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Chapter 6. Comparison of Several Multivariate Means.

This chapter addresses comparison of several multivariate means. We begin with paired comparison
followed by repeated measurement. In these two settings, comparison of two multivariate means or
several univaraite means is transformed, by taking differences or using contrasting matrices, to the
setting of one population, which is deemed as one-sample problem with the statistical methodology
already introduced in the last chapter.

The next is the so called two sample problem with two independent samples each coming from
one population. The objective is to compare the means of the two populations. The two-sample
problem is then extended to several sample problem, which is treated by using the multivaraite
analysis of variance (MANOVA).

6.1 Paired comparison.

(i). The univariate case — a review.

For a univariate paired comparison of the means of X and Y based on iid samples

(X1, Y1), (X2, Y2), ..., (Xn, Yn),

set di = Xi − Yi be the difference of Xi and Yi. Let

d̄ =
1

n

n
∑

i=1

di and s2
d =

1

n − 1

n
∑

i=1

(di − d̄)2

be the sample mean and sample variance of di. Since di are iid with mean µX −µY . Then µX −µY

is estimated by d̄ and inference with µX − µY is based on the fact that

d̄ − (µX − µY )

sd/
√

n
∼ tn−1.

In summary, paired comparison uses the same statistical procedure as that of one-sample problem.
Here the “one-sample” refers to d1, ..., dn.

(ii). Multivariate paired comparison.

We wish to compare the mean vector of two p-dimensional random vectors X and Y , may be
dependent of each other. With iid samples

(X1, Y1), (X2, Y2), ..., (Xn, Yn),

set di = Xi − Yi. We shall only need the assumption

di ≡





di1
...

dip



 iid ∼ MN(µ, Σ).

d̄ is an obvious candidate of estimator of µ. As with the univariate paired comparison, the in-
ference about µ are based on the “one sample”: d1, ..., dn. Specifically, T 2-confidence region, T 2

simultaneous confidence intervals and Bonferroni’s confidence intervals all apply.

Example 6.1. Analysis of the Effluent Data Example 6.1 in the textbook Municipal
wastewater treatment plants are required by law to monitor their discharges into rivers and streams
on a regular basis. Concern about the reliability of data from on e of these self-monitoring programs
led to a study in which samples of effluent were divided and sent to two laboratories for testing.
One-half of each sample was sent to the Wisconsin State laboratory of Hygiene , and one-half was
sent to a private commercial laboratory routinely used in the monitoring program. Measurements
of biochemical oxygen demand (BOD) and suspended solids (SS) were obtained, for n = 11 sample
splits from the two laboratories. The data are displayed here:
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Effluent Data:
Commercial lab State lab

Sample j (BOD) (SS) (BOD) SS
1 6 27 25 15
2 6 23 28 13
3 18 64 36 22
4 8 44 35 29
5 11 30 15 31
6 34 75 44 64
7 28 26 42 30
8 71 124 54 64
9 43 54 34 56
10 33 30 29 20
11 20 14 39 21

Our question in concern is whether there is enough statistical evidence to indicate the two lab
analysis procedures are different in the sense that they produce systematically different results. In
this example, sample size n = 11 and p = 2.

d̄ =

(

−9.36
13.27

)

Sd =

(

199.26 88.38
88.38 418.61

)

, S−1
d =

(

.0055 −.0012
−.0012 .0026

)

.

(1). T 2 confidence region for µ1 − µ2 at confidence level 95%:

{

µ1 − µ2 ∈ R2 : (d̄ − µ1 + µ2)
′S−1

d (d̄ − µ1 + µ2) ≤
(n − 1)p

(n − p)n
Fp,n−p(0.05) =

20

99
F2,9(0.05) = 0.86

}

which is an ellipse centered at d̄. Note that the origin (µ1 − µ2 = 0) of R2 is not in this ellipse,
since

d̄′S−1
d d̄ = 1.23 > 0.86.

From this fact, we conclude, at significance level 5% (with 5% chance of being mistaken), that the
two lab analysis procedures are different. This is formally addressed in the framework of hypothesis
testing in the following.

(2). Consider test of hypothesis
{

H0 : µ1 = µ2

Ha : µ1 6= µ2

The p-value is

P (F2,9 >
11 × 9

10 × 2
d̄′S−1

d d̄ = 6.12) = 0.0209 < 0.05

At significant level 5%, we reject the null hypothesis and conclude the two lab analysis procedures
are different.

(3). T 2 simultaneous confidence intervals at 95% confidence level:

for µ11 − µ21: d̄1 ± c
√

sd,11/n = 9.36 ±
√

9.47
√

199.26/11 = (−22.46, 3.74)

for µ12 − µ22: d̄2 ± c
√

sd,22/n = 13.27±
√

9.47
√

418.61/11 = (−5.71, 32.25)

where µ11 − µ21 is the first component of µ1 − µ2, standing for BOD, and µ11 − µ21 is the second
component of µ1 − µ2, standing for SS; and c =

√

(n − 1)p/(n − p)Fp,n−p(.05) =
√

9.47 = 3.077.

(4). Bonferroni’s simultaneous confidence intervals at 95% confidence level:

for µ11 − µ21: d̄1 ± tn−1(
0.05

2 × 2
)
√

sd,11/n = −9.36 ± 2.634
√

199.26/11 = (−20.57 1.85)

for µ12 − µ22: d̄2 ± tn−1(
0.05

2 × 2
)
√

sd,22/n = 13.27 ± 2.634
√

418.61/11 = (−3.51, 29.51)
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It seems to be contradicting that both T 2 and Bonferroni’s simultaneous confidence intervals contain
the origin of R2, while the T 2 confidence region does not. This can be explained by the fact that
the actual levels of T 2 and Bonferroni’s simultaneous confidence intervals are both larger than the
nominal level 95%, and the T 2 confidence region’s actual confidence level is the same as the nominal
level 95%. The following picture is an ad hoc illustration.

µ11 − µ21

µ12 − µ22

T 2 simultaneous C.I.s

Bonferonni’s simultaneous C.I.s

T 2 confidence region

In this graph, the origin is in the T 2 and Bonferroni’s simultaneous confidence intervals but not in
the T 2 confidence region.

6.2 Repeated measurements of one variable.

Example 6.2 Analysis of Sleeping Dog Data In a clinical trial to test the anesthetizing
effects of CO2 pressure and halothane with different combinations. There are totally 19 dogs,
each taking all four treatments with sleeping time recorded. Treatments 1, 2, 3 and 4 represent,
respectively, treatments of high CO2 without halothane, low CO2 without halothane, high CO2

with halothane and low CO2 with halothane. The data are presented in the following table:

Sleeping Dog Data:
Treatment

Dog 1 2 3 4
1 426 609 556 600
2 253 236 392 395
3 359 433 349 357
...

...
...

...
...

18 420 395 508 521
19 397 556 645 625

This is a typical example of a class of statistical problems called “repeated measurements”.

Let

X1, ..., Xn iid ∼ MN(µ, Σ) with µ =







µ1
...

µp






and Σ =







σ11 · · · σ1p

...
...

...
σp1 · · · σpp






.

We are interested in comparison of µ1, ..., µp. The data X1, ..., Xp are obviously one sample. The
difference between “repeated measurements” and the standard one sample problem is that, in the
former we are interested in comparison µ1, ..., µp, the components of the mean vector µ, while in the



20

later we are interested in the inference with µ. Most commonly, in the “repeated measurements”
problem, we care whether µ1, ..., µp are the same or not. This is the statistical hypothesis:

{

H0 : µ1 = · · · = µp

Ha : otherwise

Similar to treating the paired comparison problem, we construct the differences. Suppose the data
set is

Xn×p =







x11 · · · x1p

...
...

...
xn1 · · · xnp






.

Define

C(p−1)×p =









−1 1 0 · · · 0
−1 0 1 · · · 0
...

...
...

. . .
...

−1 0 0 · · · 1









.

C is one of typical contrast matrices, those matrices with sum of rows being 0. Clearly

CX1, ...,CXn iid ∼ MN(Cµ,CΣC′) with Cµ =







µ2 − µ1
...

µp − µ1







(p−1)×p

The sample mean and sample variance of CX1, ...,CXn, of p− 1 dimension, are CX̄ and CSC′. It
follows that

n(CX̄ − Cµ)′(CSC′)−1(CX̄ − Cµ) ∼ (n − 1)(p − 1)

n − (p − 1)
Fp−1,n−(p−1).

Translating the hypothesis
{

H0 : µ1 = · · · = µp

Ha : otherwise

into
{

H0 : Cµ = 0
Ha : otherwise

Then, T 2 test of this hypothesis can be carried out with “one sample”: CX1, ...,CXn. The p-value
is

P
(

Fp−1,n−(p−1) >
n(n − p + 1)

(n − 1)(p − 1)
× “the observed value of (CX̄)′(CSC′)−1CX̄”

)

.

Simultaneous inferences, either by the T 2 method or by the Bonferroni’s method can also be carried
out analogously, with “one sample”: CX1, ...,CXn.

6.3 Mean comparison for two populations (Two sample problem).

(i). Univariate two sample problem — a review.

Suppose X1,1, ..., X1,n1
are iid from population 1: ∼ N(µ1, σ

2
1), and X2,1, ..., X2,n2

are iid from
population 2: ∼ N(µ2, σ

2
2). The “one sample” {X1,1, ..., X1,n1

} is independent of the other “one
sample” {X2,1, ..., X2,n2

}. All random variables or observations here are of 1 dimension. We are
interested in comparing the two population means µ1 and µ2. Let X̄1 and s2

1 be the sample mean
and sample variance for the first sample X1,1, ..., X1,n1

, and likewise X̄2 and s2
2 for the second
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sample X2,1, ..., X2,n2
. The primary question is whether they are the same or not. The key facts

here are

X̄1 − X̄2 − (µ1 − µ2)
√

σ2
1/n1 + σ2

2/n2

∼ N(0, 1);

X̄1 − X̄2 − (µ1 − µ2)

spooled

√

1/n1 + 1/n2

∼ tn1+n2−2 if σ2
1 = σ2

2

where

s2
pooled =

1

n1 + n2 − 2
[

n1
∑

i=1

(X1,i − X̄1)
2 +

n2
∑

i=1

(X2,i − X̄2)
2]

is the so-called pooled estimator of σ2
1 = σ2

2 .

Case 1: σ2
1 = σ2

2 . Confidence intervals for µ1 − µ2 is

X̄1 − X̄2 ± tn1+n2−2(α/2)sp

√

1/n1 + 1/n2.

Tests for hypothesis H0 : µ1 = µ2 can be likewise carried out using t-method.

Case 2: σ2
1 6= σ2

2 . A (conservative) confidence interval for µ1 − µ2 at norminal confidence level:

X̄1 − X̄2 ± tk−2(α/2)
√

s2
1/n1 + s2

2/n2

where k = min(n1, n2)

(ii). Multivariate two sample problem.

The following two examples are illustration of the setup of multivariate two sample problem.

Example 6.3 Carapace measurements for painted turtles Exercise 6.18 of the textbook
Painted turtles are a kind of water turtles living in North America. Some researchers wish to
compare the sizes of male and female painted turtles by comparing the sizes of their carapaces
(shells). The carapace is measured in length, width and height. Totally n1 = 24 of females and
n2 = 24 of males are measured and the data is illustrated in the following (See Table 6.9 of the
textbook for complete data):

Carapace measurements for painted turtles:
Female Male

Length Width Height Length Width Height
98 81 38 93 74 37
103 84 38 94 78 35
103 86 42 96 80 35
...

...
...

...
...

...
162 124 61 131 95 46
177 132 67 135 106 47

Note that the females are males are not paired with each other. In fact, they are all unrelated with
each other. This is an example of two sample problem.

Example 6.4 Anaconda data (Exercise 6.39 of the textbook) Anacondas are some of the largest
snakes in the world. Some researchers capture the snakes and measure their snout vent length (cm)
and weight (kg). The data contain n1 = 28 female and n2 = 28 male snakes are illustrated in the
following (See Table 6.19 in the textbook for complete data):
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Anaconda Data:
Female Male

Length Width Length Width
271.0 18.50 176.7 3.00
477.0 82.50 259.5 9.75
306.3 23.40 258.0 10.07

...
...

...
...

438.6 57.00 236.7 6.49
377.1 61.50 235.3 6.00

Note that “Length” refers to snout vent length, not body length. The females and the males, as in
the last example, are not related with each other. This is an example of two-sample problem.

The setup of multivariate two sample problem is the same as that of univariate two sample problem,
except for the dimensionality. Suppose X1,1, ..., X1,n1

are iid from population 1: ∼ MN(µ1, Σ1),
and X2,1, ..., X2,n2

are iid from population 2: ∼ MN(µ2, Σ2). The “one sample” {X1,1, ..., X1,n1
}

is independent of the other “one sample” {X2,1, ..., X2,n2
}. All of them are of p-dimension. We

are interested in the difference of the two population means µ1 and µ2, especially whether they
are equal or not. Let X̄1 and S1 be the sample mean and sample variance for the first sample
X1,1, ..., X1,n1

, and likewise X̄2 and S2 for the second sample X2,1, ..., X2,n2
.

Case 1. Σ1 = Σ2.

n1n2

n1 + n2
(X̄1 − X̄2 − (µ1 − µ2))

′S−1
pooled(X̄1 − X̄2 − (µ1 − µ2)) ∼

(n1 + n2 − 2)p

n1 + n2 − p − 1
Fp,n1+n2−p−1

where

Spooled =
1

n1 + n2 − 2
[

n1
∑

i=1

(X1,i − X̄1)(X1,i − X̄1)
′ +

n2
∑

i=1

(X2,i − X̄2)(X2,i − X̄2)
′]

=
1

n1 + n2 − 2
[(n1 − 1)S1 + (n2 − 1)S2]

is the so-called pooled estimator of Σ1 = Σ2. This ensures, for example, the T 2 confidence region
for µ1 − µ2 at confidence level 1 − α as:

{

µ1 − µ2 ∈ Rp :
n1n2

n1 + n2
(X̄1 − X̄2 − (µ1 − µ2))

′S−1
pooled(X̄1 − X̄2 − (µ1 − µ2))

≤ (n1 + n2 − 2)p

n1 + n2 − p − 1
Fp,n1+n2−p−1(α)

}

,

which is an ellipse in Rp centered at X̄1 − X̄2. Simultaneous confidence intervals can also be
constructed. We omit the details.

Case 2: Σ1 6= Σ2. For large n1 and n2,

(X̄1 − X̄2 − (µ1 − µ2))
′(

1

n1
S1 +

1

n2
S2)

−1(X̄1 − X̄2 − (µ1 − µ2)) ∼ χ2
p approximately.

This approximation provides theoretical ground for inference approaches to constructing confidence
regions or simultaneous confidence intervals. Details are omitted.

Remark. Note that Bonferroni’s method of simultaneous inferences does not rely on F -distribution
or the approximate χ2 distribution of the relevant statistics, but rather on the t distribution of
relevant univariate statistics.

6.4 Comparing several multivariate population means. (MANOVA)

(i). ANOVA for univariate mean comparison — a review.
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The random variables or their observations can be presented as follows:

all independent



















Group 1 : X11, ..., X1n1
∼ N(µ1, σ

2)
Group 2 : X21, ..., X2n2

∼ N(µ2, σ
2)

... :
...

Group g : Xg1, ..., Xgng
∼ N(µg, σ

2)

And we are interested in whether the population means of these g groups, µ1, ..., µg, are same or
not. Note that there are ni observations from the i-th group And the population variances σ2 are
assumed all same.

Let n = n1 + · · ·+ nk be the total sample size. Set X̄k = (1/nk)
∑nk

j=1 Xkj as the sample mean for

the k-th group, and X̄ = (1/n)
∑g

k=1

∑nk

j=1 Xkj =
∑g

k=1(nk/n)X̄k as the total sample mean.

Consider hypothesis:
{

H0 : µ1 = µ2 = · · · = µg

Ha otherwise.

Variance decomposition:

SSTotal = SSBetween + SSWithin
∑g

i=1

∑ni

j=1(Xij − X̄)2 =
∑g

i=1 ni(X̄i − X̄)2 +
∑g

i=1

∑ni

j=1(Xij − X̄i)
2

Total variation = Variation between groups + Variation within groups

The following ANOVA Table is formed based on the above variance decomposition.

Source of Sum of Degree of Mean
variation squares freedom Squares F -statistic

“Between” SSBetween g − 1 SSBetween/(g − 1) F = SSBetween/(g−1)
SSWithin/(n−g)

“Within” SSWithin n − g SSWithin/(n − g)
“Total” SSTotal n − 1

And the p-value is

P (Fg−1,n−g > “the observed value of the F -statistic”)

This is because, under H0, the F -statistic follows Fg−1,n−g distribution.

(ii). MANOVA for multivariate mean comparison.

Example 6.5. Analysis of Wisconsin nursing home data (Example 6.10 in the text book)
We wish to investigate whether private, nonprofit or government sponsored nursing homes are
different in terms of their costs. For variables are chosen to measure their costs per-patient-day: 1.
cost of nursing labor; 2. cost of dietary labor; 3. cost of plant operation and maintenance labor;
and 4. cost of housekeeping and laundry labor. The four variables are observed for each of 271
private, 138 nonprofit and 107 government sponsored nursing homes. The sample mean and sample
variances are

private nursing homes: X̄1 =







2.066
.480
.082
0.360






S1 =







.291
−.001 .001
.002 .000 .001
.010 .003 .000 .010







nonprofit nursing homes: X̄2 =







2.167
0.596
.124
.418






S2 =







.561

.011 .025

.001 .004 .005

.037 .007 .002 .019







government nursing homes: X̄3 =







2.273
.521
.125
.383






S3 =







.261

.030 .017

.003 −.000 .004

.018 .006 .001 .013






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We shall answer the question after introducing the general setup and methodology of multivariate
analysis of variance, so-called MANOVA.

The setup for comparison of several multivariate means is analogous to that of univariate case:

all independent



















Group 1 : X11, ..., X1n1
∼ N(µ1, Σ)

Group 2 : X21, ..., X2n2
∼ N(µ2, Σ)

... :
...

Group g : Xg1, ..., Xgng
∼ N(µg, Σ)

Now Xij and µk are p-vectors and Σ is a p × p matrix. And we are interested in whether the
population means of these g groups, µ1, ..., µg, are same or not. Again the population variances σ2

are assumed all same.

There are ni observations from the i-th group. Let n = n1 + · · · + nk be the total sample size. Set
X̄k = (1/nk)

∑nk

j=1 Xkj as the sample mean for the k-th group, and X̄ = (1/n)
∑g

k=1

∑nk

j=1 Xkj =
∑g

k=1(nk/n)X̄k as the total sample mean.

Consider hypothesis:
{

H0 : µ1 = µ2 = · · · = µg

Ha otherwise.

Variance decomposition:

SSTotal = SSBetween + SSWithin
∑g

i=1

∑ni

j=1(Xij − X̄)⊗2 =
∑g

i=1 ni(X̄i − X̄)⊗2 +
∑g

i=1

∑ni

j=1(Xij − X̄i)
⊗2

where ⊗2 is the outer product of a p-vector, i.e., for any p-vector a, a⊗2 = aa′ which is a p × p
matrix. Note that SSTotal, SSBetween and SSWithin are all p × p matrices.

With the above variance decomposition, one can construct a MANOVA Table:

Source of Sum of Degree of
variation squares freedom Λ∗

“Between”(Treatment) B ≡ SSBetween g − 1 |W|
|W+B|

“Within”(Error) W ≡ SSWithin n − g
“Total” B + W = SSTotal n − 1

For the hypothesis testing, we first notice that large values of Λ∗ indicates evidence of H0 being
true. If g or p is small the distribution of Λ∗ under H0 is known; see Table 6.3 in the textbook. If
n is large, an approximation is, under H0,

−(n − 1 − p + g

2
) log Λ∗ ∼ χ2

p(g−1) approximately.

With this approximation, the p-value is

P
(

χ2
p(g−1) > −(n − 1 − p + g

2
) log(“the observed value of Λ∗”)

)

.

At significance level α, we reject H0 when the p-value is smaller than α, or, equivalently, when

−(n − 1 − p + g

2
) log(“the observed value of Λ∗”) > χ2

p(g−1)(α).

For Example 6.5, g = 3, p = 4, n1 = 271, n2 = 138, n3 = 107 and n = 516. And

X̄ =
n1X̄1 + n2X̄2 + n3X̄3

n
=







2.136
.519
.102
.380






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W = (n1 − 1)S1 + (n2 − 1)S2 + (n3 − 1)S3 =







182.962
4.408 8.200
1.695 .633 1.484
9.591 2/418 .394 6.538







and B =
3

∑

k=1

nk(X̄k − X̄)(X̄k − X̄)′ =







3.475
1.111 1.225
.821 .453 .235
.584 .610 .230 .304







Then, the MANOVA Table is

Source of Sum of Degree of
variation squares freedom Λ∗

“Between”(Treatment) B ≡ SSBetween g − 1 = 2 |W|
|W+B| = 0.7714

“Within”(Error) W ≡ SSWithin n − g = 513
“Total” B + W = SSTotal n − 1 = 515

where W and B are as given above. We try two approach for test of the hypothesis
{

H0 : µ1 = µ2 = µ3

Ha : otherwise

Approach 1: Since g = 3 is small, from Table 6.2 in the text book, we know, under H0,

n − p − 2

p
· 1 −

√
Λ∗

√
Λ∗

∼ F2p,2(n−p−2).

At significance level α, H0 is rejected when

n − p − 2

p
· 1 −

√
Λ∗

√
Λ∗

> F2p,2(n−p−2)(α).

In this example, the left hand side is

516 − 4 − 2

4
· 1 −

√
0.7714√

0.7714
= 17.67

Notice that 2p = 8, 2(n − p − 2) = 1020. Using any statistical software, one can check that the
p-value is

P (F8,1020 > 17.67) ≈ 0.0000

The p-value is so small, that one is certain to reject H0 at any sensible significance level. (If
using the R, one can check that F8,1020(0.00001) = 4.738 < 17.4, so we should reject H0 even at
significance level 0.00001.)

Approach 2. Since n is large, we use the fact

−(n − 1 − p + g

2
) log Λ∗ ∼ χ2

p(g−1) approximately.

With some calculation, the left hand is

−(516 − 1 − 7/2) log(.7714) = −511.5 log(.7714) = 132.76

The approximate p-value is
P (χ2

8 > 132.76) ≈ 0.00000

which is also extremely small. Thus, this approach also leads to rejection of H0 at any sensible
significance level. (If using the R, one can check that χ2

8(0.00001) = 37.33 < 132.76, so we should
reject H0 even at significance level 0.00001. You may notice that χ2

8(0.00001) = 37.33 ≈ 8×4.738 =
8 × F8,1020(0.00001), why?)


