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Chapter 11. Discrimination and Classification.

Suppose we have a number of multivariate observations coming from two populations, just as in the
standard two-sample problem. Very often we wish to, by taking advantage of the characteristics of
the distribution of the observations from each population, derive a reasonable graphical or algebraic
rules to separate the two population. These rules would be very useful when a new observation
comes from one of the two populations and we wish to identify exactly which population. Examples
11.1 and 11.2 provide an illustration of the scenario.

Example 11.1 (Owners/Nonowners of riding mowers.) (See Appendix D). The data set
consists of lot/lawn size of income of 12 households that are riding mower owners and those of 12
households that are non-owners of riding mowers. Suppose now you are a salesman/saleswoman
selling a new model of riding mower to the community. You figure that the potential of a household
buying a riding mower solely depends on the income of the household and the size of their lot/lawn.
It is then important to figure out what kind of households would be more likely to be a potential
buyer. The given data set can be very helpful to draw characteristics of potential buyers/nonbuyers.
Should a reasonable clear-cut rule to classify a given household, especially those newly move-in, into
potential owners/nonowners, it shall be useful to develop an efficient business strategy of targeting
appropriate clientele.

11.1 Population Classification.

Consider that the entire population consists of two sub-populations, denoted by π1 and π2. The
percentage of π1 (π2) in the entire population, which is called prior probability, is p1 (p2). Obviously
p1 + p2 = 1. Suppose a random variable coming from π1 has density f1 in p dimensional real space.
In short, π1 has density f1. Likewise, let π2 has density f2.

Suppose X comes out of the entire population, namely one of the two sub-populations. (Note that
the density of X is p1f1(·)+p2f2(·).) A classification/seperation rule is defined by the classification
region: R1 and R2 in the p-dimensional real space that complement each other. Then the rule is:
If the value of X is in R1, we classify it as from π1; if the value of X is in R2, we classify it as from
π2.

There are several criteria to measure whether a classification rule is good or not. The most straight-
forward one is to consider the misclassification probabilities:

P (1|2) = P (classified as from π1 |π2) = P (X ∈ R1|π2) =
∫

R1

f2(x)dx,

which is the chance that, given the observation/subject actually comes from π2, it is misclassified
as from π1. Analogously,

P (2|1) = P (classified as from π2 |π1) = P (X ∈ R2|π1) =
∫

R2

f1(x)dx,

is the chance that, given the observation/subject actually comes from π1, it is misclassified as from
π2. We can present the classification probabilities in the following table:

Classified as
π1 π2

π1 P (1|1) P (2|1)
True population:

π2 P (1|2) P (2|2)

Note that P (1|1) and P (2|2) are analogously defined, but they are not misclassification probabilities.

It is common that the a misclassification is considered a mistake that bears a penalty or cost. The
two types of misclassifications: classify a subject as from π2 but it actually comes from π1 or classify



48

a subject as from π1 but it actually comes from π2, often have different level of seriousness and
deserves different penalty or cost. For example, in a deadly pandemic, misjudged a virus carrier as
non-carrier is much severe a mistake than misjudged a non-carrier as carrier, since the former may
pose grave hazard to public health. The misclassification costs is presented in the following table:

Classified as
π1 π2

π1 0 C(2|1)
True population:

π2 C(1|2) 0

where C(1|2) > 0 (C(2|1) > 0) are the costs or prices to pay if a subject from population π2 (π1)
is misclassified as from π1 (π2).

The expected cost of misclassification (ECM) is

ECM = C(2|1)P (2|1)p1 + C(1|2)P (1|2)p2.

A criterion of classification rule is then to minimize the ECM. Note that, if C(2|1) = C(1|2), then
minimizing ECM is the same as minimizing total probability of misclassification (TPM), which is

TPM = p1P (1|2) + p2P (1|2) = p1

∫

R2

f1(x)dx + p2

∫

R1

f2(x)dx

= ECM with C(2|1) = C(1|2) = 1.

11.2 An optimal classification rule.

Given the misclassification costs C(1|2) and C(2|1), the prior probabilities p1, p2 and the densities
f1(·) of π1 and f2(·) of π2, a likelihood ratio based classification rule is the optimal in the sense
that it minimizes the ECM. This is the result of the following theorem.

Theorem 11.1 Let

R1 = {x :
f1(x)
f2(x)

≥ C(1|2)
C(2|1)

p2

p1
}

R2 = {x :
f1(x)
f2(x)

<
C(1|2)
C(2|1)

p2

p1
} = Rc

1 (the complement of R1)

Then, the classification by (R1, R2) minimizes ECM.

Proof. For any classification rule defined by regions (R∗1, R
∗
2) with R∗2 = R∗c1 ,

ECM = C(2|1)P (2|1)p1 + C(1|2)P (1|2)p2

=
∫

R∗2

C(2|1)p1f1(x)dx +
∫

R∗2

C(1|2)p2f2(x)dx

=
∫ [

C(2|1)p1f1(x)1{x∈R∗2} + C(1|2)p2f2(x)1{x∈R∗1}
]
dx

≥
∫

min
[
C(2|1)p1f1(x), C(1|2)p2f2(x)

]
dx

where the last inequality becomes equality when R∗1 = {x : C(2|1)p1f1(x) ≥ C(1|2)p2f2(x)} = R1.
¤
The above theorem implies that when the observation takes a value, which is more likely to be from
π1 than from π2—measured by the likelihood ratio, then we should classify that as from π1. The
threshold C(1|2)p2/C(2|1)p1 is related with the costs of each type of misclassification as well as
the prior probabilities. For example, the misclassify a subject from π1 as from π2 is a more severe
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mistake than the other type of misclassification, then the threshold should be lowered, allowing
more to be classified as π1. If p1 is much larger than p2, meaning that π1 is much larger population
than π2, then the threshold should also be lowered.

Assume the population distributions of π1 and π2 are both normal:

π1 : f1 ∼ MN(µ1, Σ1) π2 : f2 ∼ MN(µ2, Σ2).

And suppose we have one sample x11, ..., xn11 from π1 and another sample x12, ..., xn22 from π2.
The above likelihood ratio based optimal classification rule can be expressed more explicitly.

(1). Assume equal variances, i.e., Σ1 = Σ2 = Σ. By straightforward calculation of the likelihood
ratio, the optimal classification rule is

{
R1 : (µ1 − µ2)′Σ−1x− 1

2 (µ1 − µ2)′Σ−1(µ1 + µ2) ≥ log
[

C(1|2)p2
C(2|1)p1

]

R2 : Rc
1.

This rule is useful only when µ1, µ2 and Σ are known. In practice, they are unknown and are
estimated by X̄1, X̄2 and Spooled, which are sample means and the pooled estimator of the population
variance. Then the sample analogue of the above theoretical optimal classification rule is, by
replacing µ1, µ2 and Σ by their estimators,

{
R1 : (X̄1 − X̄2)′S−1

pooledx− 1
2 (X̄1 − X̄2)′S−1

pooled(X̄1 + X̄2) ≥ log
[

C(1|2)p2
C(2|1)p1

]

R2 : Rc
1.

Note that R1 and R2 are separated by a hyperplane, and therefore may be regarded as half spaces.

(2). Unequal variances.( Σ1 6= Σ2)

The population optimal classification rule is
{

R1 : − 1
2x′(Σ−1

1 − Σ−1
2 )x + (µ′1Σ

−1
1 − µ′2Σ

−1
2 )x− k ≥ log

[
C(1|2)p2
C(2|1)p1

]

R2 : Rc
1.

where

k =
1
2

log
( |Σ1|
|Σ2|

)
+

1
2
(µ′1Σ

−1
1 µ1 − µ′2Σ

−1
2 µ2).

Then the sample analogue is
{

R1 : − 1
2x′(S−1

1 − S−1
2 )x + (X̄ ′

1S
−1
1 − X̄ ′

2S
−1
2 )x− k̂ ≥ log

[
C(1|2)p2
C(2|1)p1

]

R2 : Rc
1.

where

k̂ =
1
2

log
( |S1|
|S2|

)
+

1
2
(X̄ ′

1S
−1
1 X̄1 − X̄ ′

2S
−1
2 X̄2).

Associated with the theoretical or sample classification rules, there are several quantities that can
be considered as criteria to measure the rules.

The optimal error rate (OER) is the minimum total probability of misclassification over all classi-
fication rules.

OER ≡ minimum TPM = minimum total probability of misclassification

= min
(R1,R2)

[
p1

∫

R2

f2(x)dx + p2

∫

R1

f1(x)dx
]

The actual error rate (AER) is the total probability of misclassification for a given classification
rule, say (R̂1, R̂2), which is usually constructed based on given data.

AER ≡ TPM for (R̂1, R̂2) = p1

∫

R̂2

f2(x)dx + p2

∫

R̂1

f1(x)dx
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The confusion matrix listed below presents, for a given classification rule, say (R̂1, R̂2), the number
of correct and mistaken classified observations in the data when this rule is applied to the subjects
in the dataset.

Predicted
membership

π1 π2

Actual π1 n1C n1M = n1 − n1C n1

membership π2 n2M = n2 − n2C n2C n2

where n1 (n2) are number of observations from π1 (π2) in the dataset, n1C (n2C) is the number of
subjects from π1 (π2) and correctly classified as from π1 (π2) by this rule, and n1M (n2M ) is the
number of subjects from π1 (π2) but mistakenly classified as from π2 (π1) by this rule,

The apparent error rate (APER) is an estimator of the a given rule (R̂1, R̂2):

APER ≡ n1M + n2M

n1 + n2
.

The confusion matrix and APER is easily available from the dataset once a classification rule is
given, and they are commonly used to justify whether a rule is good or not.

11.3 Examples.

We shall only apply the sample optimal classification rule with the two population distribution
assumed following normal distributions with equal varaince. We summarize the results as:

Population: π1 π2

Data: x11 x12

...
...

xn11 xn22

Sample means: X̄1 X̄2

Sample variances S1 S2

Under Σ1 = Σ2, the pooled estimator of Σ1 = Σ2 = Σ is

Spooled =
(n− 1)S1 + (n2 − 1)S2

n1 + n2 − 2
.

The classification rule is

R1 =
{

x : â′x ≥ 1
2
(X̄1 − X̄2)′S−1

pooled(X̄1 + X̄2) + log
[C(1|2)p2

C(2|1)p1

]

where â = S−1
poooled(X̄1 − X̄2).

Example 11.1 (Owners/Nonowners of riding mower) See Appendix D for the data set.

n1 = n2 = 12. π1: owners; and π2 non-owners. And

X̄1 =
(

79.5
20.27

)
S1 =

(
32.06 −1.08
−1.08 0.38

)
X̄2 =

(
57.4
17.6

)
S2 =

(
18.25 −.24
−.24 0.41

)
.

Then,

Spooled =
(

25.15 −.65
−.65 .39

)
S−1

pooled =
(

.04 .07

.07 2.69

)
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and

â = S−1
pooled(X̄1 − X̄2) =

(
1.10
8.64

)
,

1
2
(X̄1 − X̄2)′S−1

pooled(X̄1 + X̄2) = 239.12

Suppose x = (x1, x2) is a new observation with x1 as income and x2 as size of lot. We classify it as
from π1, the owners sub-population, if

1.10x1 + 8.64x2 ≥ 239.12 + log
[C(1|2)p2

C(2|1)p1

]

and as from π2, the nonowners sub-population, otherwise.

Case 1: Suppose p1 = p2 and C(1|2) = C(2|1) (equal costs of two types of mistakes). Then,

R1 = {(x1, x2) : 1.10x1 + 8.64x2 ≥ 239.12}
And

APER =
1 + 2
24

= 1/8 = 0.125

Case 2: Suppose p1 = p2 and C(1|2) = 50C(2|1) (Classifying a non-owner as owner is a 50 times
more severe a mistake than the other type mistake). Then,

R1 = {(x1, x2) : 1.10x1 + 8.64x2 ≥ 243.03}
And

APER =
2 + 2
24

= 1/6 = 0.167

Case 3: Suppose p1 = p2 and C(2|1) = 50C(1|2) (Classifying an owner as non-owner is 50 times
more severe a mistake than the other type mistake). Then,

R1 = {(x1, x2) : 1.10x1 + 8.64x2 ≥ 235.21}
And

APER =
3 + 1
24

= 1/6 = 0.167.

See Appendix D for plots.

Example 11.2 (Discrimination analysis of hemophilia data) See Appendix D.

Hemophilia is an abnormal condition of males inherited from the mother, characterized by a ten-
dency to bleed excessively. Whether is person is a hemophilia carrier of non-carrier is reflected in
the two indices of anti-hemophilia factor (AHF) antigen and AHF activity.

n1 = 30, n2 = 45. π1: Noncarriers; π2: Obligatory carriers. By simple calculation, we have And

X̄1 =
(−.1349
−.0778

)
S1 =

(
.0209 .0155
.0155 .0179

)
X̄2 =

(−.3079
−.0060

)
S2 =

(
.0238 .0153
.0153 .0240

)
.

Then,

Spooled =
(

.0226 .0154

.0154 .0216

)
S−1

pooled =
(

86.09 −61.49
−61.49 90.20

)

and

â = S−1
pooled(X̄1 − X̄2) =

(
19.319
−17.124

)
,

1
2
(X̄1 − X̄2)′S−1

pooled(X̄1 + X̄2) = −3.559

Suppose x = (x1, x2)′ is a new observation with x1 as log10(AHFactivity) and x2 as log10(AHFantigen).
We classify it as from π1, the noncarriers sub-population, if

19.319x1 − 17.124x2 ≥ −3.559 + log
[C(1|2)p2

C(2|1)p1

]
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and as from π2, the obligatory carriers sub-population, otherwise.

Case 1: Suppose p1 = p2 and C(1|2) = C(2|1) (equal costs of two types of mistakes). Then,

R1 = {(x1, x2) : 19.319x1 − 17.124x2 ≥ −3.559}.

The confusion matrix is

Predicted
membership

π1 π2

Actual π1 27 3 30
membership π2 8 37 45

And
APER =

3 + 8
75

= 11/75 = 14.67%

Case 2: Suppose p1 = p2 and C(1|2) = 10C(2|1) (Classifying an obligatory carrier as noncarrier is
a 10 times more severe a mistake than the other type mistake, which indeed makes sense). Then,

R1 = {(x1, x2) : 19.319x1 − 17.124x2 ≥ −1.296}.

The confusion matrix is

Predicted
membership

π1 π2

Actual π1 17 13 30
membership π2 0 45 45

And
APER =

0 + 13
75

= 17.33%

Case 3: Suppose p1 = 100p2 and C(1|2) = 10C(2|1) (Same penalties as in Case 2, but assuming,
perhaps more realistically, only 1/101 of the entire population are obligatory carries). Then,

R1 = {(x1, x2) : 19.319x1 − 17.124x2 ≥ −5.862}.

The confusion matrix is

Predicted
membership

π1 π2

Actual π1 30 0 30
membership π2 23 22 45

And
APER =

23 + 0
75

= 30.7%.

See Appendix D for plots.


