Sequences and Series of Functions

HW7: Page 165: 1, 2,
$3,4,6,7,8,9,11,12$,
$13,16,18,19,20,22$

7.1 DISCUSSION OF MAIN PROBLEM

7.1 Convergence Pointwise: Suppose $\left\{f_{n}\right\}, n=1,2,3, \ldots$, is a sequence of functions defined on a set E, and suppose that the sequence of numbers $\left\{f_{n}(x)\right\}$ converges for every $x \in E$. We can then define a function f by

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x), \quad x \in E
$$

We say that f is the limit of $\left\{f_{n}\right\}$, or $\left\{f_{n}\right\}$ converges to f pointwise on E.
Similarly, if $\sum f_{n}(x)$ converges for every $x \in E$, and if we define

$$
f(x)=\sum_{n=1}^{\infty} f_{n}(x), \quad x \in E
$$

we say that the function f is the sum of the series $\sum f_{n}$.

- Problems: The main problem which arises is to determine whether important properties of functions are preserved under the limit operations above. For instance, if the functions f_{n} are continuous, or differentiable, or integrable, is the same true of the limit function f ? What are the relations between f_{n}^{\prime} and f^{\prime}, say, or between the integrals of f_{n} and that of f ?
To say that f is continuous at a limit point x means

$$
\lim _{t \rightarrow x} f(t)=f(x)
$$

Hence, to ask whether the limit of a sequence of continuous functions is continuous is the same as to ask whether

$$
\lim _{t \rightarrow x} \lim _{n \rightarrow \infty} f_{n}(t)=\lim _{n \rightarrow \infty} \lim _{t \rightarrow x} f_{n}(t)
$$

i.e., whether the orders in which limit processes are carried out can be inter-changed: on the left, we first let $n \rightarrow \infty$, then $t \rightarrow x$; on the right side, $t \rightarrow x$ first, then $n \rightarrow \infty$.
7.2 Example For $m=1,2,3, \ldots, n=1,2,3, \ldots$, let

$$
s_{m, n}=\frac{m}{m+n} .
$$

Then, for each fixed n,

$$
\lim _{m \rightarrow \infty} s_{m, n}=1
$$

so that

$$
\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} s_{m, n}=1
$$

On the other hand, for every fixed m,

$$
\lim _{n \rightarrow \infty} s_{m, n}=0
$$

so that

$$
\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} s_{m, n}=0 .
$$

7.3 Example For real x, let

$$
f_{n}(x)=\frac{x^{2}}{\left(1+x^{2}\right)^{n}}, \quad n=1,2,3, \ldots
$$

and consider

$$
f(x)=\sum_{n=0}^{\infty} f_{n}(x)=\sum_{n=0}^{\infty} \frac{x^{2}}{\left(1+x^{2}\right)^{n}} .
$$

Since $f_{n}(0)=0$, we have $f(0)=0$. For $x \neq 0$, the last series converges to $1+x^{2}$. Hence

$$
f(x)= \begin{cases}0, & x=0 \\ 1+x^{2} & x \neq 0 .\end{cases}
$$

This example shows that a convergent series of continuous functions may have a discontinuous sum.
7.5 Example For real x, let

$$
f_{n}(x)=\frac{\sin n x}{\sqrt{n}}, \quad n=1,2,3, \ldots
$$

and

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=0
$$

Then $f^{\prime}(x)=0$, and

$$
f_{n}^{\prime}(x)=\sqrt{n} \cos n x,
$$

so that $\left\{f_{n}^{\prime}\right\}$ does not converge to f^{\prime}.
7.6

Example For $0 \leq x \leq 1$, let

$$
f_{n}(x)=n x\left(1-x^{2}\right)^{n}, \quad n=1,2,3, \ldots
$$

For $0<x \leq 1$, it is clear that

$$
\lim _{n \rightarrow \infty} f_{n}(x)=0 .
$$

For $x=0, f_{n}(0)=0$. Hence

$$
\lim _{n \rightarrow \infty} f_{n}(x)=0, \quad 0 \leq x \leq 1
$$

It is easy to calculate

$$
\int_{0}^{1} f_{n}(x) \mathrm{d} x=\frac{n}{2 n+2} .
$$

Thus,

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) \mathrm{d} x=\frac{1}{2} \neq 0=\int_{0}^{1}\left[\lim _{n \rightarrow \infty} f_{n}(x)\right] \mathrm{d} x .
$$

7.2 UNIFORM CONVERGENCE

7.7 Uniform Convergence: A sequence of functions $\left\{f_{n}\right\}$ converges uniformly on E to a function f if for every $\epsilon>0$, there is an integer N such that $n \geq N$ implies

$$
\left|f_{n}(x)-f(x)\right|<\epsilon
$$

for all $x \in E$.
A series $\sum f_{n}(x)$ converges uniformly on E if the sequence $\left\{s_{n}\right\}$ of partial sums,

$$
s_{n}(x)=\sum_{i=1}^{n} f_{i}(x)
$$

converges uniformly on E.

- It is clear that if $\left\{f_{n}\right\}$ converges uniformly to f on E, then $\left\{f_{n}\right\}$ converges pointwise to f on E.
7.8 Theorem (Cauchy Criterion) The sequence of functions $\left\{f_{n}\right\}$, defined on E, converges uniformly on E if and only if for every $\epsilon>0$ there exists an integer N such that $m, n \geq N$ implies

$$
\left|f_{n}(x)-f_{m}(x)\right|<\epsilon
$$

for all $x \in E$.
Proof Suppose the Cauchy condition holds. By Theorem 3.11, the sequence $\left\{f_{n}(x)\right\}$ converges for each fixed x to a limit which we may call $f(x)$. Hence the sequence $\left\{f_{n}\right\}$ converges to f on E. Let $\epsilon>0$ be given. There is an integer N such that $m, n \geq N$ implies

$$
\left|f_{n}(x)-f_{m}(x)\right|<\epsilon / 2
$$

If we let $m \rightarrow \infty$ in the inequality, by Theorem 3.19 , we have

$$
\left|f_{n}(x)-f(x)\right| \leq \epsilon / 2<\epsilon, \quad n \geq N
$$

for all $x \in E$. Thus $\left\{f_{n}\right\}$ converges uniformly to f.
Conversely, suppose $\left\{f_{n}\right\}$ converges uniformly to f on E. Then, for any $\epsilon>0$, there is an integer N such that $n \geq N$ implies

$$
\left|f_{n}(x)-f(x)\right|<\epsilon / 2
$$

for all $x \in E$. Hence, if $n, m \geq N$, we have

$$
\left|f_{n}(x)-f_{m}(x)\right| \leq\left|f_{n}(x)-f(x)\right|+\left|f_{m}(x)-f(x)\right|<\epsilon
$$

for all $x \in E$.
7.9 Theorem Suppose $\left\{f_{n}\right\}$ converges to f on E. Put

$$
M_{n}=\sup _{x \in E}\left|f_{n}(x)-f(x)\right| .
$$

Then $\left\{f_{n}\right\}$ converges uniformly to f on E if and only if $M_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Proof The proof is straightforward.
7.10 Theorem (Weierstrass M-Test) Suppose $\left\{f_{n}\right\}$ is a sequence of functions defined on E satisfying

$$
\left|f_{n}(x)\right| \leq M_{n}, \quad n=1,2,3, \ldots
$$

for all $x \in E$. Then $\sum f_{n}$ converges uniformly on E if $\sum M_{n}$ converges.
Proof If $\sum M_{n}$ converges, then, for any $\epsilon>0$, there is an integer N such that $\overline{m \geq n} \geq N$ implies

$$
\sum_{i=n}^{m} M_{i}<\epsilon
$$

Hence, if $m \geq n \geq N$,

$$
\left|\sum_{i=n}^{m} f_{i}(x)\right| \leq \sum_{i=n}^{m} M_{i}<\epsilon
$$

for all $x \in E$. It follows from Theorem 7.8 that $\left\{f_{n}\right\}$ converges uniformly to f on E.

7.3 UNIFORM CONVERGENCE AND CONTINUITY

7.11 Theorem Suppose $f_{n} \rightarrow f$ uniformly on a set E in a metric space. Let x be a limit point of E, and suppose that

$$
\lim _{t \rightarrow x} f_{n}(t)=A_{n}, \quad n=1,2,3, \ldots
$$

Then $\left\{A_{n}\right\}$ converges, and

$$
\lim _{t \rightarrow x} f(t)=\lim _{n \rightarrow \infty} A_{n} .
$$

In other words,

$$
\lim _{t \rightarrow x} \lim _{n \rightarrow \infty} f_{n}(t)=\lim _{n \rightarrow \infty} \lim _{t \rightarrow x} f_{n}(t) .
$$

Proof Let $\epsilon>0$ be given. Since $\left\{f_{n}\right\}$ converges uniformly on E, there exists an integer N such that $n, m \geq N$ implies

$$
\left|f_{n}(t)-f_{m}(t)\right|<\epsilon,
$$

for all $t \in E$. Letting $t \rightarrow x$, we have

$$
\left|A_{n}-A_{m}\right| \leq \epsilon
$$

form $n, m \geq N$. Hence, $\left\{A_{n}\right\}$ is a Cauchy sequence, and therefore converges, say to A.

From the inequality

$$
|f(t)-A| \leq\left|f(t)-f_{n}(t)\right|+\left|f_{n}(t)-A_{n}\right|+\left|A_{n}-A\right|
$$

we now give the estimates for the terms on the right hand side. In fact, since $f_{n} \rightarrow f$ uniformly, we can choose n sufficiently large such that

$$
\left|f(t)-f_{n}(t)\right|<\epsilon / 3
$$

for all $t \in E$, and such that

$$
\left|A_{n}-A\right|<\epsilon / 3 .
$$

For this large n, by a condition in the theorem, we can choose a neighborhood V of x such that

$$
\left|f_{n}(t)-A_{n}\right|<\epsilon / 3
$$

if $t \in V \cap E, t \neq x$. Thus, we know that for $t \in V \cap E, t \neq x$,

$$
|f(t)-A|<\epsilon
$$

That is, $\lim _{t \rightarrow x} f(t)=A=\lim _{n \rightarrow \infty} A_{n}$.
7.12 Theorem If $\left\{f_{n}\right\}$ is a sequence of continuous functions on E, and if $f_{n} \rightarrow f$ uniformly on E, then f is continuous.

Proof By Theorem 7.11, for every $t \in E$, we have

$$
\lim _{t \rightarrow x} f(t)=\lim _{t \rightarrow x} \lim _{n \rightarrow \infty} f_{n}(t)=\lim _{n \rightarrow \infty} \lim _{t \rightarrow x} f_{n}(t)=\lim _{n \rightarrow \infty} f_{n}(x)=f(x)
$$

Thus, f is continuous on E -
7.13 Theorem Suppose K is compact, and
(a) $\left\{f_{n}\right\}$ is a sequence of continuous functions on K,
(b) $\left\{f_{n}\right\}$ converges pointwise to a continuous function f on K,
(c) $f_{n}(x) \geq f_{n+1}(x)$ for all $x \in K, n=1,2,3, \ldots$.

Then $f_{n} \rightarrow f$ uniformly on K.
Proof Put $g_{n}=f_{n}-f$. Then g_{n} is continuous, $g_{n} \rightarrow 0$, and $g_{n} \geq g_{n+1}$. We have to prove that $g_{n} \rightarrow 0$ uniformly on K.
Let $\epsilon>0$ be given. Write

$$
K_{n}=\left\{x \in K: g_{n}(x) \geq \epsilon\right\}, \quad n=1,2,3, \ldots .
$$

Since g_{n} is continuous, by Theorem 4.8, $K_{n} \subset K$ is closed for each n. By Theorem $2.35, K_{n}$ is compact. Since $g_{n} \geq g_{n+1}$, we know that $K_{n} \supset K_{n+1}$. Fix $x \in K$, since $g_{n}(x) \rightarrow 0$, we see that $x \notin K_{n}$ if n is sufficiently large. Hence $x \notin \bigcap K_{n}$. In other words, $\cap K_{n}$ is empty. Hence K_{N} is empty for some N, by Theorem 2.36. It follows that $0 \leq g_{n}(x)<\epsilon$ for all $x \in K$ and all $n \geq N$. This proves the theorem.

- Example Consider $f_{n}(x)=\frac{1}{n x+1}$ on $(0,1)$. It is clear that f_{n} is continuous on $(0,1), f_{n}(x) \rightarrow 0$ on $(0,1)$, and $f_{n} \geq f_{n+1}$. However, $\left\{f_{n}\right\}$ does not converge uniformly to 0 on $(0,1)$. In fact, for $\epsilon=1 / 2>0$, no matter how large n is, we can always find a point $x \in(0,1)$ such that

$$
\left|\frac{1}{n x+1}\right| \geq \epsilon .
$$

7.14 Metric Space $\mathscr{C}(X)$: If X is a metric space, we define $\mathscr{C}(X)$ to be the set of all complex-valued, continuous, bounded functions with domain X.
For each $f \in \mathscr{C}(X)$, we define its supremum norm:

$$
\|f\|=\sup _{x \in X}|f(x)| .
$$

In fact, $\|\cdot\|$ is a norm defined on $\mathscr{C}(X)$. Since $f \in \mathscr{C}(X)$ has to be bounded, $\|f\|<\infty$. If $\|f\|=0$ only if $f(x)=0$ for every $x \in X$, that is, only if $f=0$. If c is a complex number, then $\|c f\|=\sup _{x \in X}|c f(x)|=|c|\|f\|$. If $h=f+g$, then $|h(x)| \leq|f(x)|+|g(x)| \leq\|f\|+\|g\|$ for all $x \in X$, which implies $\|f+g\| \leq\|f\|+\|g\|$. Thus, together with the supremum norm $\|\cdot\|, \mathscr{C}(X)$ is a metric space.

- A sequence $\left\{f_{n}\right\}$ converges to f with respect to the metric of $\mathscr{C}(X)$ if and only if $f_{n} \rightarrow f$ uniformly on X.
7.15 Theorem The above metric makes $\mathscr{C}(X)$ into a complete metric space.

Proof Let $\left\{f_{n}\right\}$ be a Cauchy sequence in $\mathscr{C}(X)$. For any $\epsilon>0$, there exists an integer N such that $\left\|f_{n}-f_{m}\right\|<\epsilon$ if $n, m \geq N$. Since $\left|f_{n}(x)-f_{m}(x)\right| \leq\left\|f_{n}-f_{m}\right\|$ for all $x \in X$, by Theorem 7.8, there is a function f with domain X to which $\left\{f_{n}\right\}$ converges uniformly. Since f_{n} is continuous for every n, by Theorem 7.12, f is continuous. Moreover, since there is an n such that $\left|f(x)-f_{n}(x)\right|<1$ for all $x \in X$, we know that $|f(x)| \leq\left|f_{n}(x)-f(x)\right|+\left|f_{n}(x)\right|<1+\left\|f_{n}\right\|$ which implies that $f(x)$ is bounded. Thus, $f \in \mathscr{C}(X)$. Since $f_{n} \rightarrow f$ uniformly on X, we know that $\left\|f_{n}-f\right\| \rightarrow 0$ as $n \rightarrow \infty$. Therefore, $\mathscr{C}(X)$ is a complete metric space. -

7.4 UNIFORM CONVERGENCE AND INTEGRATION

7.16 Theorem Let α be monotonically increasing on $[a, b]$. Suppose $f_{n} \rightarrow f$ uniformly on $[a, b]$. If $f_{n} \in \mathscr{R}(\alpha)$ on $[a, b]$ for $n=1,2,3, \ldots$, then $f \in \mathscr{R}(\alpha)$ on $[a, b]$, and

$$
\int_{a}^{b} f \mathrm{~d} \alpha=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n} \mathrm{~d} \alpha
$$

In other words,

$$
\int_{a}^{b}\left[\lim _{n \rightarrow \infty} f_{n}\right] \mathrm{d} \alpha=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n} \mathrm{~d} \alpha
$$

Proof We only need to prove the theorem for real functions. Put

$$
\epsilon_{n}=\sup _{x \in[a, b]}\left|f_{n}(x)-f(x)\right| .
$$

Then

$$
f_{n}-\epsilon_{n} \leq f \leq f_{n}+\epsilon
$$

These inequalities give

$$
\int_{a}^{b}\left(f_{n}-\epsilon_{n}\right) \mathrm{d} \alpha \leq L(f, \alpha) \leq U(f, \alpha) \leq \int_{a}^{b}\left(f_{n}+\epsilon_{n}\right) \mathrm{d} \alpha .
$$

This sequence of inequalities gives

$$
0 \leq U(f, \alpha)-L(f, \alpha) \leq 2 \epsilon_{n}[\alpha(b)-\alpha(a)],
$$

which implies $f \in \mathscr{R}(\alpha)$ on $[a, b]$, since $\epsilon_{n} \rightarrow 0$ by the hypothesis.
From the following inequality

$$
\left|\int_{a}^{b} f_{n} \mathrm{~d} \alpha-\int_{a}^{b} f \mathrm{~d} \alpha\right| \leq \epsilon_{n}[\alpha(b)-\alpha(a)],
$$

we let $n \rightarrow \infty$ and obtain the desired limit.

- Corollary: If $f_{n} \in \mathscr{R}(\alpha)$ on $[a, b]$ and

$$
\sum_{n=1}^{\infty} f_{n}(x)=f(x)
$$

uniformly on $[a, b]$. Then

$$
\int_{a}^{b} f \mathrm{~d} \alpha=\sum_{n=1}^{\infty} \int_{a}^{b} f_{n} \mathrm{~d} \alpha
$$

7.5 UNIFORM CONVERGENCE AND DIFFERENTIATION

7.17 Theorem Suppose $\left\{f_{n}\right\}$ is a sequence of differentiable functions on $[a, b]$ such that $\left\{f_{n}\left(x_{0}\right)\right\}$ converges for some $x_{0} \in[a, b]$. If $\left\{f_{n}^{\prime}\right\}$ converges uniformly on $[a, b]$, then $\left\{f_{n}\right\}$ converges uniformly on $[a, b]$, and

$$
f^{\prime}(x)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x) .
$$

Proof To show that $\left\{f_{n}\right\}$ converges uniformly on $[a, b]$, we consider the following estimates: for any $x \in[a, b]$,

$$
\begin{aligned}
\left|f_{n}(x)-f_{m}(x)\right| & \leq\left|f_{n}(x)-f_{m}(x)-f_{n}\left(x_{0}\right)+f_{m}\left(x_{0}\right)\right|+\left|f_{n}\left(x_{0}\right)-f_{m}\left(x_{0}\right)\right| \\
& \leq\left|f_{n}^{\prime}(t)-f_{m}^{\prime}(t)\right| \cdot\left|x-x_{0}\right|+\left|f_{n}\left(x_{0}\right)-f_{m}\left(x_{0}\right)\right|
\end{aligned}
$$

where t is a number between x and x_{0}.
Let $\epsilon>0$ be given. Choose N such that $n, m \geq N$ imply

$$
\left|f_{n}\left(x_{0}\right)-f_{m}\left(x_{0}\right)\right|<\epsilon / 2,
$$

and

$$
\left|f_{n}^{\prime}(t)-f_{m}^{\prime}(t)\right|<\frac{\epsilon}{2(b-a)},
$$

for all $t \in[a, b]$. Hence, for $n, m \geq N$, and $x \in[a, b]$,

$$
\left|f_{n}(x)-f_{m}(x)\right|<\frac{\epsilon}{2(b-a)} \cdot\left|x-x_{0}\right|+\epsilon / 2 \leq \epsilon
$$

Thus, $\left\{f_{n}\right\}$ converges uniformly on $[a, b]$.
To prove the desired limit in the theorem, we let f be the limit of $\left\{f_{n}\right\}$. For a fixed $x \in[a, b]$, put

$$
\phi_{n}(t)=\frac{f_{n}(t)-f_{n}(x)}{t-x}, \quad \phi(t)=\frac{f(t)-f(x)}{t-x}
$$

where $t \in[a, b], t \neq x$. It is clear that

$$
\lim _{t \rightarrow x} \phi_{n}(t)=f_{n}^{\prime}(x), \quad n=1,2,3, \ldots
$$

By Theorem 7.11 , if we can show that $\phi_{n} \rightarrow \phi$ uniformly on $[a, b] \backslash\{x\}$, then

$$
\lim _{t \rightarrow x} \phi(t)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)
$$

which is the desired limit since $f^{\prime}(x)=\lim _{t \rightarrow x} \phi(t)$.
To show that $\left\{\phi_{n}\right\}$ converges uniformly to ϕ on $[a, b] \backslash\{x\}$, we have the following estimates: by the Mean Value Theorem, there exists \tilde{t} between t and x, such that

$$
\begin{aligned}
\left|\phi_{n}(t)-\phi_{m}(t)\right| & =\left|\frac{f_{n}(t)-f_{n}(x)}{t-x}-\frac{f_{m}(t)-f_{m}(x)}{t-x}\right| \\
& =\left|\frac{\left[f_{n}(t)-f_{m}(t)\right]-\left[f_{n}(x)-f_{m}(x)\right]}{t-x}\right| \\
& =\left|f_{n}^{\prime}(\tilde{t})-f_{m}^{\prime}(\tilde{t})\right|<\frac{\epsilon}{2(b-a)}
\end{aligned}
$$

if $n, m \geq N, t \neq x$. Hence $\left\{\phi_{n}\right\}$ converges uniformly, for $t \neq x$. Since $\left\{f_{n}\right\}$ converges to f, we know that $\phi_{n}(t) \rightarrow \phi(t)$ pointwise for $t \neq x$. Thus $\left\{\phi_{n}\right\}$ converges uniformly to ϕ, for $t \neq x$.
7.18 There exists a real continuous function on the real line which is nowhere differentiable. The details are skipped.

7.6 EQUICONTINUOUS FAMILIES OF FUNCTIONS

- Problem: we know that every bounded sequence of complex numbers contains a convergent subsequence, and the question arises whether something similar is true for sequences of functions. To make the question more precise, we shall define two kinds of boundedness.
7.19 Pointwise Bounded, Uniformly Bounded: Let $\left\{f_{n}\right\}$ be a sequence of functions defined on E.
$\left\{f_{n}\right\}$ is pointwise bounded on E, if for a fixed point, there exists a finite-valued function ϕ defined on E such that

$$
\left|f_{n}(x)\right|<\phi(x), \quad n=1,2,3, \ldots
$$

$\left\{f_{n}\right\}$ is uniformly bounded on E, if there exists a number M such that

$$
\left|f_{n}(x)\right|<M, \quad n=1,2,3, \ldots
$$

