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4.3. Likelihood and maximum likelihood estimation.

Suppose X1, ..., Xn are iid random p-vectors ∼MN(µ,Σ). Their joint density is

f(x1, ..., xn) =
n∏
i=1

1√
(2π)p|Σ|

exp{−1
2

(xi − µ)′Σ−1(xi − µ)}

= exp
{
−1

2

n∑
i=1

(xi − µ)′Σ−1(xi − µ)− np

2
log(2π)− n

2
log |Σ|

}
for xi ∈ Rp, i = 1, ..., n. Thus, the likelihood based on observations x1, ..., xn of X1, ..., Xn is

ln(µ,Σ) = exp
{
−1

2

n∑
i=1

(xi − µ)′Σ−1(xi − µ)− np

2
log(2π)− n

2
log |Σ|

}
,

which is formally same as the joint density function, but viewed as a function of the parameters
(µ,Σ). The maximum likelihood estimation of µ and Σ, based on X1, ..., Xn, is

X̄ =
1
n

n∑
i=1

Xi and
n− 1
n

S =
1
n

n∑
i=1

(Xi − X̄)(Xi − X̄)′,

respectively. The following is a technical proof, which shall not be required.

Proof. The proof uses some tricks involving matrix. Set S̃ = [(n− 1)/n]S. Write

log(ln(µ,Σ))

∝ −1
2

n∑
i=1

(Xi − µ)′Σ−1(Xi − µ)− n

2
log |Σ|

= −1
2

n∑
i=1

trace{(Xi − µ)′Σ−1(Xi − µ)} − n

2
log |Σ|

= −1
2

n∑
i=1

trace{Σ−1(Xi − µ)(Xi − µ)′} − n

2
log |Σ| trace(AB) = trace(BA)

= −n
2
trace{Σ−1 1

n

n∑
i=1

(Xi − µ)(Xi − µ)′} − n

2
log |Σ|

= −n
2
trace{Σ−1[S̃ + (X̄ − µ)(X̄ − µ)′]} − n

2
log |Σ|

= −n
2
trace(Σ−1S̃) +

n

2
log |Σ−1| − n

2
trace[Σ−1(X̄ − µ)(X̄ − µ)′]

= −n
2
trace(S̃1/2Σ−1S̃1/2) +

n

2
log(|S̃1/2Σ−1S̃1/2|)− n

2
log(|S̃|)− n

2
trace[(X̄ − µ)Σ−1(X̄ − µ)′]

= −n
2

[trace(S̃1/2Σ−1S̃1/2)− log(|S̃1/2Σ−1S̃1/2|)]− n

2
trace[(X̄ − µ)Σ−1(X̄ − µ)′]− n

2
log(|S̃|)

= −n
2

[
p∑
k=1

λk −
p∑
k=1

log(λk)]− n

2
trace[(X̄ − µ)Σ−1(X̄ − µ)′]− n

2
log(|S̃|)

(where λk are eigenvalues of S̃1/2Σ−1S̃1/2)

≤ −n
2
p− n

2
log(|S̃|),

with the equality holding only when X̄ = µ and λk = 1, k = 1, ..., p, since the function x−log(x), x >
0 is minimized as 1 only when x = 1. . It implies S̃1/2Σ−1S̃1/2 = Ip, the p × p identity matrix.
Therefore log ln(µ,Σ) is maximized only when µ = X̄ and Σ = S̃, proving that the maximum
likelihood estimator of (µ,Σ) is (X̄, S̃). �
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It is clear that
X̄ ∼MN(µ, (1/n)Σ).

The p× p matrix (n− 1)S =
∑n
i=1(Xi − X̄)(Xi − X̄)′ is called a Wishart random matrix of degree

of freedom n− 1, which has the same distribution as
∑n−1
i=1 ZiZ

′
i where Zi are iid ∼MN(0,Σ). Its

distribution is denoted as Wn−1(Σ). Moreover, X̄ and S are independent.

4.4. Checking normality.

(i). Checking univariate normality.

Let x1, ..., xn be the observations. And let x(1) ≤ ... ≤ x(n) represent the order statistics.

Graphical approach: (qqnorm) plot the quantiles of the observations x1, ..., xn against the corre-
sponding quantiles of the standard normal distribution. To be precise, the plots are (q(i), x(i)), i =
1, ..., n, where q(i) = Φ−1((i− 1/2)/n), the quantile/percentile of the standard normal distribution
at level (i − .5)/n. If the plot is associate with a straight line, it’s the evidence of normality and
the slope and intercept represent the standard deviation and mean.

Quantitative approach: Define

rQ =
∑n
i=1(x(i) − x̄)(q(i) − q̄)√∑n

i=1(x(i) − x̄)2
∑n
i=1(q(i) − q̄)2

,

where is the sample correlation between (q(i), x(i)), i = 1, ..., n. The justification criterion is: rQ
being close to 1 is the evidence of normality of the underlying distribution. The smaller the rQ, the
stronger the evidence against normality.

Remark. The explanation of the above justification criterion is as follows. Correlation of two
random variables is 1 if and only if one is a linear function of the other with positive slope. Sample
correlation of two variables being close to 1 indicates they are nearly positively linearly related.
Hence rQ being close to 1 implies the x(i) ≈ aq(i) + b, i = 1, ..., n for some constant a > 0 and b.
Since x(i) ≈ F−1

X (i/n) and q(i) = Φ−1((i−1/2)/n), i = 1, ..., n, it follows that F−1
X (t) ≈ aΦ−1(t)+b,

assuming n is reasonably large. According to the claim presented and proved on page 2, FX is close
to the distribution aN(0, 1) + b, which is N(b, a2).

Example 1.1. (continued, see Appendix A.) Ten American Companies. In this example, rQ is
computed for each single variable:

Sales Profit Asset
rQ: 0.936 0.948 0.936
p-value: > 0.10 > 0.10 > 0.10

where the p-value is found by checking Table 4.2 on page 182 of the textbook, which is partly listed
in the following:

Significance levels
Sample size n .01 .05 .10

5 .8299 .8788 .9032
10 .8801 .9198 .9351
15 .9126 .9389 .9503
...

...
...

...
300 .9935 . 9953 .9960

These are critical points for the qq-plot correlation of coefficient test of normality at significance
levels α = 0.01, 0.05 and 0.10:
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Note that here the p-values are those of hypotheses testing. To be specific, we consider, for example,
for the variable profit the hypothesis{

H0 : the variable profit follows normal distribution
Ha : the variable profit does not follow normal distribution.

The p-value being greater than 0.10 implies the present data does not contain significant evidence
(at level 10%) against the assumption that the profit variable follows a normal distribution.

As previously mentioned, Example 1.1 is not a good example in that it is not a random sample
from certain given population. For the purpose of demonstration, we may pretend it is a random
sample from all listed companies in NYSE. Of course it’s only a pretension.

(ii). Checking bivariate or multivariate normality.

Suppose our data consist of observations X1, ..., Xn of p variables. In other words, each Xi is of p
dimension. To check whether the population distribution is multivariate (p dimension) normal, we

1. check the normality for each component or, in other words, each single variable, by using
graphical approach qqplot or numerical approach rQ test.

2. check the pairwise relations for any pairs of components by using scatter plot: No systematic
dependence other than association with a straight line subject to error corresponds to evidence of
normality. This is because, according to Proposition 4.1, a component of a bivariate normal random
variable is a linear function of another component plus another independent normal random variable.
See the Remark following Proposition 4.1.

3. use χ2 plot: plot the quantiles of the squares of statistical distances:

{(X1 − X̄)′S−1(X1 − X̄), ..., (Xn − X̄)′S−1(Xn − X̄)}

against the corresponding quantiles of χ2
p. If the plot is associated with the straight line at 45◦

through the origin, it’s evidence of normality. This is because (X − µ)′Σ−1(X − µ) ∼ χ2
p if X ∼

MN(µ,Σ).

Remark. In theory, lower dimension normality does not ensure higher dimension normality. In
practice, normality at one or two dimension is usually deemed enough evidence for high dimension
normality.

4.5. Transformation.

In practice, the target variable very often clearly does not follow normal distribution. Very often
we take reasonable transformation of the variable so that the transformed variable follows normal
distribution and the normality based statistical methodology can be applied to the transformed
variable. Among a variety of transformations, the Box-Cox transformation, also called power trans-
formation, is the most popular. Suppose the variable x is positive, The Box-Cox transformation is
the following class of transformation, indexed by λ, of x:

x(λ) =
{

(xλ − 1)/λ λ 6= 0
log x λ = 0.

Essentially, it is simply power function or log function. It is presented in the above seemingly more
complex form in order to show that log-transformation is a limit of power transformation.

A natural question then arises: what should be the most ideal λ for the Box-Cox transformation?
A crude but intuitive rule of thumb is

choose λ < 1 if the distribution of the observations is skewed to the right.

choose λ > 1 if the distribution of the observations is skewed to the left.
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A numerical criterion is: choose λ so that

l(λ) ≡ −n
2

log[
1
n

n∑
j=1

(x(λ)
j − x(λ))2] + (λ− 1)

n∑
j=1

log xj

is maximized, where x(λ) is the sample average of the transformed data.

For multivariate observations X1, ..., Xn of p dimension, p power transformations, one on each
variable/component, may be considered all at once. Let Xi = (xi1, ..., xip)′. We are to choose λk
to perform power transformation on the k-th variable. Specifically, the observations of the k-th
variable: (x1k, ..., xnk) shall be transformed to (x(λk)

1k , ..., x
(λk)
nk ), where

x
(k)
ik =

{
(xλk

ik − 1)/λk λk 6= 0
log xik λk = 0.

i = 1, ..., n.

An extension of the above criterion is: choose (λ1, ..., λp) so that

l(λ1, ..., λp) ≡ −
n

2
log(|S(λ)|) +

p∑
k=1

(λk − 1)
n∑
i=1

log xik

is maximized, where S(λ) is the sample covariance matrix based on the transformed data.


