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7.1 DISCUSSION OF MAIN PROBLEM

7.1 Convergence Pointwise: Suppose {f
n

} , n = 1, 2, 3, . . . , is a sequence of functions
defined on a set E, and suppose that the sequence of numbers {f

n

(x)} converges for
every x 2 E. We can then define a function f by

f(x) = lim
n!1

f
n

(x), x 2 E.

We say that f is the limit of {f
n

}, or {f
n

} converges to f pointwise on E.

Similarly, if
P

f
n

(x) converges for every x 2 E, and if we define

f(x) =
1
X

n=1

f
n

(x), x 2 E,

we say that the function f is the sum of the series
P

f
n

.

• Problems: The main problem which arises is to determine whether important prop-
erties of functions are preserved under the limit operations above. For instance, if
the functions f

n

are continuous, or di↵erentiable, or integrable, is the same true of
the limit function f? What are the relations between f 0

n

and f 0, say, or between the
integrals of f

n

and that of f?

To say that f is continuous at a limit point x means

lim
t!x

f(t) = f(x).

81



82 7 SEQUENCES AND SERIES OF FUNCTIONS

Hence, to ask whether the limit of a sequence of continuous functions is continuous
is the same as to ask whether

lim
t!x

lim
n!1

f
n

(t) = lim
n!1

lim
t!x

f
n

(t),

i.e., whether the orders in which limit processes are carried out can be inter-changed:
on the left, we first let n ! 1, then t ! x; on the right side, t ! x first, then n ! 1.

7.2 Example For m = 1, 2, 3, . . . , n = 1, 2, 3, . . . , let

s
m,n

=
m

m+ n
.

Then, for each fixed n,
lim

m!1
s
m,n

= 1,

so that
lim
n!1

lim
m!1

s
m,n

= 1.

On the other hand, for every fixed m,

lim
n!1

s
m,n

= 0,

so that
lim

m!1
lim

n!1
s
m,n

= 0.

7.3 Example For real x, let

f
n

(x) =
x2

(1 + x2)n
, n = 1, 2, 3, . . . .

and consider

f(x) =
1
X

n=0

f
n

(x) =
1
X

n=0

x2

(1 + x2)n
.

Since f
n

(0) = 0, we have f(0) = 0. For x 6= 0, the last series converges to 1 + x2.
Hence

f(x) =

⇢

0, x = 0,
1 + x2 x 6= 0.

This example shows that a convergent series of continuous functions may have a
discontinuous sum.

7.5 Example For real x, let

f
n

(x) =
sinnxp

n
, n = 1, 2, 3, . . . ,
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and
f(x) = lim

n!1
f
n

(x) = 0

Then f 0(x) = 0, and
f 0
n

(x) =
p
n cosnx,

so that {f 0
n

} does not converge to f 0.

7.6 Example For 0  x  1, let

f
n

(x) = nx(1� x2)n, n = 1, 2, 3, . . . .

For 0 < x  1, it is clear that
lim
n!1

f
n

(x) = 0.

For x = 0, f
n

(0) = 0. Hence

lim
n!1

f
n

(x) = 0, 0  x  1.

It is easy to calculate
Z

1

0

f
n

(x) dx =
n

2n+ 2
.

Thus,

lim
n!1

Z

1

0

f
n

(x) dx =
1

2
6= 0 =

Z

1

0

h

lim
n!1

f
n

(x)
i

dx.

7.2 UNIFORM CONVERGENCE

7.7 Uniform Convergence: A sequence of functions {f
n

} converges uniformly on E
to a function f if for every ✏ > 0, there is an integer N such that n � N implies

|f
n

(x)� f(x)| < ✏

for all x 2 E.

A series
P

f
n

(x) converges uniformly on E if the sequence {s
n

} of partial sums,

s
n

(x) =
n

X

i=1

f
i

(x),

converges uniformly on E.

• It is clear that if {f
n

} converges uniformly to f on E, then {f
n

} converges pointwise
to f on E.

7.8 Theorem (Cauchy Criterion) The sequence of functions {f
n

}, defined on E,
converges uniformly on E if and only if for every ✏ > 0 there exists an integer N
such that m,n � N implies

|f
n

(x)� f
m

(x)| < ✏
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for all x 2 E.

Proof Suppose the Cauchy condition holds. By Theorem 3.11, the sequence {f
n

(x)}
converges for each fixed x to a limit which we may call f(x). Hence the sequence
{f

n

} converges to f on E. Let ✏ > 0 be given. There is an integer N such that
m,n � N implies

|f
n

(x)� f
m

(x)| < ✏/2.

If we let m ! 1 in the inequality, by Theorem 3.19, we have

|f
n

(x)� f(x)|  ✏/2 < ✏, n � N,

for all x 2 E. Thus {f
n

} converges uniformly to f .

Conversely, suppose {f
n

} converges uniformly to f on E. Then, for any ✏ > 0, there
is an integer N such that n � N implies

|f
n

(x)� f(x)| < ✏/2

for all x 2 E. Hence, if n,m � N , we have

|f
n

(x)� f
m

(x)|  |f
n

(x)� f(x)|+ |f
m

(x)� f(x)| < ✏

for all x 2 E.

7.9 Theorem Suppose {f
n

} converges to f on E. Put

M
n

= sup
x2E

|f
n

(x)� f(x)|.

Then {f
n

} converges uniformly to f on E if and only if M
n

! 0 as n ! 1.

Proof The proof is straightforward.

7.10 Theorem (Weierstrass M-Test) Suppose {f
n

} is a sequence of functions defined
on E satisfying

|f
n

(x)|  M
n

, n = 1, 2, 3, . . . ,

for all x 2 E. Then
P

f
n

converges uniformly on E if
P

M
n

converges.

Proof If
P

M
n

converges, then, for any ✏ > 0, there is an integer N such that
m � n � N implies

m

X

i=n

M
i

< ✏.

Hence, if m � n � N ,
�

�

�

�

�

m

X

i=n

f
i

(x)

�

�

�

�

�


m

X

i=n

M
i

< ✏,

for all x 2 E. It follows from Theorem 7.8 that {f
n

} converges uniformly to f on
E.
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7.3 UNIFORM CONVERGENCE AND CONTINUITY

7.11 Theorem Suppose f
n

! f uniformly on a set E in a metric space. Let x be a
limit point of E, and suppose that

lim
t!x

f
n

(t) = A
n

, n = 1, 2, 3, . . . .

Then {A
n

} converges, and
lim
t!x

f(t) = lim
n!1

A
n

.

In other words,
lim
t!x

lim
n!1

f
n

(t) = lim
n!1

lim
t!x

f
n

(t).

Proof Let ✏ > 0 be given. Since {f
n

} converges uniformly on E, there exists an
integer N such that n,m � N implies

|f
n

(t)� f
m

(t)| < ✏,

for all t 2 E. Letting t ! x, we have

|A
n

�A
m

|  ✏,

form n,m � N . Hence, {A
n

} is a Cauchy sequence, and therefore converges, say to
A.

From the inequality

|f(t)�A|  |f(t)� f
n

(t)|+ |f
n

(t)�A
n

|+ |A
n

�A|,

we now give the estimates for the terms on the right hand side. In fact, since f
n

! f
uniformly, we can choose n su�ciently large such that

|f(t)� f
n

(t)| < ✏/3

for all t 2 E, and such that
|A

n

�A| < ✏/3.

For this large n, by a condition in the theorem, we can choose a neighborhood V of
x such that

|f
n

(t)�A
n

| < ✏/3

if t 2 V \ E, t 6= x. Thus, we know that for t 2 V \ E, t 6= x,

|f(t)�A| < ✏.

That is, lim
t!x

f(t) = A = lim
n!1

A
n

.

7.12 Theorem If {f
n

} is a sequence of continuous functions on E, and if f
n

! f
uniformly on E, then f is continuous.
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Proof By Theorem 7.11, for every t 2 E, we have

lim
t!x

f(t) = lim
t!x

lim
n!1

f
n

(t) = lim
n!1

lim
t!x

f
n

(t) = lim
n!1

f
n

(x) = f(x).

Thus, f is continuous on E

7.13 Theorem Suppose K is compact, and

(a) {f
n

} is a sequence of continuous functions on K,

(b) {f
n

} converges pointwise to a continuous function f on K,

(c) f
n

(x) � f
n+1

(x) for all x 2 K, n = 1, 2, 3, . . . .

Then f
n

! f uniformly on K.

Proof Put g
n

= f
n

� f . Then g
n

is continuous, g
n

! 0, and g
n

� g
n+1

. We have to
prove that g

n

! 0 uniformly on K.

Let ✏ > 0 be given. Write

K
n

= {x 2 K : g
n

(x) � ✏}, n = 1, 2, 3, . . . .

Since g
n

is continuous, by Theorem 4.8, K
n

⇢ K is closed for each n. By Theorem
2.35, K

n

is compact. Since g
n

� g
n+1

, we know that K
n

� K
n+1

. Fix x 2 K, since
g
n

(x) ! 0, we see that x 62 K
n

if n is su�ciently large. Hence x 62
T

K
n

. In other
words,

T

K
n

is empty. Hence K
N

is empty for some N , by Theorem 2.36. It follows
that 0  g

n

(x) < ✏ for all x 2 K and all n � N . This proves the theorem.

• Example Consider f
n

(x) =
1

nx+ 1
on (0, 1). It is clear that f

n

is continuous

on (0, 1), f
n

(x) ! 0 on (0, 1), and f
n

� f
n+1

. However, {f
n

} does not converge
uniformly to 0 on (0, 1). In fact, for ✏ = 1/2 > 0, no matter how large n is, we can
always find a point x 2 (0, 1) such that

�

�

�

�

1

nx+ 1

�

�

�

�

� ✏.

7.14 Metric Space C (X): If X is a metric space, we define C (X) to be the set of all
complex-valued, continuous, bounded functions with domain X.

For each f 2 C (X), we define its supremum norm:

||f || = sup
x2X

|f(x)|.

In fact, || · || is a norm defined on C (X). Since f 2 C (X) has to be bounded,
||f || < 1. If ||f || = 0 only if f(x) = 0 for every x 2 X, that is, only if f = 0. If
c is a complex number, then ||cf || = sup

x2X

|cf(x)| = |c| ||f ||. If h = f + g, then
|h(x)|  |f(x)|+ |g(x)|  ||f ||+ ||g|| for all x 2 X, which implies ||f + g||  ||f ||+ ||g||.
Thus, together with the supremum norm || · ||, C (X) is a metric space.
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• A sequence {f
n

} converges to f with respect to the metric of C (X) if and only if
f
n

! f uniformly on X.

7.15 Theorem The above metric makes C (X) into a complete metric space.

Proof Let {f
n

} be a Cauchy sequence in C (X). For any ✏ > 0, there exists an
integer N such that ||f

n

� f
m

|| < ✏ if n,m � N . Since |f
n

(x) � f
m

(x)|  ||f
n

� f
m

||
for all x 2 X, by Theorem 7.8, there is a function f with domain X to which
{f

n

} converges uniformly. Since f
n

is continuous for every n, by Theorem 7.12, f
is continuous. Moreover, since there is an n such that |f(x) � f

n

(x)| < 1 for all
x 2 X, we know that |f(x)|  |f

n

(x)� f(x)|+ |f
n

(x)| < 1+ ||f
n

|| which implies that
f(x) is bounded. Thus, f 2 C (X). Since f

n

! f uniformly on X, we know that
||f

n

� f || ! 0 as n ! 1. Therefore, C (X) is a complete metric space.

7.4 UNIFORM CONVERGENCE AND INTEGRATION

7.16 Theorem Let ↵ be monotonically increasing on [a, b]. Suppose f
n

! f uniformly
on [a, b]. If f

n

2 R(↵) on [a, b] for n = 1, 2, 3, . . . , then f 2 R(↵) on [a, b], and

Z

b

a

f d↵ = lim
n!1

Z

b

a

f
n

d↵.

In other words,
Z

b

a

h

lim
n!1

f
n

i

d↵ = lim
n!1

Z

b

a

f
n

d↵.

Proof We only need to prove the theorem for real functions. Put

✏
n

= sup
x2[a,b]

|f
n

(x)� f(x)|.

Then
f
n

� ✏
n

 f  f
n

+ ✏.

These inequalities give

Z

b

a

(f
n

� ✏
n

) d↵  L(f,↵)  U(f,↵) 
Z

b

a

(f
n

+ ✏
n

) d↵.

This sequence of inequalities gives

0  U(f,↵)� L(f,↵)  2✏
n

[↵(b)� ↵(a)],

which implies f 2 R(↵) on [a, b], since ✏
n

! 0 by the hypothesis.

From the following inequality
�

�

�

�

�

Z

b

a

f
n

d↵�
Z

b

a

f d↵

�

�

�

�

�

 ✏
n

[↵(b)� ↵(a)],
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we let n ! 1 and obtain the desired limit.

• Corollary: If f
n

2 R(↵) on [a, b] and

1
X

n=1

f
n

(x) = f(x)

uniformly on [a, b]. Then

Z

b

a

f d↵ =
1
X

n=1

Z

b

a

f
n

d↵.

7.5 UNIFORM CONVERGENCE AND DIFFERENTIATION

7.17 Theorem Suppose {f
n

} is a sequence of di↵erentiable functions on [a, b] such that
{f

n

(x
0

)} converges for some x
0

2 [a, b]. If {f 0
n

} converges uniformly on [a, b], then
{f

n

} converges uniformly on [a, b], and

f 0(x) = lim
n!1

f 0
n

(x).

Proof To show that {f
n

} converges uniformly on [a, b], we consider the following
estimates: for any x 2 [a, b],

|f
n

(x)� f
m

(x)|  |f
n

(x)� f
m

(x)� f
n

(x
0

) + f
m

(x
0

)|+ |f
n

(x
0

)� f
m

(x
0

)|
 |f 0

n

(t)� f 0
m

(t)| · |x� x
0

|+ |f
n

(x
0

)� f
m

(x
0

)|

where t is a number between x and x
0

.

Let ✏ > 0 be given. Choose N such that n,m � N imply

|f
n

(x
0

)� f
m

(x
0

)| < ✏/2,

and
|f 0

n

(t)� f 0
m

(t)| < ✏

2(b� a)
,

for all t 2 [a, b]. Hence, for n,m � N , and x 2 [a, b],

|f
n

(x)� f
m

(x)| < ✏

2(b� a)
· |x� x

0

|+ ✏/2  ✏.

Thus, {f
n

} converges uniformly on [a, b].

To prove the desired limit in the theorem, we let f be the limit of {f
n

}. For a fixed
x 2 [a, b], put

�
n

(t) =
f
n

(t)� f
n

(x)

t� x
, �(t) =

f(t)� f(x)

t� x
,
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where t 2 [a, b], t 6= x. It is clear that

lim
t!x

�
n

(t) = f 0
n

(x), n = 1, 2, 3, . . . .

By Theorem 7.11, if we can show that �
n

! � uniformly on [a, b] \ {x}, then

lim
t!x

�(t) = lim
n!1

f 0
n

(x),

which is the desired limit since f 0(x) = lim
t!x

�(t).

To show that {�
n

} converges uniformly to � on [a, b] \ {x}, we have the following
estimates: by the Mean Value Theorem, there exists t̃ between t and x, such that

|�
n

(t)� �
m

(t)| =

�

�

�

�

f
n

(t)� f
n

(x)

t� x
� f

m

(t)� f
m

(x)

t� x

�

�

�

�

=

�

�

�

�

[f
n

(t)� f
m

(t)]� [f
n

(x)� f
m

(x)]

t� x

�

�

�

�

=
�

�f 0
n

(t̃)� f 0
m

(t̃)
�

� <
✏

2(b� a)
,

if n,m � N , t 6= x. Hence {�
n

} converges uniformly, for t 6= x. Since {f
n

} converges
to f , we know that �

n

(t) ! �(t) pointwise for t 6= x. Thus {�
n

} converges uniformly
to �, for t 6= x.

7.18 There exists a real continuous function on the real line which is nowhere di↵eren-
tiable. The details are skipped.

7.6 EQUICONTINUOUS FAMILIES OF FUNCTIONS

• Problem: we know that every bounded sequence of complex numbers contains a
convergent subsequence, and the question arises whether something similar is true
for sequences of functions. To make the question more precise, we shall define two
kinds of boundedness.

7.19 Pointwise Bounded, Uniformly Bounded: Let {f
n

} be a sequence of functions
defined on E.

{f
n

} is pointwise bounded on E, if for a fixed point, there exists a finite-valued
function � defined on E such that

|f
n

(x)| < �(x), n = 1, 2, 3, . . . .

{f
n

} is uniformly bounded on E, if there exists a number M such that

|f
n

(x)| < M, n = 1, 2, 3, . . . .


