
Math 3043 Honors Real Analysis

Midterm Test, Fall 2015

19:30 - 21:30, November 4, 2015

Instructions: This is an open book exam. You can use the textbook
“Principles of Mathematical Analysis” by Walter Rudin, but you cannot
use any other materials, including the solutions of the exercises.

1. (20 Marks) Suppose f is a continuous on [−π, π], f(−π) = f(π), and∫ π

−π
f(x) sinnx dx = 0

for all natural numbers n. Prove that f is an even function.

2. (20 Marks) Suppose that the function f satisfies the following condi-
tions:

(a) −∞ < a ≤ f(x) ≤ b <∞;

(b) |f(x) − f(y)| ≤ L|x − y| for all x, y ∈ [a, b], where L is constant
satisfying 0 ≤ L < 1.

Show that for any x0 ∈ [a, b], the sequence {xn}, generated by the
recursive formula

xn+1 = 1
2 [xn + f(xn)] , n = 0, 1, 2, . . . ,

converges to the unique fixed point of f in [a, b].

3. (20 Marks) Consider the equation

x2 + y + ex
2+y = 1.

(1) Show that the equation defines a unique continuous function y =
y(x) such that y(0) = 0 in a neighborhood of the point (0, 0).

(2) Show that y(x) is differentiable in a neighborhood of x = 0.

(3) Show that y = y(x) has a local maximum at x = 0.

(4) Does the equation define a single-valued function x = x(y) such
that x(0) = 0? Explain.

1



SOLUTIONS

1. (20 Marks) Suppose f is a continuous on [−π, π], f(−π) = f(π), and∫ π

−π
f(x) sinnx dx = 0

for all natural numbers n. Prove that f is an even function.

Solution For the given function f , the function g(x) = f(x)− f(−x) is an
odd continuous function, so that∫ π

−π
g(x) cosnx dx.

By the hypothesis, we have∫ π

−π
g(x) sinnx dx =

∫ π

−π
f(x) sinnx dx+

∫ π

−π
f(−x) sinnx dx

= 0 + 0 = 0.

Thus, the function g has zero Fourier expansion, so that σN (g;x) ≡ 0 on
[−π, π], where

σN (g;x) =
s0 + s1 + · · ·+ sN

N + 1
,

and sN (g;x) is the Nth partial sum of the Fourier series of g. By Exercise
15, we know that σN (g;x)→ g(x) uniformly on [−π, π]. By the hypothesis,
σN (f ;x) ≡ 0. Consequently,

g(x) = lim
N→∞

σN (g;x) = 0,

that is, f(x) = f(−x). Therefore, f is an even function.

2. (20 Marks) Suppose that the function f satisfies the following conditions:

(a) −∞ < a ≤ f(x) ≤ b <∞;

(b) |f(x)− f(y)| ≤ L|x− y| for all x, y ∈ [a, b], where L is constant satisfying
0 ≤ L < 1.

Show that for any x0 ∈ [a, b], the sequence {xn}, generated by the recursive
formula

xn+1 = 1
2 [xn + f(xn)] , n = 0, 1, 2, . . . ,

converges to the unique fixed point of f in [a, b].

Solution We can show by induction that xn ∈ [a, b] for all integer n. Indeed,
we know that x0 ∈ [a, b]. Suppose xk ∈ [a, b] for some integer k. Then, by
(a), a ≤ f(xk) ≤ b. Thus,

xk+1 = 1
2 [xn + f(xn)] ≥ 1

2 (a+ a) = a,
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and
xk+1 = 1

2 [xn + f(xn)] ≤ 1
2 (b+ b) = b,

so that xk+1 ∈ [a, b]. Hence, xn ∈ [a, b] for all integer n.

Now, we show that {xn} is a Cauchy sequence. In fact, by (b),

|x2 − x1| = 1
2 |[x1 + f(x1)]− [x0 + f(x0)]|

≤ 1
2 (|x1 − x0|+ |f(x1)− f(x0)|)

≤ 1
2 (|x1 − x0|+ L|x1 − x0|) =

(
1+L
2

)
|x1 − x0|.

In general,

|xn+1 − xn| = 1
2 |[xn + f(xn)]− [xn−1 + f(xn−1)]|

≤ 1
2 (|xn − xn−1|+ |f(xn)− f(xn−1)|)

≤ 1
2 (|xn − xn−1|+ L|xn − xn−1|) =

(
1+L
2

)
|xn − xn−1|

≤
(
1+L
2

)2 |xn−1 − xn−2| ≤ · · · ≤ ( 1+L2 )n |x1 − x0|.
Thus, for all integers n and p,

|xn+p − xn| = |xn+p − xn+p−1|+ |xn+p−1 − xn+p−2|+ · · ·+ |xn+1 − xn|

≤
(
1+L
2

)n+p−1 |x1 − x0|+ ( 1+L2 )n+p−2 |x1 − x0|+ · · ·+ ( 1+L2 )n |x1 − x0|
=
(
1+L
2

)n · 1−
(
1+L
2

)p
1− 1+L

2

|x1 − x0|

<
(
1+L
2

)n · 1

1− 1+L
2

|x1 − x0| =
(
1+L
2

)n · 2

1− L
|x1 − x0|.

Since 0 ≤ L < 1, we have 0 < 1+L
2 < 1, so that lim

n→0

(
1+L
2

)n
= 0. Hence, we

see that {xn} is a Cauchy sequence.

Denote ξ = lim
n→0

xn. From (b), we know that f is continuous. By taking

n→∞ on both sides of the recursive formula, we get ξ = 1
2 [ξ + f(ξ)], which

gives f(ξ) = ξ.

The uniquesness is a consequence of the condition (b).

3. (20 Marks) Consider the equation

x2 + y + ex
2+y = 1.

(1) Show that the equation defines a unique continuous function y = y(x)
such that y(0) = 0 in a neighborhood of the point (0, 0).

(2) Show that y(x) is differentiable in a neighborhood of x = 0.

(3) Show that y = y(x) has a local maximum at x = 0.
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(4) Does the equation define a single-valued function x = x(y) such that
x(0) = 0? Explain.

Solution

(1) Clearly, the elementary function F (x, y) = x2 + y + ex
2+y − 1 is smooth

and maps R2 into R. Since F (0, 0) = 0 and

∂F

∂y
(0, 0) = 1 + 1 = 2 6= 0,

we know that F satisfies the hypotheses of the Implicit Function Theorem.
Thus, the equation F (x, y) = 0 defines a unique continuous function y = y(x)
such that y(0) = 0 in a neighborhood of the point (0, 0).

(2) Since Fx(x, y) = 2x+ 2xex
2+y and Fy(x, y) = 1 + ex

2+y are continuous in
a neighborhood of (0, 0) and Fy(0, 0) = 2 6= 0, we know that the derivative
of y = y(x) exists, and

y′(x) = −Fx(x, y)

Fy(x, y)
= −2x+ 2xex

2+y

1 + ex2+y
.

(3) From (2), we see that y′(0) = 0 and the derivative of y(x) changes from
positive to negative when x varies from negative to positive near x = 0. By
the First Derivative Test, y = y(x) has a local maximum at x = 0.

(4) From (3), we see that y = y(x) has a local maximum at x = 0. Thus,
for small negative values of y, the equation F (x, y) = 0 will give at least
two corresponding values of x in any small neighborhood of 0. Hence, the
equation F (x, y) does not define a single-valued function x = x(y) such that
x(0) = 0.
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