
Supplement: Symmetric and Hermitian Matrices

A Bunch of Definitions

Definition: A real n× n matrix A is called symmetric if AT = A.

Definition: A complex n× n matrix A is called Hermitian if A∗ = A, where A∗ = AT , the
conjugate transpose.

Definition: A complex n× n matrix A is called normal if A∗A = AA∗, i.e. commutes with
its conjugate transpose.

It is quite a surprising result that these three kinds of matrices are always diagonalizable;
and moreover, one can construct an orthonormal basis (in standard inner product) for Rn/Cn,
consisting of eigenvectors of A. Hence the matrix P that gives diagonalization A = PDP−1

will be orthogonal/unitary, namely:

Definition: An n× n real matrix P is called orthogonal if P TP = In, i.e. P−1 = P T .

Definition: An n× n complex matrix P is called unitary if P ∗P = In, i.e. P−1 = P ∗.

Diagonalization using these special kinds of P will have special names:

Definition: A matrix A is called orthogonally diagonalizable if A is similar to a diagonal
matrix D with an orthogonal matrix P , i.e. A = PDP T .

A matrix A is called unitarily diagonalizable if A is similar to a diagonal matrix D with a
unitary matrix P , i.e. A = PDP ∗.

Then we have the following big theorems:

Theorem: Every real n× n symmetric matrix A is orthogonally diagonalizable

Theorem: Every complex n× n Hermitian matrix A is unitarily diagonalizable.

Theorem: Every complex n× n normal matrix A is unitarily diagonalizable.

To prove the above results, it is convenient to introduce the concept of adjoint operator,
which allows us to discuss effectively the “transpose” operation in a general inner product
space.

The Adjoint Operator

Let V be an n-dimensional inner product space and let T : V → V be a linear operator.
We find out that under the inner product operation, the action of T : v 7→ T (v) can be
replaced/represented by another inner product action using a suitably chosen vector.

Lemma 1: Let w ∈ V be a given vector. Then there is a unique vector w∗ ∈ V such that:

<T (v),w>=<v,w∗>, for every v ∈ V . (∗)

Proof: Let {u1, . . . ,un} be an orthonormal basis for V . The following w∗ is what we want:

w∗ = <T (u1),w>u1 + . . .+<T (up),w>up =
n∑

i=1

<T (ui),w>ui.
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Now, for j = 1, . . . , n, we check (∗) for basis vector uj first:

<uj,w
∗> = <uj,

n∑
i=1

<T (ui),w>ui>=
n∑

i=1

<T (ui),w><uj,ui>

= <T (uj),w><uj,uj>=<T (uj),w> .

So, for a general v ∈ V , by expressing v = c1u1 + . . .+ cnun =
∑n

j=1 cjuj, we have:

<T (v),w> = <

n∑
j=1

cjT (uj),w>=
n∑

j=1

cj <T (uj),w>

=
n∑

j=1

cj <uj,w
∗>=<

n∑
j=1

cjuj,w
∗>=<v,w∗> .

For the uniqueness of w∗, let w′ ∈ V be another vector with the same property, namely:

<T (v),w>=<v,w∗>=<v,w′>, for every v ∈ V .

Then we take difference:

<v,w∗ −w′>= 0, for every v ∈ V .

In particular, this equality should be valid for v = w∗ −w′ ∈ V . Thus we have:

<w∗ −w′,w∗ −w′>= 0 ⇒ ||w∗ −w′|| = 0 ⇒ w∗ = w′ �

Definition: Let T : V → V be a linear operator. For each w ∈ V , we define T ∗(w) := w∗,
where w∗ is the unique vector obtained in Lemma 1. This T ∗ is called the adjoint of T .

Lemma 2: The adjoint operator T ∗ : V → V is linear.

Proof: Straightforward checking. Let w1,w2 ∈ V and c, d ∈ C. Then for every v ∈ V , first
by definition of T ∗ we have:

<T (v), (cw1 + dw2)>=<v, T ∗(cw1 + dw2)> .

But on the other hand:

<T (v), (cw1 + dw2)> = c̄ <T (v),w1> + d̄ <T (v),w2>

= c̄ <v, T ∗(w1)> + d̄ <v, T ∗(w2)>

= <v, c T ∗(w1) + d T ∗(w2)>

The above two equalities are valid for every v ∈ V . So by the same uniqueness proof as in
Lemma 1, we obtain:

T ∗(cw1 + dw2) = c T ∗(w1) + d T ∗(w2),

and thus T ∗ is linear. �
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Theorem 1: Let T, U be linear operators on V and k ∈ C. Then:

(i) (T + U)∗ = T ∗ + U∗;

(ii) (kT )∗ = k̄T ∗;

(iii) (U ◦ T )∗ = T ∗ ◦ U∗;

(iv) (T ∗)∗ = T .

Proof: Directly from definitions. For example, the checking for (iv):

Let v ∈ V be any vector. Then by definition:

<(T ∗)∗(v),u>=<v, T ∗(u)>=<T (v),u>, for every u ∈ V .

Hence (T ∗)∗(v) = T (v) for any v ∈ V and thus (T ∗)∗ = T . �

This adjoint operator T ∗, when using matrix representation with an orthonormal basis
B, has a simple relationship with the original linear operator T .

Theorem 2: Let B = {u1, . . . ,up} be an orthonormal basis of V , and let T be a linear
operator in V . Then the matrix representations of T and T ∗ relative to the orthonormal
basis B are given by:

[T ]B =
[
<T (uj),ui>

]
and [T ∗]B = [T ]∗B.

Remark: B must be orthonormal!

Proof: First we consider the j-th column of [T ]B, i.e. [T (uj)]B. Its entries are the B-
coordinates of T (uj), which are exactly the coefficients in the linear combination:

T (uj) = a1ju1 + . . .+ anjuj.

Since B is orthonormal, the i-th coefficient in the above linear combination can be computed
effectively as:

<T (uj),ui>= a1j <ui,ui> + . . .+ anj <un,ui>= aij.

Thus the (i, j)-th entry of [T ]B is given by aij =<T (uj),ui>.

Similarly the (i, j)-th entry of [T ∗]B is given by <T ∗(uj),ui>. Using the definition of adjoint
operator, we have:

<T ∗(uj),ui>= <ui, T ∗(uj)> = <T (ui),uj> = āji.

So [T ∗]B = [T ]∗B �

Definition: A linear operator T : V → V is called self-adjoint if T ∗ = T .

Thus, by Theorem 2, matrix transformation given by a symmetric/Hermitian matrix will be
a self-adjoint operator on Rn/Cn, using the standard inner product.

Next we need to setup some technical lemmas for the proof of the main theorem.
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Lemma 3: Let T be a self-adjoint operator on V . Then every eigenvalue of T must be real.

Proof: Let v 6= 0 be an eigenvector of T corresponding to eigenvalue λ. We consider:

<T (v),v>=<λv,v>= λ <v,v> .

On the other hand, since T ∗ = T , we also have:

<T (v),v>=<v, T ∗(v)>=<v, T (v)>=<v, λv>= λ̄ <v,v> .

As <v,v>6= 0, we must have λ = λ̄, i.e. λ is real. �

Lemma 4: Every self-adjoint operator on V has an eigenvector.

Proof: Take an orthonormal basis B of V . Then we get a symmetric/Hermitian matrix
A = [T ]B. By the fundamental theorem of algebra, A must have an eigenvalue λ ∈ C, and
hence a corresponding eigenvector x ∈ Cn. In complex case we just send this x ∈ Cn back
to v ∈ V by inverse B-coordinate mapping, then we will get T (v) = λv. In real case, we
apply Lemma 3 to know that this λ must be real. Hence x ∈ Rn and we can send it back to
v ∈ V to get T (v) = λv again. �

Lemma 5: Let W be a subspace of V such that T (W ) ⊆ W , i.e. T (w) ∈ W for every
w ∈ W . Then T ∗(W⊥) ⊆ W⊥.

Proof: Let z ∈ W⊥. Then for w ∈ W :

<w, T ∗(z)>=<T (w), z>= 0 as T (w) ∈ W and z ∈ W⊥.

Since the above is valid for every w ∈ W , we should have T ∗(z) ∈ W⊥. �

Lemma 6: Let W be a subspace of an n-dimensional inner product space V . Then:

dimW + dimW⊥ = n = dimV.

Proof: Let {w1, . . . ,wk} and {z1, . . . , z`} be orthogonal bases of W and W⊥ respectively.
The lemma is proved if we can show that S = {w1, . . . ,wk, z1, . . . , z`} forms a basis for V .

Spanning V : For every v ∈ V , we have the orthogonal decomposition of v w.r.t. W :

v = projWv + (v − projWv), where projWv ∈ W and (v − projWv) ∈ W⊥.

Use the bases of W and W⊥ to express projWv =
∑k

i=1 ciwi and (v−projWv) =
∑`

j=1 djzj.
Hence v can be expressed as a linear combination of vectors in S.

Linearly independent: Consider the vector equation:

c1w1 + . . .+ ckwk + d1z1 + . . .+ d`z` = 0.

Take inner product with w1. As {w1, . . . ,wk} is an orthogonal set, we have <wi,w1>= 0
for i 6= 1. On the other hand, since w1 ∈ W and all zj ∈ W⊥, we get <zj,w1>= 0 for all
1 ≤ j ≤ `. So the above vector equation will become:

c1||w1||2 + 0 + . . .+ 0 =<0,w1>= 0.

As w1 6= 0, we get c1 = 0. Similarly for other ci and dj and they are all zeros. Thus S is
also linearly independent. �
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Now we are ready to prove the main theorem.

Diagonalizability of Symmetric and Hermitian Matrices

Main Theorem: Let T ∗ = T be a self-adjoint linear operator on V . Then V has an
orthonormal basis consisting of eigenvectors of T .

Proof: We use induction on n = dimV .

n = 1: Any non-zero vector v1 will be an eigenvector of T since V = Span {v1}. After
normalization, u1 = v1

||v1|| , we obtain an orthonormal basis {u1} of V consisting of eigenvector
of T .

Now, assume the statement is true for dimV = k. Next consider dimV = k + 1.

By Lemma 4, T has an eigenvector u1 (may assume ||u1|| = 1) corresponding to eigenvalue
λ1. Let W = Span {u1}. Note that T (W ) = W .

By Lemma 5, we have T ∗(W⊥) ⊆ W⊥. Since T ∗ = T , this gives T (W⊥) ⊆ W⊥. In other
words, we can regard T as a linear operator defined on W⊥. Note that Lemma 6 says that
dimW⊥ = dimV − dimW = k, so by induction hypothesis, there is an orthonormal basis
of W⊥ consisting of eigenvectors of T , say {u2, . . . ,uk+1}.
Since u1 ∈ W , ||u1|| = 1, and {u2, . . . ,uk+1} ⊂ W⊥, the combined set {u1,u2, . . . ,uk+1} is
again orthonormal. This will be an orthonormal basis of V consisting of eigenvectors of T .

�

In the case of symmetric (or Hermitian) matrix transformation, by using such an or-
thonormal basis of eigenvectors to construct the matrix P , we will have the diagonalization
A = PDP−1 with P−1 = P T (or P−1 = P ∗).

Remark: To find this P , we have a more efficient method than the inductive construction
in the proof of main theorem.

Lemma 7: Let T ∗ = T . Then eigenvectors of T corresponding to distinct eigenvalues are
orthogonal to each other.

Proof: Let T (v1) = λ1v1 and T (v2) = λ2v2 with λ1 6= λ2. Consider on the one hand:

<T (v1),v2>=<λ1v1,v2>= λ1 <v1,v2>,

and on the other hand:

<T (v1),v2>=<v1, T
∗(v2)>=<v1, T (v2)>=<v1, λ2v2>= λ̄2 <v1,v2> .

Since T is self-adjoint, λ2 must be real, so we obtain:

λ1 <v1,v2>= λ2 <v1,v2> .

As λ1 6= λ2, we must have <v1,v2>= 0.
�

Corollary: Let T ∗ = T and let {v1i1}, . . . , {vpip} be orthogonal sets of eigenvectors corre-
sponding to distinct eigenvalues λ1, . . . , λp of T . Then the total collection of eigenvectors
{vjij ; 1 ≤ i ≤ p} is again orthogonal.

Proof: Exercise.
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With Lemma 7 and its corollary, we only need to produce orthonormal basis for each
eigenspace, which can be done by a Gram-Schmidt process. Then the total collection will
be automatically orthonormal. And it is guaranteed by the main theorem that A must be
diagonalizable.

Remark: If v1,v2 are eigenvectors of A corresponding to distinct eigenvalues, we know that
v1 + v2 can never be an eigenvector of A. So Gram-Schmidt process should not be applied
across bases for different eigenspaces.

Example: Orthogonally diagonalize the following symmetric matrix:

A =

 1 2 −4
2 −2 −2
−4 −2 1

 .
Solution: The characteristic equation of A is:

det(A− λI) = −λ3 + 27λ+ 54 = −(λ+ 3)2(λ− 6) = 0.

So the eigenvalues are −3, −3, 6.

For the eigenvalue λ = −3, we solve for Nul (A+ 3I):

A+ 3I =

 4 2 −4
2 1 −2
−4 −2 4

 −→
 1 1

2
−1

0 0 0
0 0 0

 .
So Nul (A+ 3I) has a basis {[ 1 0 1 ]T , [−1

2
1 0 ]T}. By Gram-Schmidt process, we obtain

an orthonormal basis for Nul (A+ 3I):
 1√

2

0
1√
2

 ,
−

1√
18

4√
18
1√
18


 .

For the eigenvalue λ = 6, we solve for Nul (A− 6I):

A− 6I =

−5 2 −4
2 −8 −2
−4 −2 −5

 −→
 1 0 1

0 1 1
2

0 0 0

 .
So Nul (A−6I) has a basis {[−1 −1

2
1 ]T} and we obtain an orthonormal basis for Nul (A−

6I): 
−2

3

−1
3

2
3

 .

We construct the orthogonal matrix P and diagonal matrix D as:

P =


1√
2
− 1√

18
−2

3

0 4√
18
−1

3
1√
2

1√
18

2
3

 , D =

−3 0 0
0 −3 0
0 0 6

 .
Then one can check that A = PDP T .
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Note: The diagonalization A = PDP T is not unique, as one can have different choices of
orthonormal bases for those eigenspaces with dimension greater than one. For example, the
above A also allows an orthogonal diagonalization A = QDQT with:

Q =

 1
3
−2

3
−2

3
2
3

2
3
−1

3
2
3
−1

3
2
3

 .
Diagonalization of Complex Normal Matrices

Definition: A linear operator T on V is called normal if T ◦ T ∗ = T ∗ ◦ T .

To make the proof of main theorem also work for normal operator, we need the following
technical lemma.

Lemma 8: Let T be a normal operator on V . Then:

(i) v is an eigenvector of T corresponding to eigenvalue λ

⇔ v is an eigenvector of T ∗ corresponding to eigenvalue λ̄.

(ii) Eigenvectors corresponding to distinct eigenvalues of T are orthogonal to each other.

Proof: (i) First we claim that ||T (v)|| = ||T ∗(v)||.

||T (v)||2 = <T (v), T (v)>=<v, T ∗T (v)>

= <v, TT ∗(v)>=<T ∗(v), T ∗(v)>= ||T ∗(v)||2.

Then for any scalar λ, note that the operator U = T −λI is also normal with U∗ = T ∗− λ̄I,
so we have:

||(T − λI)(v)|| = ||(T ∗ − λ̄I)(v)||. (∗)

Hence:

v is an eigenvector of T corresponding to eigenvalue λ

⇔ (T − λI)(v) = 0

⇔ (T ∗ − λ̄I)(v) = 0 (by (∗))
⇔ v is an eigenvector of T ∗ corresponding to eigenvalue λ̄

(ii) Now let v1,v2 be eigenvectors of T , corresponding to distinct eigenvalues λ1 6= λ2
respectively. Consider on the one hand:

<T (v1),v2>=<λ1v1,v2>= λ1 <v1,v2>;

and on the other hand:

<T (v1),v2>=<v1, T
∗(v2)>=<v1, λ̄2v2>= λ2 <v1,v2> .

So we again obtain:
λ1 <v1,v2>= λ2 <v1,v2> .

As λ1 6= λ2, we must have <v1,v2>= 0. �
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Now, we give the proof of main theorem for normal operators.

Main Theorem′: Let T be a normal operator on a complex inner product space V . Then
V has an orthonormal basis consisting of eigenvectors of T .

Proof: We use induction on n = dimV .

n = 1: Same as before.

Now, assume the statement is true for dimV = k. Next consider dimV = k + 1.

Since V is a complex inner product space, T will have an eigenvector u1 (may assume
||u1|| = 1) corresponding to eigenvalue λ1. (For real inner product space we might get stuck
at this point.)

By Lemma 8(i), u1 is also an eigenvector of T ∗. So if we set W = Span {u1}, we have
T ∗(W ) ⊆ W .

By Lemma 5, we have (T ∗)∗(W⊥) ⊆ W⊥. As (T ∗)∗ = T , this means T (W⊥) ⊆ W⊥. Then
we can continue the inductive argument as in the previous proof of Main Theorem.

�
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