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Chapter 10. Canonical Analysis

Canonical analysis aims at finding the relation between two sets of variables, by singling out pairs
of random variables with highest hierarchical correlations. In every pair, one is a linear combination
of one set of variables and the other is that of the other set of variables. The following example is
illustrates a typical scenario.

Example 10.1. Analysis of Chicken-bone Data There are totally n = 276 observations.

Head:

{
x

(1)
1 = skull length

x
(1)
2 = skull breadth

leg:

{
x

(2)
1 = femur length

x
(2)
2 = tibia breadth

We have for this example ignored the other two variables about the wing. The sample correlation
matrix is then

x
(1)
1 x

(1)
2 x

(2)
1 x

(2)
2

R =

x
(1)
1

x
(1)
2

x
(2)
1

x
(2)
2




1.000 .505 .569 .602
.505 1.000 .422 .467
.569 .422 1.000 .926
.602 .467 .926 1.000




10.1 General description.

Suppose we have two random vectors in concern: X(1) and X(2) of p and q dimension respectively
with p ≤ q. Assume (

X(1)

X(2)

)
∼ MN

(
0,

(
Σ11 Σ12

Σ21 Σ22

))
.

We wish to investigate the relations between this two vectors, one containing p variables and the
other q variables. The general method is to find hierarchical pairs of variables, each pair consists of a
linear combination of one set of variables and a linear combination of the other set of variables. The
first pair explains most of the relation between the two sets of variables; the second pair explains
most of the relation between the two sets of variables not explained by the first pair; the third
pair explains most of the relation not explained by the first two pairs, and so on. These pairs of
variables, denoted as

(U1, V1), ..., (Up, Vp),

are called canonical variates, which are required to be orthogonal to each other, except for within
pairs, and each with unit variance. Namely

var(U) = Ip, var(V ) = Iq, cov(Ui, Vj) = 0 for i 6= j,

where

U =




U1
...

Up


 , V =




V1
...

Vq


 .

The correlation between canonical variates within the pairs, ρ1, ..., ρp, are called canonical correla-
tion where

ρi = Corr(Ui, Vi), i = 1, ..., p, with ρ1 ≥ .... ≥ ρp ≥ 0.

The canonical variates are linear combinations of the first or the second set of the variables:

U = Ap×pX
(1), V = Bq×qX

(1).
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Then, the matrices A and B, playing the role of linear combinations, are called canonical coefficients.

In terms of explaining the relation between the two sets of variables, clearly the first pair of can-
nonical variates is the most important, the second second important, and so on. Very often, the
first few pairs already explain most of the relations. Then we wish to retain only the first few
pairs. When this is the case, we shall use matrices of errors to evaluate whether the retained pairs
of canonical variates indeed explain sufficient amount of the relations. Moreover, we also use total
variances explained to evaluate how representative the retained canonical variates are for their set
of variables.

10.2 A theorem about population canonical variates.

Theorem 10.1 Suppose two random vectors X(1) and X(2) of p and q dimensions respectively,

var
(

X(1)

X(2)

)
= Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Let (ρ2
1, e1), ..., (ρ2

p, ep) be eigenvalue-eigenvector pairs of Σ−1/2
11 Σ12Σ−1

22 Σ21Σ
−1/2
11 , with ρ1 ≥ ρ2 ≥

... ≥ ρp ≥ 0. Then,

(i). (ρ2
1, f1), ..., (ρ

2
p, fp), (0, fp+1), ..., (0, fq) are eigenvalue-eigenvector pairs of Σ−1/2

22 Σ21Σ−1
11 Σ12Σ

−1/2
22 ,

where
fk =

1
ρk

Σ−1/2
22 Σ21Σ

−1/2
11 ek k = 1, ..., p.

(ii). Let

Ap×p =




e′1
...
e′p


Σ−1/2

11 , Bq×q =




f ′1
...
f ′q


 Σ−1/2

22 , U =




U1
...

Up


 = AX(1) and V =




V1
...

Vq


 = BX(2)

Then, Uk = e′kΣ−1/2
11 X(1), Vk = f ′kΣ−1/2

22 X(2), and (U1, V1), ..., (Up, Vp) are p pairs of canonical
variates with canonical correlation ρ1, ...., ρp.

A partial proof of this theorem is given below.

(i). Write, for k = 1, ..., p,

Σ−1/2
22 Σ21Σ−1

11 Σ12Σ
−1/2
22 fk

=
1
ρk

Σ−1/2
22 Σ21Σ−1

11 Σ12Σ
−1/2
22 Σ−1/2

22 Σ21Σ
−1/2
11 ek

=
1
ρk

Σ−1/2
22 Σ21Σ

−1/2
11 [Σ−1/2

11 Σ12Σ
−1/2
22 Σ−1/2

22 Σ21Σ
−1/2
11 ek]

=
ρ2

k

ρk
Σ−1/2

22 Σ21Σ
−1/2
11 ek

= ρ2
kfk

(ii). Write

Cov(U, V ) =




e′1
...
e′p


 Σ−1/2

11 Cov(X(1), X(2))Σ−1/2
22 (f1

... · · · ...fq)

=




e′1
...
e′p


 Σ−1/2

11 Σ12Σ
−1/2
22 (f1

... · · · ...fq)
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=




ρ1f ′1
...

ρpf ′p


 (f1

... · · · ...fq)

=




ρ1 0 · · · 0
. . .

...
...

...
ρp 0 · · · 0




p×q

.

Remark. We did not (and will not) prove

Corr(U1, V1) = max{Corr(a′X(1), b′X(2)) : a ∈ Rp, b ∈ Rq}
Corr(U2, V2) = max{Corr(a′X(1), b′X(2)) : a′X(1)⊥U1, b

′X(2)⊥V1, a ∈ Rp, b ∈ Rq}
....

These are the mathematical statements that are interpreted as the k-th pair, (Uk, Vk), explains
most of the relations not explained by the first k − 1 pairs of canonical variates.

10.3. The sample analogues.

Let

S(p+q)×(p+q) =
(

S11 S12

S21 S22

)

be the sample variance matrix analogous to the population variance matrix

Σ(p+q)×(p+q) =
(

Σ11 Σ12

Σ21 Σ22

)
.

Note that S11 and S22 are sample variances of the first and the second set of variables. Let
(ρ̂2

1, ê1), ..., (ρ̂2
p, êp) be eigenvalue-eigenvector pairs of S−1/2

11 S12S−1
22 S21S

−1/2
11 , with ρ̂1 ≥ ρ̂2 ≥ ... ≥

ρ̂p ≥ 0, and (ρ̂2
1, f̂1), ..., (ρ̂

2
p, f̂p), (0, f̂p+1), ..., (0, f̂q) are eigenvalue-eigenvector pairs of S−1/2

22 S21S−1
11 S12S

−1/2
22 ,

where
f̂k =

1
ρ̂k

S−1/2
22 S21S

−1/2
11 êk k = 1, ..., p.

Let

Âp×p =




ê′1
...
ê′p


S−1/2

11 B̂q×q =




f̂ ′1
...
f̂ ′q


S−1/2

22

Û′ =




Û1
...

Ûp


 = Â




x(1)′

1
...

x(1)′
p


 and V̂′ =




V̂1
...

V̂q


 = B̂




x(2)′

1
...

x(2)′
q




where, recall that x(1)
k x(2)

k is a n-vector representing n observations of the k-th variable in the first
(second) set of variables. Then,

Ûk = (x(1)
1

... · · · ...x(1)
p )S−1/2

11 êk, k = 1, ..., p;

V̂k = (x(2)
1

... · · · ...x(2)
q )S−1/2

22 f̂k, , k = 1, ..., q.

And (Û1, V̂1), ..., (Ûp, V̂p) are p pairs of canonical variates with canonical correlation. Note that Ûi

and V̂i are n-vectors. Write

Â−1
p×p = S1/2

11 (ê1

... · · · ...êp) ≡ (â(1)
... · · · ...â(p))

B̂−1
q×q = S1/2

22 (f̂1
... · · · ...f̂q) ≡ (b̂(1)

... · · · ...b̂(q))
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where, for i = 1, ..., p and j = 1, ..., q.

â(i)
p×1 = S1/2

11 êi and b̂(j)
q×1 = S1/2

22 f̂j .

Then,

S11 = Â−1(Â−1)′ S22 = B̂−1(B̂−1)′ and S12 =
p∑

i=1

ρ̂iâ(i)(b̂(i))′,

since
p∑

k=1

ρ̂kâ(k)(b̂(k))′

= (â(1)
... · · · ...â(p))




ρ̂1(b̂(1))′

· · ·
ρ̂p(b̂(p))′




= S1/2
11 (ê1

... · · · ...êp)




ρ̂1f̂ ′1
· · ·
ρ̂pf̂ ′p


S1/2

22

= S1/2
11 (ê1

... · · · ...êp)




ρ̂1/ρ̂1ê′1
· · ·

ρ̂p/ρ̂2ê′p


S−1/2

11 S12S
−1/2
22 S1/2

22

= S1/2
11 IpS

−1/2
11 S12S

−1/2
22 S1/2

22

= S12.

Suppose now we wish to retain the first r pairs of the canonical variates: (U1, V1), ..., (Ur, Vr) with
r ≤ p. Then the matrices of errors are defined as

S11 −
r∑

i=1

â(i)(â(i))′ =
p∑

i=r+1

â(i)(â(i))′,

S22 −
r∑

i=1

b̂(i)(b̂(i))′ =
q∑

i=r+1

b̂(i)(b̂(i))′,

S12 −
r∑

i=1

ρ̂iâ(i)(b̂(i))′ =
p∑

i=r+1

ρ̂iâ(i)(b̂(i))′.

The first two matrices of errors are used to evaluate whether the variations inside each set of
variables not explained by the retained r canonical variates are significant or not. The last is used
to evaluate whether the remaining relations between the two sets of variables not explained by the
r pairs of canonical variates are significant or not. If the matrices of errors have entries close to
0, they are considered as evidence of the sufficiency of the retained variates. If not, probably the
number of retained canonical variates are too few.

When we retain r pairs of canonical variates, the proportion of (standardized) variance in the first
set of variables explained by the retained r canonical variates is

R2
1,r ≡

trace(
∑r

i=1 â(i)(â(i))′)
p

,

and, likewise, the proportion of (standardize) variance in the first set of variables explained by the
retained r canonical variates is

R2
2,r ≡

trace(
∑r

i=1 b̂(i)(b̂(i))′)
q

.
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Here R2
1,r (R2

2,r) is a measurement of how representative the retained r canonical variates are for
the first (second) set of variables. The higher the more representative.

10.4 An example.

Example 10.1 (Continued) We demonstrate the canonical analysis using the example of the
chicken bone data. From the correlation matrix R, we have

S11 =
(

1.000 0.505
0.505 1.000

)
S22 =

(
1.000 0.926
0.926 1.000

)
S12 =

(
0.569 0.602
0.422 0.467

)
= S′21

Here one might choose to write Sij as Rij since only correlation matrices rather than variance
matrices are involved. All variables are clearly positively related with each other. The first set
of variables represent head size and the second leg size. Here p = q = 2. With the matrix
decomposition of S−1/2

11 S12S−1
22 S21S

−1/2
11 , one finds

(1). The canonical coefficients are

Â =
(

0.781 0.345
−0.856 1.106

)
and B̂ =

(
0.060 0.944
−2.648 2.475

)

Then,

Â−1 =
(

0.955 −0.297
0.739 0.674

)
and B̂−1 =

(
0.934 −0.356
0.997 0.023

)

Hence,

â(1) =
(

0.955
0.739

)
â(2) =

(−0.297
0.674

)
b̂(1) =

(
0.934
0.997

)
b̂(2) =

(−0.356
0.023

)

(2). The canonical correlations are

ρ̂1 = 0.631 and ρ̂2 = 0.057.

The first is far larger than the second.

(3). The canonical variates, expressed as linear combination of the first or the second set of variables,
are

Û1 = 0.781x
(1)
1 + 0.345x

(1)
2 Û2 = −0.856x

(1)
1 + 1.106x

(1)
2

V̂1 = 0.060x
(2)
1 + 0.944x

(2)
2 V̂2 = −2.648x

(2)
1 + 2.475x

(2)
2

Û1 may be understood as a weighted average of skull length and width, with more weight on length.
V̂1 is basically tibia length, but we should also keep in mind that femur length is highly correlated
with tibia length. Û2 (V̂2) may be interpreted as contrasts between skull length and width (femur
and tibia length).

(4). Suppose we only retain the first pair of the canonical variates. Then matrices of errors are

S11 − â(1)(â(1))′ = â(2)(â(2))′ =
(−0.297

0.674

)
(−0.297 0.674) =

(
0.088 −0.2
−0.2 0.454

)

S22 − b̂(1)(b̂(1))′ = b̂(2)(b̂(2))′ =
(−0.356

0.023

)
(−0.356 0.023) =

(
0.127 −0.008
−0.008 0.001

)

S12 − ρ̂1â(1)(b̂(1))′ = ρ̂2â(2)(b̂(2))′ = 0.057
(−0.297

0.674

)
(−0.356 0.023) =

(
0.006 −0.014
−0.014 0.001

)
.

The first matrix is not quite close to 0 while the second and the third are. The interpretation is
Û1 comparatively does not represent the head size quite well but V̂1 well represents the leg size. As
the two variables about leg sizes are highly correlated with each other with correlation 0.926, it is
reasonable that one variable (V̂1 here) is sufficient to represent both. This is not the case for the



46

two variables of head size. More importantly, (Û1, V̂1) explains ideally the relations between the
head and leg sizes.

(5). The proportion of variance in head size explained by Û1 is

trace(â(1)(â(1))′)
2

=
0.9552 + 0.7382

2
= 0.728.

And the proportion of variance in leg size explained by V̂1 is

trace(b̂(1)(b̂(1))′)
2

=
0.9342 + 0.9992

2
= 0.935.

V̂1 represents leg size much more sufficiently than Û1 represents head size. The interpretation agrees
with that from matrices of errors.

Remark. Preferably for standardized observations, the canonical variates can be interpreted
through the size of canonical coefficients. Another way is to interpret them from their correla-
tion with the original variables they represent. Interpretation of the relations between the two sets
of variables using retained pairs of canonical variates should be coupled with representativeness of
these canonical variates.


