Chapter 4.
The Multivariate Normal Distribution.

4.1. Some properties about univariate normal distribution—a review.

Suppose X ~ N(u,0?), a univariate normal distribution with mean p and variance o2.

(i). Density:
fr) = e a e (~o0,00)
x) = e 22 x € (—00,00).
V2ro?
The density function is a bell-shaped curve, symmetric around the center u, with only one peak at
1.

(ii). Linear transformation: Let Y = aX + b Then, Y ~ N(au + b, a*c?).

(iii). Linear combination of independent normal random variables is still normal. Suppose X; ~
N (i, 0?), 1 = 1,..., K are independent. Then, Zfil a;X; is still a normal random variable with
mean Y% a;p; and variance Y1 | 202,
(iv). Normal related distributions: ¢, F' and x?: Suppose &; are iid ~ N(0,1). Then, ¢, F' and x?
distributions can be defined as follows
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As a result, if & are iid ~ N(u,0?),
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The proof uses a matrix transformation of the vector of &;. (DIY).

v). The central limit theorem: Suppose i i =1,2,.... are iid random variables with common mean
pPp ’ ) &
12 and variance 0'2. Then,
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where &, = (1/n) >, &. Moreover,
Vi — 1) — N(0,1), in distribution.
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4.2. Multivariate normal distribution.

Suppose
X, 23 o1 o O1p
Xo 12
x=|" ~ MN (px1, Spp),  where = | . -
i ' 0’ 1 .. O'
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and Oij :COV(XZ',XJ‘). Then,
(i). Marginal normality: X; ~ N(u;, 04;). Multivariate normality implies marginal normality.

(ii). Transformation invariant: AX ~ MN(Ap, AXA’) where A is any (nonrandom) r X p matrix.
Linear transformation of multivariate normal random variable is still multivariate normal.

(iii). Zero correlation is equivalent to independence: X1, ..., X, are independent if and only if o;; = 0
for 1 <i# j < p. Or, in other words, if and only if ¥ is diagonal.

(iv). Standardization as a special linear transformation:
STV2(X — 1) ~ MN(0,1,).

Here, 0 is a p-vector with all p entries being 0, I, shall always denote the identity p x p matrix,
»~1/2 is any matrix such that $=1/2%(871/2) = [,
Remark. ¥~1/2 is not uniquely defined. Suppose ¥ = TAT’ where T is orthonormal, i.e., TT' = I,,,

and A diagonal. Then, ©~/2 can be expressed as TA~'/2T" where T can be any orthonormal
matrix. Unless otherwise stated, ¥~/2 and $'/2 shall be the symmetric ones.

(v). Conditional distribution:

Proposition 4.1. Suppose

X1 1 Y11 Y12
X - ~ MN( , )
(pa)x1 (X2) (uz Y1 Y2
where X1 and py are p-vectors, Xo and po are g-vectors, and 311, 212, 221 and oz are p X p, p X q,
q X p and q X q matrices, respectively. Then, the conditional distribution of Xy given Xo = 9 is

MN (1 + $12555 (w2 — f12), 11 — S12555 Ta1).

Proof. Observe that
X1 — 1 — S1255, (Xo — p12) and  Xo — 2

are 0-correlated. Therefore, the two random vectors are independent of each other. Hence the
conditional distribution of the former given Xy = z9, i.e, Xo — g = w9 — g, follows the same
distribution as the unconditional one, which is M N(0,%;; — 21222_21 ¥4,). This implies X; given
XQ = X2 follows MN(,Ul + 2122521 (IQ - /,LQ), 211 — 2122521221). O

Remark. The above proposition has important connection with the geometric structure of mean 0
random variables with applications in linear regression. For simplicity, consider linear regression of
Y, a response of 1 dimension, on X, a covariate random variable of 1 dimension:

Y =a+ BX +e,

with € being mean 0 and uncorrelated with X, which implies Y —a— X is mean 0 and uncorrelated
with X. Then oo = py 4+ Bpux in order for Y —a — X to be mean 0, and, as a result, ( is identified
as the constant such that

Y —py — BX — px) L(X — px).

Here 1 means O-correlated. Now picture Y* =Y — uy and X* = X — ux as two vectors in a space
of mean 0 finite variance random variables equipped with inner product, the covariance of the two
random variables. The projection of Y* on X*, denoted as M(Y*|X*), is then

<Y* X*> cov(Y, X)
( | ) HX*”Q UCLT(X) ( MX)

This is verified by checking that < Y* —M(Y*|X*), X* >=0.
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As a result, 8 = cov(Y, X)/var(X) in the linear regression of Y on X, which gives rise to the least

squares estimator
n — —
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(vi). Density function:

—;ex —lx— D r € RP
flx) = TS pi—5 (@ —p)'E" (z — w)}, € RP.

The constant density contour is defined as
{:fl@)=a} ={z:(z—p)S (& —p) =c},
which is an ellipse, where ¢ = —2[loga + (1/2)log((27)?|3|)]. Note that
(X =) SN X = p) ~ X3,

since ¥™V2(X — ) ~ MN(0,1,).



