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A method of using a velocity Jacobian (J(u, v)) to identify the spatial
variability of the two-dimensional flow field has been delineated in detail.
Positive and negative J(u, v) distinguish the vorticity-dominated and strain-
dominated flows embedded in the mean general circulation, respectively.
Normalized by the divergence of velocity, the non-dimensional J(u, v) becomes
insensitive to the magnitude of the flow, illustrating the contrast between the
strain- and vorticity-dominated flows. An index obtained from tracking the
rotating angle of the fluid in a given point is employed to locate the eddy
centers, saddle, and non-stationary points in the flow field. Both J(u, v) and
the index are applied to the seasonal geostrophic circulation field in the South
China Sea (SCS). They capture well the spatial flow variability and eddy
centers or saddle points. Strong spatially variable flow fields, with alternating
vorticity- and strain-dominated flows, are found in the basin scale flow along
the continental margin. The index method, with a threshold of selected J(u, v),

clearly pinpoints seasonal eddies embedded in the mean circulation associated
with the distinct regional forcing in the southwest and northeast SCS.

1. Introduction

Eddies are ocean currents that rotate as closed loops. They are embedded
in the majority of low frequency oceanic currents. Eddies play an important
part in modulating oceanic transport of heat and mass.24 Eddies with
amplitudes of 5–25 cm and diameters of 100–200km contribute more than
50% of the variability over much of the world’s oceans.2 They are both
the source and sink of variability in ocean circulation, particularly in
regions with strong currents like western boundary currents, the Antarctic
Circumpolar Current, and in the equatorial region. Eddies usually range
in size from 50 to 200km in diameter and elicit an increase in organisms
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that comprise the marine food web. The swirling motion of eddies causes
nutrients that are normally found in colder, deeper waters to come to
the euphotic layer. The upwelling in eddies provides replenishment of
nutrients that were depleted in the near-surface waters. The upwelling also
substantially increases chlorophyll and plankton production.16,17

The intensity of an oceanic eddy is often measured by its vorticity
or its angular velocity. However, an eddy does not necessarily have high
vorticity; for example, a shear stream can have large vorticity but no
eddy formation. A vortex can exist for a long time with concentrated
vorticity; this is called a coherent structure. The formation of eddies can
be described as the enstrophy (squared vorticity) that is being transferred
from larger scale to smaller scale. This involves the transfer, coupling, and
evolution of strain and vorticity in a turbulent flow. Many criteria were
formulated for identifying the topology of coherent structures based either
on arguments “concerned more with the evolution of material fluid tracers”
(streak lines) or on arguments “concerned more with the appearance of fluid
vectors (streamlines) and their comparison.” The Okubo–Weiss criterion
uses the Okubo–Weiss parameter (W ) or velocity Jacobian, J(u, v), to
divide flow into strain-dominated and vorticity-dominated regions.19,27

(u, v) is the two-dimensional velocity field, V . It is based on the evolution
of turbulent structures resulting from the analysis of the velocity gradient
tensor, ∇V . The Q-criterion,9 combines the second invariant of ∇V , i.e., Q

with pressure and velocity to characterize the streamlines into eddy zone,
convergence zone, shear zone, and stream zone. The λ2-criterion13 further
improves the Q-criterion by taking out the two-dimensional information
of the plane associated with the three-dimensional flow. The ∆-criterion1

looks for the complex roots of ∇V to detect the rotation of the streamlines,
i.e., a vortex. These approaches all reduce to the Q-method under the
assumption of two-dimensional incompressible flow. This method is based
on the assumption of slowly varying flow or instantaneous flow. The
problem becomes more transparent after adopting the reference axis of
strain eigenvectors, the Qs method, in two-dimensional flow which may be
treated as a modification of the above criteria.24 We regard the Q method
as having “more geometry”, and the Qs method as having “more dynamics”
so that they mutually assist in the analyses instead of counteracting each
other. Chakraborty et al.3 suggested another Eulerian method which makes
use of the real and imaginary parts of ∇V to redefine an eddy. Haller8

established the Lagrangian versions of Q and Qs. He also developed a
corresponding finite-time mixing enhancement and suppression in his two
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separate studies. We have the time-independent approach, with snapshots
of streamline geometry: the Q method, and a time-dependent approach
with evolution of material line and surface: the Qs method. Neither are
equivalent, in general, but both may be re-expressed in a Lagrangian format.
The former concerns the type of material shape formed, whereas the latter
concerns the type of change of material shape. Haller9 also established the
Mz method, which is a generalization of the Qs method for any three-
dimensional flow in the sense of objective measurement on material lines
and surfaces.

The Q method has been applied in oceanography to detect eddies.
Isern-Fontanet et al.12–14 discussed the utilization of Q (or Okubo–
Weiss parameter, hereafter referred to as J(u, v)) with a threshold Q =
0.2σQ to systematically identify marine eddies in the Algerian Basin and
Mediterranean Sea from sea level anomaly (SLA) maps, where σQ is the
spatial standard deviation of J(u, v). The regions identified with high
J(u, v) values were then separated into cyclonic and anti-cyclonic eddies
according to the sign of the vorticity. Morrow et al.16 adopted the method
together with a SLA threshold to trace the different propagation directions
of intensified cyclonic and anti-cyclonic vortices. The method was recently
adopted by Chelton et al.2 and by Henson and Thomas7 to identify eddies
in the global ocean and in the Gulf of Alaska, respectively.

The identification method cannot be simply reduced to a single Q

method without the assumption of horizontal non-divergence. In general,
J(u, v) can be linked with vorticity, strain, and divergence. The geometry
of streamline snapshots can be theoretically divided into elliptic, parabolic,
and hyperbolic regions.20 In the limit of horizontal non-divergence inside
the two-dimensional ocean flow, however, the assumption can be justified by
the non-dimensional form of J(u, v) reflecting only elliptic and hyperbolic
regions. The underlying assumption of horizontal non-divergence will be
examined by normalizing J(u, v) over the domain.

The primary goal of this study is to present a methodology for
identifying eddies and highly related spatially variable circulation structures
from a given two-dimensional velocity field in the South China Sea (SCS).
Considerable flow variability and eddies with different horizontal scales
(Fig. 1) are embedded in the SCS basin-scale circulation as a result of
interaction among the monsoon-driven current, remote current intrusion
(e.g., Kuroshio) and the local topography.5 From altimeter data, Wang
et al.27 found a great number of eddies in the SCS and grouped them into
four eddy-active zones according to where they originated: southwest of
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Fig. 1. The three-year (July 2000–June 2003) mean seasonal surface velocity vectors
(ms−1) from a three-dimensional model. Major eddies embedded in the circulation are
also marked. (Adopted from Ref. 5.)

Taiwan, northwest of the Luzon Strait, southwest of the Luzon Strait, and
off central Vietnam. Various mechanisms for eddy formation are associated
with the intrinsic dynamics in the respective zones as a result of interacting
monsoon-inflow-topography. While it is not the objective of this study to
investigate the formation mechanisms of the eddies, the mechanisms can
be summarized to include: eddy-shedding by unstable fronts25,28 and by
Kuroshio intrusion dynamics31 in the zone southwest of Taiwan (Fig. 1);
land topography-induced wind stress curls in the zone northwest of the
Luzon Strait (W1 in Fig. 1)22 and, in the zone off central Vietnam30 (S1);
and coastal jet separation in the southwestern part of the SCS6 (S1 and
W2). Hwang and Chen,10 based on analyses of altimetry data, identified
the existence of warm-core and cold-core eddies in a widespread region of
the SCS. Chu et al.4 found that eddies in the northern and central SCS are
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largely induced by the wind-stress curl. It is conceivable that eddies are also
the source for creating spatial variability of the flow field in ambient waters.
Gan and Qu6 found that the anticyclonic/cyclonic eddy formations, owing
to the summer/winter coastal current separation, characterize the structure
of circulation and flow variability in the southwestern SCS.

2. Methods and Data

We will briefly clarify the geometric meaning of J(u, v) (Q method) and
suggest a non-dimensional J(u, v). We finally suggest a single quantity
“index” which carries the topological property of J(u, v), to achieve eddy
identification.

2.1. Topological description

Eddies can be identified by the closed contours of SLA provided by
altimetry data from satellite remote sensing. The contours determine local
maximum/minimum of SLA. The geostrophic approximation is taken at
the surface:

∂h

∂x
= −f

g
v,

∂h

∂y
=

f

g
u,

(1)

where h is the SLA and is equivalent to the stream function of surface
geostrophic flow. A SLA extreme is equivalent to (u, v) = 0 and J(u, v) > 0
and can be used to identify a vorticity-dominated region with a stationary
point (Appendix A). With the help of J(u, v), one can extend the size of an
enclosed circular eddy region to approximately its maximum velocity, where
a change from convex to concave, or vice versa, takes place in the SLA.

Using J(u, v) alone, since (u, v) = 0 cannot be ensured, one will identify
not only the “vortex-region” with an eddy center, but also some “eddy-like-
regions” possessing high vorticity without an eddy center; that is, the SLA
isolines are not a closed loop. The “eddy-like-regions” can be interpreted as
perturbations embedded in the background flow, or a fraction of an eddy
without a center. One may further use a threshold, e.g., J(u, v) > threshold,
to systematically separate these two types of regions and to obtain the
intensified “vortex-regions” with the added cost of filtering some eddies.10
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The strain-dominated region embedded in J(u, v) represents the
spatial structure of the flow field which is an important component
for characterizing the overall flow structure. The stationary points
possessing significant strain value are ignored after using the criteria
maximum/minimum of SLA. Although the strain-dominated region can
still be identified by indefinite type in the SLA, it is more convenient to use
the relation: J(u, v) < 0.

2.2. Geometry of J(u,v) (or Q method)

From the geometric argument in Appendices A and B, J(u, v) can be
interpreted as the tendency of ellipticity (eddy), parabolicity (node), or
hyperbolicity (saddle) of the flow field embedded in a uniform flow for
three-dimensional (Appendix A) and two-dimensional (Appendix B) flows.
It can be physically interpreted as the combination of divergence, rotation,
and strain. In incompressible flow, it is mainly the competition between
rotation and strain. Detailed derivations for both three-dimensional and
two-dimensional flows are presented in Appendices A and B.

In this study, we will use two-dimensional flow (u, v) to investigate
eddies and the flow field in the SCS. J(u, v) of a two-dimensional flow has
the following form and decomposition:

J(u, v) = uxvy − uyvx
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On the right-hand side of the equation, the first term can be interpreted
as average rotation speed; the second term represents the magnitude of
strain, and the last term, which is zero in non-divergent flow, is the average
horizontal divergence. The positive value from the last term of horizontal
divergence can be mixed with the positive vorticity in J(u, v) from the first
term. Thus, an eddy center and a node point cannot be distinguished when
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divergence is not negligible and J(u, v) takes a positive value. We propose
a non-dimensional form,

N2 =
J(u, v)[

ux + vy

2

]2 (Appendix B), (3)

which directly checks the significance of the horizontal divergence over the
whole domain at once. A small value of horizontal divergence amplifies
J(u, v) “close to infinity”, and leaves the “divergence region with significant
upward motion” staying between zero and one. Thus, the divergence effect
can be neglected if N2 � 1 or � 0, then the value is simply reflecting the
sign of J(u, v). A similar analysis can be carried out on three-dimensional
flow (Appendix A).

2.3. Index and sector

We propose a simple topological quantity, an “index”, to identify eddy
centers: the rotating angle of a point with respect to a vector field. We
call it a “rotated angle” to retain its intuitive meaning. Using this criterion
provides a more systematic way of identifying eddies than visual inspection
of SLA extrema. The index recognizes eddy centers without considering
the strength of velocity so one can filter the result within a certain range
of J(u, v) strength. The method can be used to track eddy movements; for
instance, to study the mingling and scattering among eddies which are close
to each other.

The index of a point is defined as the rotating angle per 2π. The rotating
angle is the change in angle when one is traveling along a sufficiently
small loop around a point following the direction of the vector field. It
is clearly independent of the initial position because it can be written as
this infinitesimal integral: δθ =

∮
d(tan−1 v

u ). It is a multiple of 2π because
a vector can rotate integer number of times around the closed loop back
to its initial location under the condition that every stationary point can
be isolated by a sufficiently small loop in a continuous linearized flow. We
conclude with the assumption (Fig. 2):

index =




0, not a stationary point,

1, eddy center or node point,

−1, saddle point.
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Fig. 2. Rotating angle of a loop. The rotated angle is zero around (a) a non-singular
point; (b) a node point; (c) the angle has a value 2π in the eddy’s center; and (d) a
saddle point has a value −2π.

The index (rotating angle) is a topological counterpart to J(u, v). The
index and J(u, v) take the same sign for every linearized point. It can be
directly checked that the rotating angle is −2π for a saddle point and 2π

for an eddy center, or, equivalently, index = −1 for a saddle point, and 1
for an eddy center. In the absence of horizontal divergence, there is no node
point (1 > N2 > 0) as demonstrated in Appendix B and a stationary point
can be a saddle point or an eddy center.

3. Applications

3.1. Data

To identify the seasonal nature of eddies and the associated spatial
variability in the flow field we calculate the seasonal J(u, v), N2, index
with threshold J(u, v) in the SCS from the mean surface geostrophic
currents averaged over 3 years from July 1, 2000 to June 20, 2003. The
surface geostrophic currents are produced by the Archiving, Validation,
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and Interpolation of Satellite Oceanographic Data (AVISO) project in
France. The data are archived into a grid of 1/3◦ resolution and in
fractions of a week temporally. The geostrophic currents were calculated
from the absolute dynamic topography consisting of the anomalies of the
altimeter sea level and a Mean Dynamic Topography (MDT). The MDT
was computed with different types of data including altimetry, in situ
measurements, and a geoid model. The method of estimating the MDT is
explained in detail by Rio and Hernandez.23 Over the shelf area, however,
the data still contain aliases from tides and internal waves. Thus, the data
over the shelf, shallower than 200m, are masked.

3.2. Seasonal J(u,v)

The seasonal mean of surface geostrophic velocity vectors and J(u, v)
(Fig. 3) exhibit a strong variable flow field in the SCS in all seasons.
With the dominant currents are along quasi-horizontal density surface, the
divergence in geostrophic currents can be neglected. Thus, positive and
negative J(u, v) represent the vorticity- and strain-dominated flows, res-
pectively. In general, vorticity- and strain-active region alternate spatially.
Water with a strong positive D2 or J(u, v) is generally accompanied
with a corresponding strong negative D2. Vorticity-active or strain-active
flows occur primarily along the continental margin associated with the
interaction of the dominant basin-scale circulation with slope topography.
In the western part of the Luzon Strait the active flows are a result of
Kuroshio intrusion. To the east of Vietnam and to the west of the central
Luzon Islands they are produced by topography-induced wind stress curls.
A vorticity/strain active region is also found in the central part of the
basin, particularly in the fall. These eddies seem to originate at the western
boundary off central Vietnam because of the confluence of southward and
northward currents as monsoons shift from southerly to northeasterly.5

The vorticity-dominated flow may form oceanic eddies although they
cannot be identified by J(u, v) alone. As shown in the vector field, strong
eddies with spatially variable flow fields exist in the regions to the southeast
and to the east off central Vietnam in the winter and summer, respectively.
The energetic eddies are formed by the combined forces of wind stress curls
and coastal jet separation.6

As the non-dimensional value of D2 (Appendix B), N2 is not sensitive
to the magnitude of the flow and is able to illustrate the contrasting
flow field. Because N2 is non-dimensional, its field simply reflects the flow
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Fig. 3. The three-year average of seasonal distribution of the surface geostrophic
velocity Jacobian D2 = J(u, v). Positive and negative D2 represent the vorticity- and
strain-dominated flows, respectively.

direction as either vorticity- or strain-dominated. Figure 4 indicates the
nature of alternating distributed vorticity-strain flows in the circulation of
SCS. Among them, the distinctly vorticity-dominated summer flows are
found in the southwest SCS. Although the value of J(u, v) is generally
smaller in the central part of the basin, N2 suggests that the flows are still
highly variable in space.

3.3. Eddy center identification

The eddy centers and the saddle points identified by the index are presented
in Fig. 5 for the surface geostrophic currents in the winter and summer. One
can detect from their vector counterparts that the index realistically locates
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Fig. 4. The three-year average of seasonal distribution of J(u, v) in non-dimensional
form, N2.

the stationary points either as eddy centers or as saddle points. At the same
time J(u, v) is able to distinguish the region of vorticity-dominated regions
from strain-dominated regions and the index can pick out the centers of
the eddies and saddle points. Because J(u, v) cannot distinguish an eddy
in a vorticity-dominated region and the index cannot differentiate the weak
eddies from those strong ones, we combined the index and J(u, v) with
a threshold to better identify dominant eddies. The threshold for J(u, v)
can be subjectively selected to show the best filtering effect. With a value
of 6 × 10−12 s−2, energetic eddies associated with seasonal characteristics
of basin-scale circulation are identifiable (Fig. 6). Although it requires
additional information like signs of either vorticity or SLA to distinguish
cyclonic from anticyclonic eddies, Fig. 6 clearly shows the characterized
cyclonic eddies in the southwest of the SCS and west of the Luzon Islands
in the winter as well as the anticyclonic eddy to the east of central Vietnam
and the cyclonic eddy west of the Luzon Strait in the summer.
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Fig. 5. Surface geostrophic velocity vectors and rotated angle (=
H

dθ). Red (= 2π)
indicates the center of an eddy and blue (= −2π) indicates a saddle point.

Fig. 6. As in Fig. 5 but only those values with J(u, v) ≥ 6 × 10−12 s−2 are shown.

4. Summary

We have described a method for identifying eddy centers that is based on a
velocity Jacobian and an index that tracks the rotating angle of the fluid in
a given point in a spatially variable flow field. The Jacobian method alone,
or Okubo–Weiss parameter,19,27 is able to find the vorticity-dominated and
strain-dominated flows embedded in the mean general circulation. While
the results obtained from Jacobian implicitly assume a non-divergent flow,
the non-dimensional velocity Jacobian is insensitive to flow magnitude and
illustrates the contrasting flow field. The index tracks the rotating angle of
the fluid around a given point and locates the eddy centers, saddle points,
and non-stationary points.



April 23, 2009 15:28 AOGS 2007 - OS Volume 9in x 6in b672-V12-ch17

Identification of Spatial Variability and Eddies of the SCS 255

Using surface geostrophic currents derived by AVISO, the method was
applied to the SCS to distinguish flow field variability and to identify
eddies in different seasons. The results obtained from the method captured
the seasonal variability in the surface geostrophic flow field very well. It
was found that the highly variable seasonal flow field alternated between
vorticity- and strain-dominated flows. Strong vorticity flow is generally
accompanied with strong strain flow around it. Intensified vorticity-strain
flow variability exists in the continental margin along the track of the
dominant circulation. A selection of thresholds for J(u, v) would allow us
to scrutinize the major spatial variability in the flow field.

The index method, an alternative for identifying eddy centers, extracts
eddies embedded in the mean circulation field. Combined with a threshold
for selecting J(u, v), eddies associated with distinct physical forcing in the
southwest and northeast of SCS were pinpointed.
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Appendix A. Three-Dimensional Local Linearized Differential
Equation Streamline Solution

With regard to the classification method of a singular point of a system of
ordinary differential equations (ODE), one can decompose the field into a
uniform field and a background field in the neighborhood of any point. That
is, in a fixed time, t0, we can carry out the Taylor expansion on u(x, y, t0),
v(x, y, t0), and w(x, y, t0), keeping first order terms to get the local linear
approximation
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In other words, locally, the field is decomposed into a uniform flow and
a “background flow variation.”

We assume that the Jacobian determinant (i.e., det ∂(u,v,w)
∂(x,y,z) ) is non-

zero so that the background flow can be linearized. Thus, the information
of the local linearized flow (until any non-singular transformation
of expansion/contraction, shear, and rotation) is stored in the three
coefficients (c1, c2, and c3) of the characteristic equation

−λ3 + c1λ2 − c2λ + c3 = 0, (A.1)

c1 = div(−→v ),

c2 = det
∂(u, v)
∂(x, y)

+ det
∂(v, w)
∂(y, z)

+ det
∂(u, w)
∂(x, z)

,

c3 = det
∂(u, v, w)
∂(x, y, z)

,

where λ is an eigenvalue of the Jacobian matrix. In an incompressible
oceanic flow, the coefficient c1 vanishes. Thus, the degrees of freedom of
the flow field reduce to two which are provided by c2 and c3. These two
parameters can be combined to form a single parameter

D3 =
((

det
∂(u, v)
∂(x, y)

+ det
∂(v, w)
∂(y, z)

+ det
∂(u, w)
∂(x, z)

) /
3
)3

+
(

det
∂(u, v, w)
∂(x, y, z)

/
2
)2

or its non-dimensional form,

N3 =

((
det ∂(u,v)

∂(x,y) + det ∂(v,w)
∂(y,z) + det ∂(u,w)

∂(x,z)

) /
3
)3

(
det ∂(u,v,w)

∂(x,y,z)

/
2
)2 ,

which defines the characteristics of the streamline without flow direction
in (A.1) when the fluid is incompressible. While the dimensional D3 is
sensitive to the magnitude of the flow, the non-dimensional N3 is not.
N3 can illustrate the contrasting flow field. Characterized types of three-
dimensional background flow variations in term of D3 and N3 are displayed
in Fig. A1.
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Fig. A1. Characterized types of three-dimensional background flow variation. The
streamlines (red, blue, and green lines) in the left panel from the three eigenvectors (black
lines) represent the node (red line) and saddle (blue and green lines) flow patterns. In
the right panel, D3 > 0 or N3 < −1 represents a flow with two saddle planes and one
node plane; D3 < 0 or N3 > −1 represents a spiraling vortex exponentially closing to
(departing from) its center axis toward (away from) the top and bottom. The streamlines
in the figure are up to a linear transformation.

Appendix B. Two-Dimensional Local Linearized Differential
Equation Streamline Solution

Since the magnitude of vertical velocity in the ocean is three to four
orders of magnitude smaller than that of horizontal velocity, ocean flow
is approximately two-dimensional. When one takes a cross-section or
depth-average of a specific layer from a three-dimensional flow, the two-
dimensional flow obtained will be, in general, compressible. Similarly,
we can get the corresponding D2 = det ∂(u,v)

∂(x,y) and its non-dimensional

parameter, N2 =
det ∂(u,v)

∂(x,y)

(ux+vy/2)2 , from the two-dimensional characteristic
equation

λ2 − c1λ + c2 = 0, (B.1)

and

c1 = div(�v),

c2 = det
∂(u, v)
∂(x, y)

.

Here, x, y, u, v are the axes and velocity with respect to rectangular
coordinates on the cross-sectional plane. It classifies a non-degenerating
background flow variation as saddle, node, and vortex (Fig. B1).
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Fig. B1. Types of cross-sectional background flow variation. The left panel represents
a plane with a saddle point; the middle represents a plane with a node point; and the
right panel represents a plane with a spiral point.

Under the limits of an incompressibility condition, D2 = det ∂(u,v)
∂(x,y)

and N2 = sign(det ∂(u,v)
∂(x,y)). D2 is known as the Jacobian of velocity, and

is usually denoted by J(u, v). Although D3 helps to understand the real
three-dimensional structure of the flow, it is, however, hard to accurately
calculate due to uncertainty in the vertical velocity in the ocean. In this
study, the two-dimensional solution is used to identify the partially variable
flow field and existing eddies.
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