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Chapter 4.

The Multivariate Normal Distribution.

4.1. Some properties about univariate normal distribution–a review.

Suppose X ∼ N(µ, σ2), a univariate normal distribution with mean µ and variance σ2.

(i). Density:

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , x ∈ (−∞,∞).

The density function is a bell-shaped curve, symmetric around the center µ, with only one peak at
µ.

(ii). Linear transformation: Let Y = aX + b Then, Y ∼ N(aµ + b, a2σ2).

(iii). Linear combination of independent normal random variables is still normal. Suppose Xi ∼
N(µi, σ

2
i ), i = 1, ..., K are independent. Then,

∑K
i=1 aiXi is still a normal random variable with

mean
∑K

i=1 aiµi and variance
∑K

i=1 a2
i σ

2
i .

(iv). Normal related distributions: t, F and χ2: Suppose ξi are iid ∼ N(0, 1). Then, t, F and χ2

distributions can be defined as follows

n
∑

i=1

ξ2
i ∼ χ2

n,
ξ1

√

[1/(n − 1)]
∑n

j=2 ξ2
j

∼ tn−1,
(1/n)

∑n
i=1 ξ2

i

(1/m)
∑n+m

i=n+1 ξ2
i

∼ Fn,m.

As a result, if ξi are iid ∼ N(µ, σ2),

n
∑

i=1

(ξi − ξ̄n)2/σ2 ∼ χ2
n−1,

ξ̄n
√

[1/(n− 1)]
∑n

j=1(ξj − ξ̄n)2
∼ tn−1,

and
[1/(n − 1)]

∑n
i=1(ξi − ξ̄n)2

[1/(m − 1)]
∑n+m

i=n+1[ξi − (1/m)
∑n+m

k=n+1 ξk]2
∼ Fn−1,m−1.

The proof uses a matrix transformation of the vector of ξi. (DIY).

(v). The central limit theorem: Suppose ξi, i = 1, 2, .... are iid random variables with common mean
µ and variance σ2. Then,

∑n
i=1(ξi − µ)√

nσ
→ N(0, 1), in distribution,

i.e.,
ξ̄n − µ

σ/
√

n
→ N(0, 1), in distribution.

where ξ̄n = (1/n)
∑n

i=1 ξi. Moreover,

√
n(ξ̄n − µ)

√

1/(n − 1)
∑n

j=1(ξj − ξ̄n)2
→ N(0, 1), in distribution.

4.2. Multivariate normal distribution.

Suppose

X =









X1

X2
...

Xp









p×1

∼ MN
(

µp×1, Σp×p

)

, where µ =









µ1

µ2
...

µp









p×1

, Σ =







σ11 · · · σ1p

...
...

...
σp1 · · · σpp







p×p
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and σij =cov(Xi, Xj). Then,

(i). Marginal normality: Xi ∼ N(µi, σii). Multivariate normality implies marginal normality.

(ii). Transformation invariant: AX ∼ MN(Aµ, AΣA′) where A is any (nonrandom) r × p matrix.
Linear transformation of multivariate normal random variable is still multivariate normal.

(iii). Zero correlation is equivalent to independence: X1, ..., Xp are independent if and only if σij = 0
for 1 ≤ i 6= j ≤ p. Or, in other words, if and only if Σ is diagonal.

(iv). Standardization as a special linear transformation:

Σ−1/2(X − µ) ∼ MN(0, Ip).

Here, 0 is a p-vector with all p entries being 0, Ip shall always denote the identity p × p matrix,
Σ−1/2 is any matrix such that Σ−1/2Σ(Σ−1/2)′ = Ip.

Remark. Σ−1/2 is not uniquely defined. Suppose Σ = TΛT ′ where T is orthonormal, i.e., TT ′ = Ip,

and Λ diagonal. Then, Σ−1/2 can be expressed as T̃Λ−1/2T ′ where T̃ can be any orthonormal
matrix. Unless otherwise stated, Σ−1/2 and Σ1/2 shall be the symmetric ones.

(v). Conditional distribution:

Proposition 4.1. Suppose

X(p+q)×1 =

(

X1

X2

)

∼ MN
(

(

µ1

µ2

)

,

(

Σ11 Σ12

Σ11 Σ12

)

)

,

where X1 and µ1 are p-vectors, X2 and µ2 are q-vectors, and Σ11, Σ12, Σ21 and Σ22 are p×p, p× q,
q × p and q × q matrices, respectively. Then, the conditional distribution of X1 given X2 = x2 is

MN(µ1 + Σ12Σ
−1
22 (x2 − µ2), Σ11 − Σ12Σ

−1
22 Σ21).

Proof. Observe that

X1 − µ1 − Σ12Σ
−1
22 (X2 − µ2) and X2 − µ2

are 0-correlated. Therefore, the two random vectors are independent of each other. Hence the
conditional distribution of the former given X2 = x2, i.e, X2 − µ2 = x2 − µ2, follows the same
distribution as the unconditional one, which is MN(0, Σ11 − Σ12Σ

−1
22 Σ′

21). This implies X1 given
X2 = x2 follows MN(µ1 + Σ12Σ

−1
22 (x2 − µ2), Σ11 − Σ12Σ

−1
22 Σ21). �

Remark. The above proposition has important connection with the geometric structure of mean 0
random variables with applications in linear regression. For simplicity, consider linear regression of
Y , a response of 1 dimension, on X , a covariate random variable of 1 dimension:

Y = α + βX + ǫ,

with ǫ being mean 0 and uncorrelated with X , which implies Y −α−βX is mean 0 and uncorrelated
with X . Then α = µY +βµX in order for Y −α−βX to be mean 0, and, as a result, β is identified
as the constant such that

Y − µY − β(X − µX)⊥(X − µX).

Here ⊥ means 0-correlated. Now picture Y ∗ = Y −µY and X∗ = X −µX as two vectors in a space
of mean 0 finite variance random variables equipped with inner product, the covariance of the two
random variables. The projection of Y ∗ on X∗, denoted as ⊓(Y ∗|X∗), is then

⊓(Y ∗|X∗) =
< Y ∗, X∗ >

‖X∗‖2
X∗ =

cov(Y, X)

var(X)
(X − µX).

This is verified by checking that < Y ∗ − ⊓(Y ∗|X∗), X∗ >= 0.
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Y ∗

X∗⊓(Y ∗|X∗)

As a result, β = cov(Y, X)/var(X) in the linear regression of Y on X , which gives rise to the least
squares estimator

β̂ =

∑n
i=1(yi − ȳ)(xi − x̄)
∑n

i=1(xi − x̄)2
.

(vi). Density function:

f(x) =
1

√

(2π)p|Σ|
exp{−1

2
(x − µ)′Σ−1(x − µ)}, x ∈ Rp.

The constant density contour is defined as

{x : f(x) = a} = {x : (x − µ)′Σ−1(x − µ) = c},

which is an ellipse, where c = −2[log a + (1/2) log((2π)p|Σ|)]. Note that

(X − µ)′Σ−1(X − µ) ∼ χ2
p,

since Σ−1/2(X − µ) ∼ MN(0, Ip).


