The following results may or may not be used in the final exam.

1. For multivariate linear regression model: The LSE is $\hat{\beta} = (Z'Z)^{-1}Z'Y$. The estimator of Σ is $S = 1/(n-r-1)\hat{\epsilon}'\hat{\epsilon}$, where $\hat{\epsilon} = Y - Z\hat{\beta}$ is $n \times m$ matrix.

$$\hat{\beta}_{(j)} - \beta_{(j)} \sim MN(0, \ \sigma_{jj}(Z'Z)^{-1})$$

where σ_{kl} is the (k,l)-th element of the $m \times m$ matrix Σ , which is the variance of the error.

$$(\hat{\beta}_{(j)} - \beta_{(j)})'(Z'Z)(\hat{\beta}_{(j)} - \beta_{(j)})/s_{jj} \sim (r+1)F_{r+1, n-r-1}$$

where s_{kl} is the (k, l)-th element of S.

For prediction,

$$Y_0 - \hat{\beta}' z_0 \sim MN \Big(0, \ \Sigma (1 + z_0' (Z'Z)^{-1} z_0) \Big).$$

$$T^2 \equiv \frac{[(\hat{\beta} - \beta)' z_0]'}{\sqrt{z_0' (Z'Z)^{-1} z_0}} S^{-1} \frac{[(\hat{\beta} - \beta)' z_0]}{\sqrt{z_0' (Z'Z)^{-1} z_0}} \sim \frac{m(n - r - 1)}{n - r - m} F_{m, n - r - m}$$

Confidence region for $\beta' z_0 = E(Y_0)$ at confidence level $1 - \alpha$:

$$\left\{\beta' z_0 \in R^m : (\hat{\beta}' z_0 - \beta' z_0)' S^{-1} (\hat{\beta}' z_0 - \beta' z_0) \le z_0' (Z'Z)^{-1} z_0 \frac{m(n-r-1)}{n-r-m} F_{m,n-r-m}(\alpha)\right\}.$$

2. Simultaneous confidence intervals for $\beta'_{(k)}z_0 = E(Y_{0k}), k = 1, ..., m$ at (nominal) confidence level $1 - \alpha$:

for
$$\beta'_{(k)}z_0: \quad \hat{\beta}'_{(k)}z_0 \pm \left(\frac{m(n-r-1)}{n-r-m}F_{m,n-r-m}(\alpha)z'_0(Z'Z)^{-1}z_0s_{kk}\right)^{1/2}; \ k=1,...,m.$$

3. Suppose $X \sim MN(\mu, \Sigma)$. Then, the k-th (population) principal component is a linear combination of X with the coefficients being \mathbf{e}_k and variance being λ_k , where $(\lambda_1, \mathbf{e}_1), ..., (\lambda_p, \mathbf{e}_p)$ are eigenvalue-eigenvector pairs of Σ such that $\lambda_1 \geq ... \geq \lambda_p$.

$$\sqrt{n} \Big[\begin{pmatrix} \hat{\lambda}_1 \\ \vdots \\ \hat{\lambda}_p \end{pmatrix} - \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_p \end{pmatrix} \Big] \to MN(0, 2\Lambda^2),$$

where

$$\Lambda = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_p \end{pmatrix}.$$

4. The population canonical variates (U_i, V_i) are

$$U_i = \mathbf{e}_i' \Sigma_{11}^{-1/2} \mathbf{X}^{(1)}, \qquad V_i = \mathbf{f}_i' \Sigma_{22}^{-1/2} \mathbf{X}^{(2)},$$
$$\rho_i = corr(U_i, V_i),$$

where

$$(\rho_1^2, \mathbf{e}_1), ..., (\rho_p^2, \mathbf{e}_p)$$

are the p eigenvalue-eigenvector pairs of the $p \times p$ matrix $\Sigma_{11}^{-1/2}\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}\Sigma_{11}^{-1/2}$ such that $\rho_1^2 \ge \cdots \ge \rho_p^2 > 0$. Moreover, let $\mathbf{f}_k = 1/\rho_k\Sigma_{22}^{-1/2}\Sigma_{21}\Sigma_{11}^{-1/2}\mathbf{e}_k, k = 1, ..., p$. Then,

$$(\rho_1^2, \mathbf{f}_1), \cdots, (\rho_p^2, \mathbf{f}_p), (0, \mathbf{f}_{p+1}), ..., (0, \mathbf{f}_q)$$

are q eigenvalue-eigenvector pairs of the $q \times q$ matrix $\Sigma_{22}^{-1/2} \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} \Sigma_{22}^{-1/2}$.

5. The matrices of errors are

$$S_{11} - \sum_{i=1}^{r} \hat{\mathbf{a}}^{(i)}(\hat{\mathbf{a}}^{(i)})' = \sum_{i=r+1}^{p} \hat{\mathbf{a}}^{(i)}(\hat{\mathbf{a}}^{(i)})'$$

$$S_{22} - \sum_{i=1}^{r} \hat{\mathbf{b}}^{(i)}(\hat{\mathbf{b}}^{(i)})' = \sum_{i=r+1}^{q} \hat{\mathbf{b}}^{(i)}(\hat{\mathbf{b}}^{(i)})'$$

$$S_{12} - \sum_{i=1}^{r} \hat{\rho}_{i} \hat{\mathbf{a}}^{(i)}(\hat{\mathbf{b}}^{(i)})' = \sum_{i=r+1}^{p} \hat{\rho}_{i} \hat{\mathbf{a}}^{(i)}(\hat{\mathbf{b}}^{(i)})'$$

$$\hat{\mathbf{A}}^{-1} = S_{11}^{1/2}(\hat{\mathbf{e}}_{1} \vdots \cdots \vdots \hat{\mathbf{e}}_{p}) = (\hat{\mathbf{a}}^{(1)} \vdots \cdots \vdots \hat{\mathbf{a}}^{(p)})$$

where

$$ECM = c(2|1)p(2|1)p_1 + c(1|2)p(1|2)p_2$$

 $\hat{\mathbf{B}}^{-1} = S_{22}^{1/2}(\hat{\mathbf{f}}_1 \vdots \cdots \vdots \hat{\mathbf{f}}_q) = (\hat{\mathbf{b}}^{(1)} \vdots \cdots \vdots \hat{\mathbf{b}}^{(q)}).$

and the optimal classification rule which minimizing the ECM has

$$R_1 = \left\{ x : \frac{f_1(x)}{f_2(x)} \ge \frac{c(1|2)p_2}{c(2|1)p_1} \right\}$$

and $R_2 = R_1^c$. If f_1 is the density of $MN(\mu_1, \Sigma)$ and f_2 is the density of $MN(\mu_2, \Sigma)$. Then, the optimal classification rule

$$R_1 = \left\{ x : (\mu_1 - \mu_2)' \Sigma^{-1} x - \frac{1}{2} (\mu_1 - \mu_2)' \Sigma^{-1} (\mu_1 + \mu_2) \ge \log \left[\frac{c(1|2)p_2}{c(2|1)p_1} \right] \right\}$$

and $R_2 = R_1^c$.