Supplement: Symmetric and Hermitian Matrices

A Bunch of Definitions
Definition: A real n x n matrix A is called symmetric if AT = A.

Definition: A complex n x n matrix A is called Hermitian if A* = A, where A* = AT, the
conjugate transpose.

Definition: A complex n X n matrix A is called normal if A*A = AA*, i.e. commutes with
its conjugate transpose.

It is quite a surprising result that these three kinds of matrices are always diagonalizable;
and moreover, one can construct an orthonormal basis (in standard inner product) for R" /C™,
consisting of eigenvectors of A. Hence the matrix P that gives diagonalization A = PDP~!
will be orthogonal /unitary, namely:

Definition: An n x n real matrix P is called orthogonal if PP = I,,,i.e. P71 = PT.
Definition: An n x n complex matrix P is called unitary if P*P = I,,, i.e. P~ = P*.
Diagonalization using these special kinds of P will have special names:

Definition: A matrix A is called orthogonally diagonalizable if A is similar to a diagonal
matrix D with an orthogonal matrix P, i.e. A= PDPT.

A matrix A is called unitarily diagonalizable if A is similar to a diagonal matrix D with a
unitary matrix P, i.e. A= PDP*.

Then we have the following big theorems:

Theorem: Every real n x n symmetric matrix A is orthogonally diagonalizable
Theorem: Every complex n x n Hermitian matrix A is unitarily diagonalizable.
Theorem: Every complex n X n normal matrix A is unitarily diagonalizable.

To prove the above results, it is convenient to introduce the concept of adjoint operator,
which allows us to discuss effectively the “transpose” operation in a general inner product
space.

The Adjoint Operator

Let V' be an n-dimensional inner product space and let T': V' — V' be a linear operator.
We find out that under the inner product operation, the action of T': v +— T(v) can be
replaced /represented by another inner product action using a suitably chosen vector.

Lemma 1: Let w € V be a given vector. Then there is a unique vector w* € V' such that:
<T(v),w>=<v,w'> foreveryvelV. (%)

Proof: Let {uy,...,u,} be an orthonormal basis for V. The following w* is what we want:

w'=<T(u),w>u; + ...+ <T(u,),w>u, = Z <T(w;),w>u,.
i=1



Now, for j =1,...,n, we check (x) for basis vector u; first:

n n
<uj,w'> = <uj,Z<T(ui),w>ui>: Z <T(w;),w><u;,u;>
i=1 i=1
= <T(u;),w><uj,u; >=<T(u;),w>.

So, for a general v € V, by expressing v =cju; + ...+ c,u, = > .

=1 Cju;, we have:

n

<T(v),w>= <ZCjT(uj),w>: ch <T(u;), w>
j=1

j=1

n n
= E cj <uj, W >=< E Cju;, W >=<V,W >.
Jj=1 Jj=1

For the uniqueness of w*, let w’ € V' be another vector with the same property, namely:
<T(v),w>=<v,w'>=<v,w' > foreveryvelV.
Then we take difference:
<v,w'—w'>=0, foreveryvelV.
In particular, this equality should be valid for v = w* — w’ € V. Thus we have:

<W*_W/7W*_W/>:0 : ||W*_Wl||:0 $ W*:Wl |:|

Definition: Let T : V — V be a linear operator. For each w € V| we define T*(w) := w*,
where w* is the unique vector obtained in Lemma 1. This T™ is called the adjoint of T'.
Lemma 2: The adjoint operator 7% : V' — V is linear.
Proof: Straightforward checking. Let wy,ws € V and ¢,d € C. Then for every v € V| first
by definition of T we have:
<T(v), (ewy + dwy) >=<v,T*(cw; + dws) > .
But on the other hand:
<T(v),(ecwy +dwy)> = <T(v),w;> +d <T(v),wy>
=c<v,T*(wy)> +d <v,T*(wy) >
= <v,cT*(wy) +dT"(wq) >

The above two equalities are valid for every v € V. So by the same uniqueness proof as in

Lemma 1, we obtain:
T (ewy + dwy) = ¢ T (wy) + d T (wy),

and thus T is linear. O



Theorem 1: Let T, U be linear operators on V and k € C. Then:
(i)
(i)
(ii)
(iv) (T7)" =

Proof: Directly from definitions. For example, the checking for (iv):

(T—l—U) =T+ U™
(KT)" = kT™;
(UoT) =T*o U

Let v € V' be any vector. Then by definition:
<(T")*(v),u>=<v,T*(u)>=<T(v),u>, foreveryueV.
Hence (T%)*(v) = T(v) for any v € V and thus (T*)* =T. O

This adjoint operator 7™, when using matrix representation with an orthonormal basis
B, has a simple relationship with the original linear operator 7.

Theorem 2: Let B = {uy,...,u,} be an orthonormal basis of V, and let T" be a linear
operator in V. Then the matrix representations of 7" and T™ relative to the orthonormal
basis B are given by:

T)s = <T(uj),ui>] and [T*]s = [T]5.

Remark: B must be orthonormal!

Proof: First we consider the j-th column of [Tz, i.e. [T'(u;)|p. Its entries are the B-
coordinates of T'(u;), which are exactly the coefficients in the linear combination:

T<Uj) = aljul + ...+ anjuj.

Since B is orthonormal, the i-th coefficient in the above linear combination can be computed
effectively as:

<T(u]),uz>: Q15 <u;, u; > +...+ Qpj <U,,4; >= Qjj-

Thus the (i, j)-th entry of [Tz is given by a;; =<T'(u;),u; >.

Similarly the (7, j)-th entry of [T%]g is given by <7™(u;),w; >. Using the definition of adjoint
operator, we have:

<T*(uj),ui >= <ui,T*(uj) > = <T(ui),uj> = C_lji.

So [T*|s = [T]5 O
Definition: A linear operator T': V — V is called self-adjoint it T* =T

Thus, by Theorem 2, matrix transformation given by a symmetric/Hermitian matrix will be
a self-adjoint operator on R"/C", using the standard inner product.

Next we need to setup some technical lemmas for the proof of the main theorem.



Lemma 3: Let T be a self-adjoint operator on V. Then every eigenvalue of T" must be real.

Proof: Let v # 0 be an eigenvector of T' corresponding to eigenvalue A\. We consider:
<T(V),v>=<AV,v>= A <V,Vv>.
On the other hand, since T* = T, we also have:
<T(V),v>=<v,T*(V)>=<Vv,T(V) >=<V,Av>= A <V, V> .

As <v,v># 0, we must have A = ), i.e. \ is real. O
Lemma 4: Every self-adjoint operator on V' has an eigenvector.

Proof: Take an orthonormal basis B of V. Then we get a symmetric/Hermitian matrix
A = [T]p. By the fundamental theorem of algebra, A must have an eigenvalue A\ € C, and
hence a corresponding eigenvector x € C". In complex case we just send this x € C" back
to v € V by inverse B-coordinate mapping, then we will get T'(v) = Av. In real case, we
apply Lemma 3 to know that this A must be real. Hence x € R" and we can send it back to
v € V to get T'(v) = Av again. O

Lemma 5: Let W be a subspace of V' such that T(W) C W, ie. T(w) € W for every
w € W. Then T*(W+) C W

Proof: Let z € W+. Then for w € W:
<w,T*(z)>=<T(w),z>=0 as T(w)c€ W andzec W+

Since the above is valid for every w € W, we should have T*(z) € W+. O

Lemma 6: Let W be a subspace of an n-dimensional inner product space V. Then:
dimW +dimW+ =n =dim V.

Proof: Let {wy,...,wy} and {zy,...,2,} be orthogonal bases of W and W+ respectively.
The lemma is proved if we can show that S = {wy,..., Wy, z1,...,2¢} forms a basis for V.

Spanning V': For every v € V| we have the orthogonal decomposition of v w.r.t. W:

v = projyv + (v — projyv), where proj,;v € W and (v — projy,v) € W+.

: k : ¢

Use the bases of W and W to express projyv = i, ¢;w; and (v —projyv) = >_._, d;z;.

Hence v can be expressed as a linear combination of vectors in S.

Linearly independent. Consider the vector equation:
01W1—|—...—|—ckwk+d1z1+...+dgz5:0.

Take inner product with wy. As {wy, ..., w} is an orthogonal set, we have <w;, w; >= 0

for i # 1. On the other hand, since w; € W and all z; € W, we get <z;, w; >= 0 for all
1 < 7 < /{. So the above vector equation will become:

C1HW1||2+0+...+O:<O,W1>: 0.

As wy # 0, we get ¢; = 0. Similarly for other ¢; and d; and they are all zeros. Thus S is
also linearly independent. 0



Now we are ready to prove the main theorem.

Diagonalizability of Symmetric and Hermitian Matrices

Main Theorem: Let 7" = T be a self-adjoint linear operator on V. Then V has an
orthonormal basis consisting of eigenvectors of 7.

Proof: We use induction on n = dim V.

n = 1: Any non-zero vector v; will be an eigenvector of T since V' = Span{v;}. After

normalization, u; = Hzill’ we obtain an orthonormal basis {u; } of V' consisting of eigenvector
of T'.

Now, assume the statement is true for dim V' = k. Next consider dimV = k + 1.

By Lemma 4, T' has an eigenvector u; (may assume ||u;|| = 1) corresponding to eigenvalue
A1. Let W = Span {u;}. Note that T(W) = W.

By Lemma 5, we have T*(W+) C W+, Since T* = T, this gives T(W1) C W. In other
words, we can regard T as a linear operator defined on W+. Note that Lemma 6 says that
dim W+ = dimV — dim W = k, so by induction hypothesis, there is an orthonormal basis

of W+ consisting of eigenvectors of T, say {uy, ..., ups1}.
Since u; € W, ||wy|| = 1, and {uy, ..., upy1} C W, the combined set {uy, uy, ..., upy 1} is
again orthonormal. This will be an orthonormal basis of V' consisting of eigenvectors of T'.

O

In the case of symmetric (or Hermitian) matrix transformation, by using such an or-
thonormal basis of eigenvectors to construct the matrix P, we will have the diagonalization
A= PDP~! with P~ = PT (or P7! = P*).

Remark: To find this P, we have a more efficient method than the inductive construction
in the proof of main theorem.

Lemma 7: Let T* = T. Then eigenvectors of 1" corresponding to distinct eigenvalues are
orthogonal to each other.

Proof: Let T'(vy) = A\;vy and T'(vy) = A\yve with A # Ay, Consider on the one hand:
<T(vy),va>=<A\V], Vo >= A\ <Vy, Vo>,
and on the other hand:
<T(vy),vo>=<vy,T*(vo) >=< vy, T (V) >=< v, \aVo >= Ay <V, Vo > .
Since T is self-adjoint, A\ must be real, so we obtain:
Al <V, Vo>= Ay <Vqi,Vg> .

As A\ # A9, we must have <vy,vy>= 0.

O
Corollary: Let 7% = T and let {vy; },...,{vy,} be orthogonal sets of eigenvectors corre-
sponding to distinct eigenvalues Ay,..., A, of 7. Then the total collection of eigenvectors

{vji;; 1 <14 < p} is again orthogonal.

Proof: Exercise.



With Lemma 7 and its corollary, we only need to produce orthonormal basis for each
eigenspace, which can be done by a Gram-Schmidt process. Then the total collection will
be automatically orthonormal. And it is guaranteed by the main theorem that A must be
diagonalizable.

Remark: If v, vy are eigenvectors of A corresponding to distinct eigenvalues, we know that
v1 + vy can never be an eigenvector of A. So Gram-Schmidt process should not be applied
across bases for different eigenspaces.

Example: Orthogonally diagonalize the following symmetric matrix:

1 2 -4
A=| 2 -2 =2
-4 =2 1

Solution: The characteristic equation of A is:
det(A— M) = =N +27A+54=—(A+3)>(A—6) = 0.

So the eigenvalues are —3, —3, 6.

For the eigenvalue A = —3, we solve for Nul (A + 31):

4 2 —4 11
A+3l=]2 1 —2| — |00 0
—4 —2 4 00 0

So Nul (A +31) has a basis {[1 0 1]7,[—1 1 0]"}. By Gram-Schmidt process, we obtain

an orthonormal basis for Nul (A 4 31):
L L
V2 V18
0|, 4
i N
V2 V18

For the eigenvalue A = 6, we solve for Nul (A — 61):

-5 2 —4 101
A-6I=|2 -8 2| — |01 1
—4 -2 =5 000

So Nul (A—61) has a basis {{—1 —% 1]7} and we obtain an orthonormal basis for Nul (A —
61):

2

i
;3
3
We construct the orthogonal matrix P and diagonal matrix D as:
NG —4%1—8 —% 3 0 0
i S R IO
V2 VI8 3

Then one can check that A = PDPT.



Note: The diagonalization A = PDPT is not unique, as one can have different choices of
orthonormal bases for those eigenspaces with dimension greater than one. For example, the
above A also allows an orthogonal diagonalization A = QDQ” with:

wIN
W b

Q=

2 _
3

O DO [ DO | =

2
3

Wl

Diagonalization of Complex Normal Matrices
Definition: A linear operator 1" on V is called normal if T oT* =T*oT.

To make the proof of main theorem also work for normal operator, we need the following
technical lemma.

Lemma 8: Let T be a normal operator on V. Then:
(i) v is an eigenvector of 1" corresponding to eigenvalue A
& v is an eigenvector of T* corresponding to eigenvalue .
(ii) Eigenvectors corresponding to distinct eigenvalues of T" are orthogonal to each other.
Proof: (i) First we claim that ||T'(v)|| = ||T*(v)]|.

|ITV)||? = <T(v), T(v)>=<v,T*T(v)>
= <v,TT*(v)>=<T*(v), T*(v)>= ||T*(v)|]*.

Then for any scalar A, note that the operator U = T'— I is also normal with U* = T* — A,
so we have:

(T = ADW)I| = I(T* = AD)@)I- (%)

Hence:

v is an eigenvector of T' corresponding to eigenvalue A
S (T—=XM)(v)=0
& (I" = M)(v) =0 (by (x))

& v is an eigenvector of 7% corresponding to eigenvalue A

(ii)) Now let vy, vy be eigenvectors of T', corresponding to distinct eigenvalues \; # Ag
respectively. Consider on the one hand:

<T(V1), Vo >=< /\1V17 Vo >= )\1 <Vi,Vg>;
and on the other hand:
<T(V1), Vo >=<Vyq, T (Vg) >=<Vj, 5\2V2 >= Ay <Vi1,Vg>.

So we again obtain:
A1 <V, Vg >= Ao <Vi,Vg> .

As A\ # A\, we must have <vq, vo>= 0. ]



Now, we give the proof of main theorem for normal operators.
Main Theorem’: Let T" be a normal operator on a complex inner product space V. Then
V' has an orthonormal basis consisting of eigenvectors of T'.
Proof: We use induction on n = dim V.
n = 1: Same as before.
Now, assume the statement is true for dim V' = k. Next consider dimV = k + 1.

Since V' is a complex inner product space, T will have an eigenvector u; (may assume
[lui|| = 1) corresponding to eigenvalue ;. (For real inner product space we might get stuck
at this point.)

By Lemma 8(i), u; is also an eigenvector of T*. So if we set W = Span {u;}, we have
T*(W)CW.

By Lemma 5, we have (T*)*(W+) C W+. As (T*)* = T, this means T(W+) C W+. Then
we can continue the inductive argument as in the previous proof of Main Theorem.

O



