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Chapter 7. Multivariate Linear Regression Models.

Multivariate linear regression model is essentially several univariate linear regression models putting
together, with the errors being related with each. Here univariate (multivariate) means the response
variables are univariate (multivariate). The notations of this chapter may be nasty.

7.1. Univariate linear regression — a review

(i). Model description:
Yi = β0 + β1zi1 + · · ·βrzir + εi i = 1, ..., n,

where, for the i-th subject, Yi is the response, zi1, ..., zik are covariates, β0, ..., βr are regression
parameters and εi is the error.

An alternative presentation of the model in matrix form is:

Yn×1 = Zn×(r+1)β(r+1)×1 + εn×1

where

Y =




Y1
...

Yn


 , Z =




1 z11 · · · z1r

1 z21 · · · z2r
...

...
. . .

...
1 zn1 · · · znr


 , β =




β0
...

βr


 and ε =




ε1
...

εn


 .

(ii). Model assumptions:

The errors ε1, ..., εn are iid ∼ N(0, σ2) and the covariates are either non-random or are independent
of the errors.

(iii). The least squares estimation (LSE):

The LSE of β is
β̂ = (Z′Z)−1Z′Y = argmin{b ∈ Rr+1 : ‖Y − Zb‖2},

which is unbiased, maximum likelihood estimator of β. A geometric interpretation is that Zβ̂ is
the projection of Y in Rn onto the linear space {Zb ∈ Rn : b ∈ Rr+1}. The residuals are

ε̂ =




ε̂1
...

ε̂n


 = Y − Zβ̂.

Then, for i = 1, ..., n,
ε̂i = Yi − β̂0 − β̂1zi1 − · · · − β̂rzir.

The estimator of σ2 is

s2 ≡ 1
n− r − 1

ε̂′ε̂ =
1

n− r − 1

n∑

i=1

ε̂2i ,

which is an unbiased estimator.

(iv). Inferences:

Observe that
β̂ = β + (Z′Z)−1Z ′ε.

Inference is based on the facts that

β̂ − β ∼ MN(0, (Z′Z)−1σ2),
1
σ2

n∑

i=1

ε2i = (n− r − 1)
s2

σ2
∼ χ2

n−r−1

and that β̂ is independent of s2.
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Confidence interval for βk at confidence level 1− α:

β̂k ± tn−r−1(α/2)s
√

akk,

where alm, 0 ≤ l,m ≤ r are the entries of the matrix (Z′Z)−1, i.e.,

(Z′Z)−1 =




a00 a01 · · · a0r

a10 a11 · · · a1r
...

...
. . .

...
ar0 ar1 · · · arr


 .

This confidence interval is based on

β̂k − βk√
akks

∼ tn−r−1, k = 0, ..., r.

One might also construct T 2-type confidence region at confidence level 1 − α for β as a vector of
r + 1 dimension:

{
β ∈ Rr+1 : (β̂ − β)′(Z′Z)(β̂ − β)/s2 ≤ (r + 1)Fr+1,n−r−1(α)

}

based on the fact
(β̂ − β)′(Z′Z)(β̂ − β)/s2 ∼ (r + 1)Fr+1,n−r−1.

The T 2-type simultaneous confidence intervals for βk, k = 0, ..., r at confidence level 1− α are

for βk : β̂k ± Fr+1,n−r−1(α)s
√

akk, k = 0, 1, ..., r.

Bonferroni’s simultaneous confidence intervals for βk, k = 0, ..., r at confidence level 1− α are

for βk : β̂k ± tn−r−1(
α

2(r + 1)
)s
√

akk, k = 0, 1, ..., r.

(v). Prediction.

Let

Z0 =




1
z01

z02
...

z0r




be any given value of covariates. Let Y0 = Z ′0β+ε0 be the response of an experiment not yet carried
out. We wish to predict the response Y0 or estimate its mean Z ′0β with accuracy justification. The
predictor or estimator is naturally Z ′0β̂, which is unbiased. Moreover,

Z ′0β̂ − Z ′0β ∼ N
(
0, σ2Z ′0(Z

′Z)−1Z0

)
and Z ′0β̂ − Y0 ∼ N

(
0, σ2[1 + Z ′0(Z

′Z)−1Z0]
)
,

by noticing that

Z ′0β̂ − Z ′0β = Z ′0(Z
′Z)−1Zε and Z ′0β̂ − Y0 = Z ′0(Z

′Z)−1Zε + ε0.

Then, the prediction interval (or just call it confidence interval if you like) for Y0 at confidence level
1− α is

Z ′0β̂ ± tn−r−1(α/2)s
√

1 + Z ′0(Z′Z)−1Z0.

And confidence interval for Z ′0β, the mean of Y0, at confidence level 1− α is

Z ′0β̂ ± tn−r−1(α/2)s
√

Z ′0(Z′Z)−1Z0.
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We note that this confidence interval still holds when the first component of Z0 takes any value,
not just 1.

7.2. Multivariate linear regression.

Example 1.1 (continued) Ten American companies Data containing three variables: sales,
profit and asset, and ten companies as observations is given in Appendix A. It is reasonable to
believe that the size of business, measured by sales, and the profitability, measured by profit, both
depends on the size of the company, measured by asset. One might consider two linear regression
models. One is sales regressed on asset and the other is profit regressed on asset. As the errors of the
two models shall inevitably be related, this presents an example of multivariate (actually bivariate
here) linear regression model by putting together the two univariate linear regression models, this
can be jointly presented as

Yi1 = β01 + β11zi + εi1, i = 1, ..., 10
Yi2 = β02 + β12zi + εi2, i = 1, ..., 10

where Yi1, Yi2, zi are sales, profit and asset of company i.

Another simple example is a multivariate linear regression model relating students academic perfor-
mance measured by midterm and final exam scores with diligence measured by weekly time devoted
to study and ingenuity measured by IQ score:

{
Yi1 = β01 + β11zi1 + β21zi2 + εi1,
Yi2 = β02 + β12zi1 + β22zi2 + εi2

i = 1, ..., n

where Yi1, Yi2 zi1 and zi2 are, respectively, midterm exam score, final exam score, weekly hours of
time devoted to study and IQ score of the i-th randomly selected student.

(i). Model description:

The k-th univariate linear regression model:

Yik = β0k + zi1β1k + · · ·+ zirβrk + εik, i = 1, ..., n,

where Yik is the k-th response for subject i. Writing in matrix form:

Y(k) = Zβ(k) + ε(k),

where

Y(k) =




Y1k
...

Ynk


 , β(k) =




β0k
...

βrk


 and ε(k) =




ε1k
...

εnk




The so called multivariate linear regression model is to put the m univariate linear regression model
together as

Yn×m = Zn×(r+1)β(r+1)×m + εn×m,

which is the same as

[Y(1)

... · · · ...Y(m)] = Z[β(1)

... · · · ...β(m)] + [ε(1)
... · · · ...ε(m)]

One distinct feature here is that the errors, εi1, ..., εim, within one observation/subject may be
related with each other. This suggest that the m univariate linear regression models should be
treated together as one model rather than separately treated as m individual univariate models.

(ii). Model assumptions:

The errors (εi1, ..., εim)′, as random vectors of m dimension, are iid∼ MN(0, Σ) and are independent
of the covariates. Note that here Σ is an m×m matrix.
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(iii). Estimation:

The least squares criterion for the multivariate linear regression model is to minimize over β

m∑

k=1

n∑

i=1

[
Yik − (β0k + zi1β1k + · · ·+ zirβrk)

]2

=
m∑

k=1

‖Y(k) − Zβ(k)‖2.

The LSE of β is denoted as

β̂ = [β̂(1)

... · · · ...β̂(m)].

Notice that

min
β

m∑

k=1

‖Y(k) − Zβ(k)‖2
m∑

k=1

min
β(k)

‖Y(k) − Zβ(k)‖2,

i.e.,

min
β

m∑

k=1

n∑

i=1

(Yik − [β0k +
r∑

l=1

zilβlk])2 =
m∑

k=1

[
min
β(k)

n∑

i=1

(Yik − [β0k +
r∑

l=1

zilβlk])2
]
.

Hence β̂(k) is the same as the LSE of β(k) of the univariate linear regression model: Y(k) = Zβ(k) +
ε(k). Therefore,

β(k) = (Z′Z)−1Z′Y(k), k = 1, ...,m, and

β̂ = [β̂(1)

... · · · ...β̂(m)] = (Z′Z)−1Z′[Y(1)

... · · · ...Y(m)]Y = (Z′Z)−1Z′Y,

which is formally the same as the expression of the LSE of univariate linear regression model. The
residuals are

ε̂n×m = Yn×m − Zn×(r+1)β̂(r+1)×m.

and the estimator of Σ is

S ≡



s11 · · · s1m
...

...
...

sm1 · · · smm


 =

1
n− r − 1

ε̂′ε̂.

(iv). Inference with β(k).

It is often of interest to consider inference with regression parameter, say β(k), for one single uni-
variate regression model. All theory, estimation and inference procedures with univariate regression
model as presented in Section 7.1 apply here. For example,

β̂(k) − β(k) ∼ MN(0, σkk(Z′Z)−1)

where σkl is the (k, l)-th entry of Σ.

(β̂(k) − β(k))(Z′Z)(β̂(k) − β(k))
skk

∼ (r + 1)Fr+1,n−r−1

where skl is the (k, l)-th entry of S. Then, a confidence region at confidence level 1− α for β(k), as
a vector in Rr+1, can be constructed as

{
β(k) ∈ Rr+1 :

(β̂(k) − β(k))(Z′Z)(β̂(k) − β(k))
skk

∼ (r + 1)Fr+1,n−r−1(α)
}

.

For more detail, such as confidence intervals for βjk, simultaneous confidence intervals for β0k, ..., βrk,
please refer to Section 7.1 about univariate linear regression models.

(v). Prediction.
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Let

Y0 = β′Z0 + ε0 = β′




1
z01
...

z0r


 +




ε01
...

ε0m




be a new experiment with covariate Z0 which has not been carried out. We are interested in
predicting its response Y0, an m-vector, or estimating its mean β′Z0, with accuracy justification.

The predictor of Y0 or estimator of its mean β′Z0 is naturally β̂′Z0. To compute the variance,
observe that, for any non-random n-vector V = (v1, ..., vn)′,

var(ε′V ) = var(
n∑

i=1

viεi) =
n∑

i=1

v2
i var(εi) = Σ

n∑

j=1

v2
i = ‖V ‖2Σ == V ′V Σ,

where εi, an m-vector, is the i-row of ε representing the m errors for the i-th subject/observation.
Let V = Z(Z′Z)−1Z0. Then,

var(Y0 − β̂′Z0) = var(ε0 − (β̂ − β)′Z0) = var(ε0) + var((β̂ − β)′Z0)
= Σ + var([(Z′Z)−1Z′ε]′Z0) = Σ + var(ε′Z(Z′Z)−1Z0) = Σ + [Z ′0(Z

′Z)−1Z0]Σ

For simplicity of notation, let
κ = Z ′0(Z

′Z)−1Z0.

In summary

var(Y0 − β̂′0Z0) = Σ(1 + κ), var(β′Z0 − β̂′0Z0) = κΣ
1√

1 + κ
Σ−1/2(Y0 − β̂′0Z0) ∼ MN(0, Im)

and
1√
κ

Σ−1/2(β′Z0 − β̂′0Z0) ∼ MN(0, Im).

Moreover,

T 2 ≡ 1
κ

[β̂′Z0 − β′Z0]′S−1[β̂′Z0 − β′Z0] ∼ (n− r − 1)m
n− r −m

Fm,n−r−m

and
1

1 + κ
[Y0 − β′Z0]′S−1[Y0 − β′Z0] ∼ (n− r − 1)m

n− r −m
Fm,n−r−m,

which provide theoretical foundation for the following inference procedures:

(1). Confidence region for β′Z0 = E(Y0) at level 1− α:

{
β′Z0 ∈ Rm : [β̂′Z0 − β′Z0]′S−1[β̂′Z0 − β′Z0] ≤ κ

(n− r − 1)m
n− r −m

Fm,n−r−m(α)
}

(2). Prediction region (or just call it confidence region) for Y0 at level 1− α:

{
Y0 ∈ Rm : [Y0 − β′Z0]′S−1[Y0 − β′Z0] ∼ (1 + κ)

(n− r − 1)m
n− r −m

Fm,n−r−m(α)
}

.

,

(3). Simultaneous confidence intervals for β′(k)Z0 = E(Y0k), k = 1, ..., m at confidence level 1− α:

for β′(k)Z0: β̂′(k)Z0 ±
√

skk · κ (n− r − 1)m
n− r −m

Fm,n−r−m(α) k = 1, ..., m.
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(4). Simultaneous prediction/confidence intervals for Y0k, k = 1, ..., m at confidence level 1− α:

for Y0k: β̂′(k)Z0 ±
√

skk(1 + κ)
(n− r − 1)m
n− r −m

Fm,n−r−m(α) k = 1, ...,m.

Example 1.1 (continued) Ten American Companies Sales (Y1) and profit (Y2) are two responses
regressed on the covariate asset (Z). The multivariate linear regression is the two univariate linear
regression models putting together:

Yi1 = β01 + β11zi + εi1, i = 1, ..., 10
Yi2 = β02 + β12zi + εi2, i = 1, ..., 10

An expression in matrix form is



Y11 Y12
...

...
Yn1 Yn2


 =




1 z1
...

...
1 zn




(
β01 β02

β11 β12

)
+




ε11 ε12
...

...
εn1 εn2


 .

Y = Zβ + ε.

In the notations used above, n = 10, m = 2 and r = 1. And

Z′Z =
(

10 812.484
812.484 92837.4

)
and (Z′Z)−1 =

(
0.34609 −0.00303
−0.00303 0.0000373

)

(1). The least squares estimator of β:

β̂ =
(

β̂01 β̂02

β̂11 β̂12

)
= (Z′Z)−1Z′Y =

(
21.09 1.683
0.507 0.015

)

(2) Variance estimation:

The estimator of Σ, the 2× 2 matrix of the variance of the error, is

S =
(

262.85 2.72
2.72 0.822

)
.

It’s easy to compute

S−1 =
(

0.00394 −0.01304
−0.01304 1.2597

)
.

(3) Inference with regression parameters of one univariate regression model.

Inferences about β01, β11, β(1) = (β01, β11)′, predicting sales for a given company with known asset
size or estimating mean sales for companies with a given size of asset are all only related with the first
univariate linear regression model. Likewise, inferences about β02, β12, β(2) = (β02, β12)′, predicting
profit for a given company with known asset size or estimating mean profit for companies with a
given size of asset are all only related with the second univariate linear regression model. Then,
inference methods reviewed in Section 7.1 apply. For example, a confidence interval at confidence
level 95% for β11 is

β̂11 ± t10−2(0.025)
√

0.0000373× s11 = 0.507± t8(.025)
√

.0000373× 262.85 = .507± .228;

and a confidence region at confidence level 95% for β(1) = (β01, β11)′ is

{β(1) ∈ R2 : (β̂(1) − β(1))′(Z′Z)(β̂(1) − β(1)) ≤ 2344}.

(4). Prediction of both sales and profit.
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Suppose company ABC has 50 billion dollars of asset. We wish to predict both sales and profit
of the company with accuracy justification. Set Z0 = (1 50)′ and denote by Y01 and Y02 the yet
unknown sales and profit of the company. The estimator is

β̂′Z0 =
(

β̂01 + 50β̂11

β̂02 + 50β̂12

)
=

(
46.45
2.45

)

Note that κ = 0.1364. A prediction region at confidence level 95% is

{
(S, P) :

[( S
P

)
−

(
46.45
2.45

)]′
S−1

[( S
P

)
−

(
46.45
2.45

)] ≤ 12.31
}

where S stands for sales and P for profit of the company. And simultaneous prediction intervals at
(nominal) confidence level 95% is

for sales : 46.45± 58.87
for profit : 2.45± 3.18.

On the other hand, suppose we are interested in providing an estimation and inference for the mean
sales and profit for all companies with asset 50 billion dollars, which is

(
EY01

EY02

)
=

(
β01 + 50β11

β02 + 50β12

)

The estimator is still same as (46.45, 2.45)′. A confidence region at confidence level 95% is

{
(S, P) :

[( S
P

)
−

(
46.45
2.45

)]′
S−1

[( S
P

)
−

(
46.45
2.45

)] ≤ 1.477
}

And simultaneous confidence intervals at (nominal) confidence level 95% is

for mean sales : 46.45± 19.70
for mean profit : 2.45± 1.102.


