary instability process. Moreover, the connection between
cyclonic perturbations and the horizontal and vertical shear of the basic flow is also observed.

Another notable point is the seeming discontinuity in the growth rate for modes Us and F1 near
εd = ±0.1, which is more clearly seen in Figs. 16(c) and 16(d). This is reminiscent of the mode
synchronization phenomenon in the instability theory [66], which occurs when the phase speeds of
two modes coalesce [Fig. 16(b)], and can result in branching of the discrete spectrum (discontinuous
growth rate due to possibly mode switch). The synchronization also exists, though less obviously,
between other modes in Figs. 14 and 16, leading to several turnings of the growth rate curves.

Finally, Fig. 18 provides a 3D view of the most unstable secondary instability modes in the upper-
and lower-mode (besides Us) cases. Although the upper-mode primary instability largely reshapes
the undercurrent, the F1 mode is highly constrained near the surface and does not penetrate deeply
downward. Besides, the centers of these cyclones and anticyclones are observed to vary slightly

(a) (b) (c) (d)

(e)

x∗ (km) x∗ (km) x∗ (km) x∗ (km)

y
∗

(k
m

)

Us D1 S1

ψ̂s

FIG. 17. Horizontal sections of the secondary perturbation stream function (ψ̂ ′′
s ) for the most amplified

(a) detuned Us (εd = 0.32), (b) detuned D1 (εd = 0.22), and (c) subharmonic (S1) modes, in the lower-mode
r∗

R = 0.010 day−1 case (depth 780 m). The last two panels are the (d) horizontal shear H and (e) vertical shear
V of the basic flow. The black dotted lines are the stream function contours from the primary instability.
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FIG. 18. Isosurfaces of the secondary perturbation stream function for the most amplified modes in the
(a) upper mode (fundamental F1, ψ̂ ′′ = ±0.35) and (b) lower mode (detuned D1 at εd = 0.22, ψ̂ ′′ = ±0.15)
cases. The black shades are the meridional velocity isosurfaces from the primary instability. The horizontal
sections can be found in Figs. 15 and 17.

with depth. In the lower-mode case, the D1 mode is confined in the undercurrent region, and moves
southward with the meander. They are away from the upper-layer current and can drive deeper-layer
waters rotating. Nevertheless, the unperturbed upper-layer current is subject to the surface-amplified
Us mode.

VI. SUMMARY

In this work, the nonlinear formation and secondary instability of jet meanders due to BCI is
investigated. An idealized current-undercurrent model is extracted from the WPO undercurrent
system to study the role of intrinsic instability. We adopt a continuously stratified QG model and
start from a smooth basic flow. Two-dimensional eigenmode analysis identifies two primary unstable
modes of the baroclinic Charney and Phillips types, respectively, in accordance with the current and
undercurrent setup. Comparison of the TGA results with the PE model shows that IGWs rapidly
decay in the first two days, so the subsequent linear perturbation growth is dominated by baroclinic
eigenmodes.

The most unstable upper and lower modes are initiated to study their temporal evolution.
A weakly nonlinear instability framework is developed to resolve the evolution of the initiated
fundamental mode, its smaller-scale harmonics, and the MFD. After the initial rapid amplification,
these modes reach amplitude saturation and phase locking due to nonlinear interaction. The sat-
uration of the upper mode weakens the current, results in upper-current meanders, and splits the
undercurrent into multiple cores. This signifies a prominent passive response of the undercurrent to
the upper-layer instability. On the other hand, the saturation of the lower mode leads to undercurrent
meanders, which drive deeper waters southward but negligibly affect the upper layer. Observing
that the amplitudes of the harmonic modes quickly decrease with the rise of ky, a model with
minimal modes is constructed. The maximum Roζ and minimum Ri do not vary much during
the meander formation process, so the flow remains primarily geostrophic, which is in line with
previous findings that the QG model can capture the major dynamic events for baroclinic meander
problems [18]. Nevertheless, inertial motions tend to be more pronounced due to the relatively
strong horizontal shears and small-scale motions [67], which requires more explorations in future
work.

Finally, we develop a Floquet-based SIA framework for the saturated meanders, which is a full
3D instability (triglobal) calculation scarcely explored before. The saturation state is found to suc-
cumb to modest secondary instability. The fundamental resonance dominates the upper-mode case
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(F1 mode), and the perturbation takes the form of mesoscale cyclones and anticyclones distributed
around the meander. Conversely, dominant detuned resonance is observed for the lower-mode case
(D1 mode), which quickly induces aperiodic small-scale motions in terms of the meander. Besides,
a unique detunedlike mode with a high growth rate is reported, which is identified as the counterpart
of the upper mode in the primary instability.

From the methodological perspective, this work presents a combined nonlinear and secondary
instability framework for continuously stratified BCI systems. From the physical perspective,
this work highlights a robust mechanism of the formation of baroclinic meanders and mesoscale
cyclones and anticyclones due to nonlinear and secondary instabilities, which can be applicable
to other current-undercurrent systems in global oceans (introduced in Sec. I). Furthermore, the
unique interaction between the current and undercurrent meanders is revealed, which can help
understand the formation and sustainability of undercurrents from the instability point of view.
For more realistic oceanic flows, we note that the interlayer interaction and the connection between
cyclonic perturbations and mean shear revealed in this work can help to identify nonlinear and
secondary instabilities in observational and model results, as discussed in Secs. IV B and V A.
Besides, the present fully 3D SIA enables an instability analysis on realistic 3D flows extracted
from observations or simulations, if the flow unit exhibits quasiequilibrium and quasiperiodicity in
one direction.

Future work will focus on extending the limitations of the present model, including consideration
of the β effect, ageostrophy and realistic boundaries, and more realistic representation of the
restoring forcing.
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APPENDIX A: ALGORITHMS OF NONLINEAR INSTABILITY ANALYSIS

The inner and outer iterations required in Sec. II B are detailed. The condition of slowly varying
|�̂ ′

m| enables a closure of ωm, which leads to a local iteration for ωm at every time step as

ω(k+1)
m = ω(k)

m + i
1

Ê ′
m

∫∫



(
û′†

m

∂ û′
m

∂t
+ v̂′†

m

∂ v̂′
m

∂t
+ f0

N̄2Bu
b̂′†

m

∂ b̂′
m

∂t

)
dxdz, (A1)

where k is an inner iteration index. Convergence is achieved when �ω = |ω(k+1)
m − ω(k)

m | < δω,
where the prescribed criterion δω is set to 10−6 throughout. Equations (9) and (A1) constitute a
closed nonlinear system for the unknowns (�̂ ′

m, ωm), where m = −M, . . . , M. In the present model,
we use M = 10 throughout. Equation (9) is marched implicitly in time to enhance robustness and
allow a larger time step. To be specific, �̂

′[tn]
m at the nth time step tn is solved from

�̂
′[tn]
m − �̂

′[tn−1]
m

�t
= (

Lm + iω[tn]
m I

)
�̂

′[tn]
m + N̂

′[tn]
m

A[tn]
m

, (A2)

where the step �t = tn − tn−1, and [·] denotes the outer iteration. Since N̂
′
m is a nonlinear function

of �̂
′
m, a local iteration is required.

The above procedures are summarized as follows. First at t = 0, we initialize one or several
modes at prescribed amplitudes, and their (�̂ ′

m, ωm) are from the eigenmode analysis. The subse-
quent procedures at [tn] are as follows:

(i) Set the initial value (�̂ ′(0)
m , ω(0)

m ) at tn using that at tn−1, and then obtain N̂
′(1)
m .
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FIG. 19. Linear eigenmode results: (a) growth rates and (b) phase velocities of the upper and lower modes
with and without the β effect (eff.).

(ii) Obtain (�̂ ′(p)
m , ω

(p)
m ) subject to N̂

′(p)
m by iteratively solving Eqs. (A1) and (A2), until �ω < δω.

(iii) Compute N̂
′(p+1)
m using �̂

′(p)
m and ω

(p)
m . Repeat steps (ii) and (iii) until each mode converges,

under the criterion �q = maxm(|�̂ ′(p)
m − �̂

′(p−1)
m |/|�̂ ′(p)

m |) < δq = 10−3.
(iv) Judge and initiate new nonlinearly excited modes based on |N̂′

m|. Then move to the next time
step [tn+1].

APPENDIX B: β EFFECT AND THE SIA SOLVER VERIFICATION

First, the β effect on the linear eigenmode results is evaluated. The nondimensional parameter
from Table I is β = β∗L∗2/U ∗

0 = 0.269. For the meridional flow considered, the β effect is not
compatible with the zonally periodic boundary condition, so the impenetrable channel wall bound-
ary (û′ = 0 at xmin and xmax) is used instead, which negligibly affects the QG eigenmodes in Fig. 3
since the perturbation is concentrated around the jet center. The eigenmode results with and without
the β effect (both subject to wall boundary) are compared in Fig. 19. The β effect primarily affects
the long-wave region, known to result in the long-wave cutoff and phase velocity decrease [7]. Here,
the cutoff for the upper mode occurs at a longer wave than the lower mode, which is anticipated
from the Kuo scale k∗

y,β ≈ √
β∗/|V ∗

B | due to its higher speed. In terms of the most unstable modes
we concern, the β effect only decreases the maximum growth rates by 3% and 2% for the upper and
lower modes, respectively. Also, the corresponding wavenumbers and phase velocities are varied by
less than 2%. Therefore, we can conclude that the β effect has a minor effect on the most unstable
upper and lower eigenmodes, and also their harmonics at higher ky. Nonetheless, the β effect, though
small, can invalidate the zonally periodic boundary condition and destroy the symmetric and/or
antisymmetric pattern of the results, which deserves further discussions in future work.

The Floquet-based SIA solver is verified through a QG Eady-like secondary instability case
investigated by Stevens and Hakim [57]. The specific basic flow is an atmospheric Eady jet (Bu = 1)
superimposed with a periodic neutral wave (amplitude 1) without harmonics and MFD. In their μ =
0 case (μ is a mean flow parameter defined in the reference), the two most unstable (fundamental-
type) Floquet modes at ky = 2.5 have the growth rates σs,r = 0.35 and 0.22, and our reproduced
results are 0.3556 and 0.2089 using Ms = 5. Furthermore, we compare in Fig. 20 the horizontal and
vertical sections of the perturbation temperature (counterpart of buoyancy in our oceanic case) of
the first Floquet mode. The good agreement demonstrates the reliability of our SIA solver.
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FIG. 20. Contours of the perturbation temperature (counterpart of buoyancy) of the first Floquet mode:
horizontal sections at the (a) bottom and (b) surface, and (c) the y-z section at x = 1.78. The reference data are
from Stevens and Hakim [56].

APPENDIX C: THE PRIMITIVE EQUATION MODEL

The linearized PEs used in Sec. III are written as

Ro

(
∂

∂t
+ VB

∂

∂y

)
u′ − f v′ + ∂ p′

∂x
= −rRu′ + Du,

Ro

(
∂

∂t
+ VB

∂

∂y

)
v′ + f u′ + Fr2VB,zw

′ + ∂ p′

∂y
= −rRv′ + Dv,

∂ p′

∂z
= b′,(

∂

∂t
+ VB

∂

∂y

)
b′ + f VB,zu

′ + N2w′ = −rRb′ + Db,

∂u′

∂x
+ ∂v′

∂z
+ Fr2

Ro

∂w′

∂z
= 0, (C1)

where the dissipative terms Du, Dv , and Db are formulated as in Sec. II A. Equation (C1) is dis-
cretized on a staggered mesh for well-posedness, following Molemaker et al. [68]. The perturbation
energy norm for the PE model required in TGA is the same as Eq. (10). Verification of the PE solver
can be found in the authors’ previous work [42].

[1] C. Wunsch and R. Ferrari, Vertical mixing, energy, and the general circulation of the oceans, Annu. Rev.
Fluid Mech. 36, 281 (2004).

[2] R. Pierrehumbert and K. Swanson, Baroclinic instability, Annu. Rev. Fluid Mech. 27, 419 (1995).
[3] J. Charney and M. Stern, On the stability of internal baroclinic jets in a rotating atmosphere, J. Atmos.

Sci. 19, 159 (1962).
[4] J. Pedlosky, The stability of currents in the atmosphere and the ocean: Part I, J. Atmos. Sci. 21, 201

(1964).
[5] K. Smith, The geography of linear baroclinic instability in Earth’s oceans, J. Mar. Res. 65, 655 (2007).

103801-28

https://doi.org/10.1146/annurev.fluid.36.050802.122121
https://doi.org/10.1146/annurev.fl.27.010195.002223
https://doi.org/10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2
https://doi.org/10.1175/1520-0469(1964)021<0201:TSOCIT>2.0.CO;2
https://doi.org/10.1357/002224007783649484


BAROCLINIC NONLINEAR SATURATION AND SECONDARY …

[6] L. Feng, C. Liu, A. Köhl, D. Stammer, and F. Wang, Four types of baroclinic instability waves in the global
oceans and the implications for the vertical structure of mesoscale eddies, J. Geophys. Res.: Oceans 126,
e2020JC016966 (2021).

[7] N. Phillips, Energy transformations and meridional circulations associated with simple baroclinic waves
in a two-level, quasi-geostrophic model, Tellus 6, 274 (1954).

[8] D. Chelton, M. Schlax, and R. Samelson, Global observations of nonlinear mesoscale eddies,
Prog. Oceanogr. 91, 167 (2011).

[9] J. Pedlosky, Finite-amplitude baroclinic waves, J. Atmos. Sci. 27, 15 (1970).
[10] J. Pedlosky, The nonlinear dynamics of baroclinic wave ensembles, J. Fluid Mech. 102, 169 (1981).
[11] J. Hart, Wavenumber selection in nonlinear baroclinic instability, J. Atmos. Sci. 38, 400 (1981).
[12] P. Klein and J. Pedlosky, A numerical study of baroclinic instability at large supercriticality, J. Atmos.

Sci. 43, 1243 (1986).
[13] A. Simmons and B. Hoskins, The life cycles of some nonlinear baroclinic waves, J. Atmos. Sci. 35, 414

(1978).
[14] J. G. Charney and J. G. DeVore, Multiple flow equilibria in the atmosphere and blocking, J. Atmos. Sci.

36, 1205 (1979).
[15] M. Ikeda, Meanders and detached eddies of a strong eastward-flowing jet using a two-layer quasi-

geostrophic model, J. Phys. Oceanogr. 11, 526 (1981).
[16] J. Wang and M. Ikeda, Diagnosing ocean unstable baroclinic waves and meanders using the quasi-

geostrophic equations and Q-vector method, J. Phys. Oceanogr. 27, 1158 (1997).
[17] D. Hansen, Gulf Stream meanders between Cape Hatteras and the Grand Banks, Deep Sea Res. 17, 495

(1970).
[18] M. Spall and A. Robinson, Regional primitive equation studies of the Gulf Stream meander and ring

formation region, J. Phys. Oceanogr. 20, 985 (1990).
[19] G. Sutyrin, I. Ginis, and S. Frolov, Equilibration of baroclinic meanders and deep eddies in a Gulf Stream-

type jet over a sloping bottom, J. Phys. Oceanogr. 31, 2049 (2001).
[20] M. Youngs, A. Thompson, A. Lazar, and K. Richards, ACC meanders, energy transfer, and mixed

barotropic-baroclinic instability, J. Phys. Oceanogr. 47, 1291 (2017).
[21] T. Waseda, H. Mitsudera, B. Taguchi, and Y. Yoshikawa, On the eddy-Kuroshio interaction: Meander

formation process, J. Geophys. Res.: Oceans 108, 2002JC001583 (2003).
[22] I. da Silveira, J. Lima, A. Schmidt, W. Ceccopieri, A. Sartori, C. Franscisco, and R. Fontes, Is the meander

growth in the Brazil current system off southeast Brazil due to baroclinic instability, Dyn. Atmos. Oceans
45, 187 (2008).

[23] I. Orlanski and M. Cox, Baroclinic instability in ocean currents, Geophys. Fluid Dyn. 4, 297 (1973).
[24] T. Simons, The nonlinear dynamics of cyclone waves, J. Atmos. Sci. 29, 38 (1972).
[25] R. Panetta, Zonal jets in wide baroclinically unstable regions: Persistence and scale selection, J. Atmos.

Sci. 50, 2073 (1993).
[26] J. Pedlosky, On secondary baroclinic instability and the meridional scale of motion in the ocean, J. Phys.

Oceanogr. 5, 603 (1975).
[27] G. Moore and W. Peltier, Nonseparable baroclinic instability. Part I: Quasi-geostrophic dynamics,

J. Atmos. Sci. 46, 57 (1989).
[28] V. Theofilis, Global linear instability, Annu. Rev. Fluid Mech. 43, 319 (2011).
[29] K. Donohue, D. Watts, P. Hamilton, R. Leben, and M. Kennelly, Loop current eddy formation and

baroclinic instability, Dyn. Atmos. Oceans 76, 195 (2016).
[30] J. Li and J. Gan, Characteristics and formation of the Luzon undercurrent in the western north pacific:

Observational study, J. Geophys. Res.: Oceans 127, e2022JC018968 (2022).
[31] X. Chen, J. Gan, C. Hui, and J. McWilliams, Parameterization of the vertical mixing for the Luzon

Undercurrent in the northern western pacific ocean (unpublished).
[32] www.hycom.org
[33] J. Gan, Z. Liu, and C. Hui, A three-layer alternating spinning circulation in the South China Sea, J. Phys.

Oceanogr. 46, 2309 (2016).

103801-29

https://doi.org/10.1029/2020JC016966
https://doi.org/10.3402/tellusa.v6i3.8734
https://doi.org/10.1016/j.pocean.2011.01.002
https://doi.org/10.1175/1520-0469(1970)027<0015:FABW>2.0.CO;2
https://doi.org/10.1017/S0022112081002590
https://doi.org/10.1175/1520-0469(1981)038<0400:WSINBI>2.0.CO;2
https://doi.org/10.1175/1520-0469(1986)043<1263:ANSOBI>2.0.CO;2
https://doi.org/10.1175/1520-0469(1978)035<0414:TLCOSN>2.0.CO;2
https://doi.org/10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2
https://doi.org/10.1175/1520-0485(1981)011<0526:MADEOA>2.0.CO;2
https://doi.org/10.1175/1520-0485(1997)027<1158:DOUBWA>2.0.CO;2
https://doi.org/10.1016/0011-7471(70)90064-1
https://doi.org/10.1175/1520-0485(1990)020<0985:RPESOT>2.0.CO;2
https://doi.org/10.1175/1520-0485(2001)031<2049:EOBMAD>2.0.CO;2
https://doi.org/10.1175/JPO-D-16-0160.1
https://doi.org/10.1029/2002JC001583
https://doi.org/10.1016/j.dynatmoce.2008.01.002
https://doi.org/10.1080/03091927208236102
https://doi.org/10.1175/1520-0469(1972)029<0038:TNDOCW>2.0.CO;2
https://doi.org/10.1175/1520-0469(1993)050<2073:ZJIWBU>2.0.CO;2
https://doi.org/10.1175/1520-0485(1975)005<0603:OSBIAT>2.0.CO;2
https://doi.org/10.1175/1520-0469(1989)046<0057:NBIPIQ>2.0.CO;2
https://doi.org/10.1146/annurev-fluid-122109-160705
https://doi.org/10.1016/j.dynatmoce.2016.01.004
https://doi.org/10.1029/2022JC018968
http://www.hycom.org
https://doi.org/10.1175/JPO-D-16-0044.1


CHEN, GAN, AND MCWILLIAMS

[34] J. Gan, H. Kung, Z. Cai, Z. Liu, C. Hui, and J. Li, Hotspots of the Stokes rotating circulation in a large
marginal sea, Nat. Commun. 13, 2223 (2022).

[35] P. Stone, On non-geostrophic baroclinic stability: Part II, J. Atmos. Sci. 27, 721 (1970).
[36] A. Robinson, M. Spall, and N. Pinardi, Gulf Stream simulations and the dynamics of ring and meander

processes, J. Phys. Oceanogr. 18, 1811 (1988).
[37] P. Berloff, I. Kamenkovich, and J. Pedlosky, A model of multiple zonal jets in the oceans: Dynamical and

kinematical analysis, J. Phys. Oceanogr. 39, 2711 (2009).
[38] G. Roullet, J. McWilliams, X. Capet, and M. Molemaker, Properties of steady geostrophic turbulence

with isopycnal outcropping, J. Phys. Oceanogr. 42, 18 (2012).
[39] P. Klein, B. Hua, G. Lapeyre, X. Capet, S. Le Gentil, and H. Sasaki, Upper ocean turbulence from high-

resolution 3D simulations, J. Phys. Oceanogr. 38, 1748 (2008).
[40] P. Zurita-Gotor and G. Vallis, Equilibration of baroclinic turbulence in primitive equations and quasi-

geostrophic models, J. Atmos. Sci. 66, 837 (2009).
[41] J. Pedlosky and J. Thomson, Baroclinic instability of time-dependent currents, J. Fluid Mech. 490, 189

(2003).
[42] X. Chen, J. Gan, and J. C. McWilliams, Biglobal analysis of baroclinic instability in a current-undercurrent

oceanic system, Phys. Rev. Fluids 8, 123801 (2023).
[43] B. Farrell and P. Ioannou, Generalized stability theory. Part I: Autonomous operators, J. Atmos. Sci. 53,

2025 (1996).
[44] T. Radko, D. de Carvalho, and J. Flanagan, Nonlinear equilibration of baroclinic instability: The growth

rate balance model, J. Phys. Oceanogr. 44, 1919 (2014).
[45] T. Herbert, Parabolized stability equations, Annu. Rev. Fluid Mech. 29, 245 (1997).
[46] P. Paredes, M. Hermanns, S. Le Clainche, and V. Theofilis, Order 104 speedup in global linear instability

analysis using matrix formation, Comput. Methods Appl. Mech. Eng. 253, 287 (2013).
[47] L. Zhao, C. Zhang, J. Liu, and J. Luo, Improved algorithm for solving nonlinear parabolized stability

equations, Chin. Phys. B 25, 084701 (2016).
[48] K. J. Burns, G. M. Vasil, J. S. Oishi, D. Lecoanet, and B. P. Brown, Dedalus: A flexible framework for

numerical simulations with spectral methods, Phys. Rev. Res. 2, 023068 (2020).
[49] P. Berloff, I. Kamenkovich, and J. Pedlosky, A mechanism of formation of multiple zonal jets in the

oceans, J. Fluid Mech. 628, 395 (2009).
[50] J. Taylor and R. Ferrari, On the equilibration of a symmetrically unstable front via a secondary shear

instability, J. Fluid Mech. 622, 103 (2009).
[51] X. Chen, Y. Xi, J. Ren, and S. Fu, Cross-flow vortices and their secondary instabilities in hypersonic and

high-enthalpy boundary layers, J. Fluid Mech. 947, A25 (2022).
[52] J. Hilditch and L. Thomas, Parametric subharmonic instability of inertial shear at ocean fronts, J. Fluid

Mech. 966, A34 (2023).
[53] T. Herbert, Secondary instability of boundary layers, Annu. Rev. Fluid Mech. 20, 487 (1988).
[54] C. Wolfe and R. Samelson, Normal-mode analysis of a baroclinic wave-mean oscillation, J. Atmos. Sci.

63, 2795 (2006).
[55] I. Shevchenko, P. Berloff, D. Guerrero-López, and J. Roman, On low-frequency variability of the midlat-

itude ocean gyres, J. Fluid Mech. 795, 423 (2016).
[56] G. Stewart, A Krylov–Schur algorithm for large eigenproblems, SIAM J. Matrix Anal. Appl. 23, 601

(2002).
[57] M. Stevens and G. Hakim, Perturbation growth in baroclinic waves, J. Atmos. Sci. 62, 2847 (2005).
[58] X. Chen, L. Wang, and S. Fu, Energy transfer of hypersonic and high-enthalpy boundary layer instabilities

and transition, Phys. Rev. Fluids 7, 033901 (2022).
[59] V. Zemskova, P.-Y. Passaggia, and B. White, Transient energy growth in the ageostrophic Eady model,

J. Fluid Mech. 885, A29 (2020).
[60] E. Heifetz and B. Farrell, Generalized stability of nongeostrophic baroclinic shear flow. Part I: Large

Richardson number regime, J. Atmos. Sci. 60, 2083 (2003).
[61] J. McWilliams and J. Chow, Equilibrium geostrophic turbulence I: A reference solution in a β-plane

channel, J. Phys. Oceanogr. 11, 921 (1981).

103801-30

https://doi.org/10.1038/s41467-022-29610-z
https://doi.org/10.1175/1520-0469(1970)027<0721:ONGBSP>2.0.CO;2
https://doi.org/10.1175/1520-0485(1988)018<1811:GSSATD>2.0.CO;2
https://doi.org/10.1175/2009JPO4093.1
https://doi.org/10.1175/JPO-D-11-09.1
https://doi.org/10.1175/2007JPO3773.1
https://doi.org/10.1175/2008JAS2848.1
https://doi.org/10.1017/S0022112003005007
https://doi.org/10.1103/PhysRevFluids.8.123801
https://doi.org/10.1175/1520-0469(1996)053<2025:GSTPIA>2.0.CO;2
https://doi.org/10.1175/JPO-D-13-0248.1
https://doi.org/10.1146/annurev.fluid.29.1.245
https://doi.org/10.1016/j.cma.2012.09.014
https://doi.org/10.1088/1674-1056/25/8/084701
https://doi.org/10.1103/PhysRevResearch.2.023068
https://doi.org/10.1017/S0022112009006375
https://doi.org/10.1017/S0022112008005272
https://doi.org/10.1017/jfm.2022.607
https://doi.org/10.1017/jfm.2023.452
https://doi.org/10.1146/annurev.fluid.20.1.487
https://doi.org/10.1175/JAS3788.1
https://doi.org/10.1017/jfm.2016.208
https://doi.org/10.1137/S0895479800371529
https://doi.org/10.1175/JAS3502.1
https://doi.org/10.1103/PhysRevFluids.7.033901
https://doi.org/10.1017/jfm.2019.902
https://doi.org/10.1175/1520-0469(2003)060<2083:GSONBS>2.0.CO;2
https://doi.org/10.1175/1520-0485(1981)011<0921:EGTIAR>2.0.CO;2


BAROCLINIC NONLINEAR SATURATION AND SECONDARY …

[62] X. Wu and P. Stewart, Interaction of phase-locked modes: A new mechanism for the rapid growth of
three-dimensional disturbances, J. Fluid Mech. 316, 335 (1996).

[63] N. Nakamura, Momentum flux, flow symmetry, and the nonlinear barotropic governor, J. Atmos. Sci. 50,
2159 (1993).

[64] P. Gent and J. McWilliams, Isopycnal mixing in ocean circulation models, J. Phys. Oceanogr. 20, 150
(1990).

[65] G. Moore and W. Peltier, Cyclogenesis in frontal zones, J. Atmos. Sci. 44, 384 (1987).
[66] V. Gushchin and A. Fedorov, Excitation and development of unstable disturbances in a supersonic

boundary layer, Fluid Dyn. 25, 344 (1990).
[67] L. Thomas and J. Taylor, Damping of inertial motions by parametric subharmonic instability in baroclinic

currents, J. Fluid Mech. 743, 280 (2014).
[68] M. Molemaker, J. McWilliams, and I. Yavneh, Baroclinic instability and loss of balance, J. Phys.

Oceanogr. 35, 1505 (2005).

103801-31

https://doi.org/10.1017/S0022112096000572
https://doi.org/10.1175/1520-0469(1993)050<2159:MFFSAT>2.0.CO;2
https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
https://doi.org/10.1175/1520-0469(1987)044<0384:CIFZ>2.0.CO;2
https://doi.org/10.1007/BF01049814
https://doi.org/10.1017/jfm.2014.29
https://doi.org/10.1175/JPO2770.1

