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Chapter 9. Factor Analysis

Factor analysis may be viewed as a refinement of the principal component analysis. The objective
is, like the P.C. analysis, to describe the relevant variables in study in terms of a few underlying
variables, called factors.

9.1 Orthogonal factor model.

Let X = (X1, · · · , Xp)′ be the variables in population with

mean E(X) = µ =




µ1
...

µp


 and variance var(X) = Σ =




σ11 · · · σ1p

...
...

...
σp1 · · · σpp


 .

The orthogonal factor model is

Xp×1 − µp×1 = Lp×mFm×1 + εp×1, (9.1)

where m ≤ p, µ = E(X),

L ≡



l11 · · · l1m
...

...
...

lp1 · · · lpm


 is called the factor loading matrix (which is non-random),

F =




F1
...

Fm


 are called the factors or common factors,

and ε =




ε1
...
εp


 are called errors or specific errors.

The model can be re-expressed as

Xi − µi =
m∑

j=1

lijFj + εi, i = 1, ..., p. (9.1′)

And lij is called the loading of Xi on the factor Fj .

The assumptions of the orthogonal model are:

(1). E(F ) = 0m×1 and var(F ) = Im.

(2). E(ε) = 0p×1 and var(ε) = Ψ, a diagonal matrix with diagonal elements: ψ1, ..., ψp.

(3). cov(F, ε) = 0m×p.

Remark. The above model assumption implies that

cov(Fi, Fj) =
{

1 if i = j
0 if i 6= j

cov(Fi, εj) = 0 and cov(εi, εj) =
{

ψi if i = j
0 if i 6= j.

Moreover,

cov(X,F ) = cov(LF, F ) = L cov(Xi, Fj) = lij , i = 1, ..., p; j = 1, ...,m.

Under the orthogonal factor model, the variance matrix of X, Σ, can be written as

Σ = var(X) = var(LF + ε) = var(LF ) + var(ε)
= Lvar(F )L′ + Ψ = LL′ + Ψ.
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In particular,

σii = var(Xi) =
m∑

j=1

l2ij + ψi ≡ h2
i + ψi (9.2)

σij = cov(Xi, Xj) =
m∑

k=1

likljk, i 6= j.

Here h2
i ≡ l2i1 + · · ·+ l2im is called communality, which is the portion of the variance of Xi explained

by common factors. ψi, called specific variance or uniqueness, is the portion of the variance of Xi

explained by specific factor, the error pertained to the i-th variable Xi only.

In orthogonal factor model, the factors or common factors are supposed to be important underlying
factors that significantly affect all variables. Besides these factors, the remaining ones are those
only pertained to the relevant variables. Specifically, εi, the error pertained to the i-th variable Xi,
explains the part of the variation of Xi that cannot be explained by common factors or by other
errors.

Remark. The orthogonal factor model (9.1) is essentially different from linear regression model,
although there is certain formality resemblance. The key difference is the common factor F , which
seemingly plays the role of covariates in linear regression model, is not observable.

Remark. The orthogonal factor model (9.1) has unidentifiable L and F , up to a rotation, in the
sense that

X − µ = LF + ε = L∗F ∗ + ε,

where L∗ = LT and F = T ′F with T being any orthonormal m × m matrix. Then, (F ∗, ε) still
satisfies the assumptions (1)-(3).

9.2 Estimation by the principal component approach.

Recall the decomposition of Σ:

Σ = eΛe′ = (e1

... · · · ...ep)




λ1

. . .
λp







e′1
...
e′p


 .

i.e., (λk, ek), k = 1, ..., p are the p eigenvalue-eigenvector pairs of Σ with λ1 ≥ ... ≥ λp > 0. And
the population P.C.s are

Y =




Y1
...

Yp


 = e′(X − µ).

Then,

X − µ = eY = (e1

... · · · ...ep)




Y1
...

Yp


 =

m∑

j=1

ejYj +
p∑

j=m+1

ejYj .

=
m∑

j=1

√
λjej(Yj/

√
λj) +

p∑

j=m+1

ejYj .

= (
√

λ1e1

... · · · ...
√

λmem)




Y1/
√

λ1

...
Ym/

√
λm


 +

p∑

j=m+1

ejYj .

= LF + ε, say,
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where

L = (
√

λ1e1

... · · · ...
√

λmem), F =




Y1/
√

λ1

...
Ym/

√
λm


 and ε =

p∑

j=m+1

ejYj .

It can be verified that the assumptions (1) and (2) satisfied, but not necessarily (3). Nevertheless,
the above derivation provides hint to using principal components as a possible solution to the
orthogonal factor model. The common factors are simply the first m P.C.s standardized by their
standard deviations: Fj = Yj/

√
λj , j = 1, ...,m.

We next build the sample analogues of the above derivation. There are n observations, presented
as

X = (X(1)

... · · · ...X(p)) =




x11 · · · x1p

... · · · ...
xn1 · · · xnp




with X(k) = (x1k, ..., xnk)′ denoting the n observations of the k-th variable Xk.

Let S be the sample variance matrix, with (λ̂k, êk), k = 1, ..., p as eigenvalue-eigenvector pairs and
λ̂1 ≥ ... ≥ λ̂p > 0.

S = êΛ̂ê′ = (ê1

... · · · ...êp)




λ̂1

. . .
λ̂p







ê′1
...
ê′p


 .

Then, with the P.C. approach, the factor loading matrix L is estimated by

L̃p×m ≡



l̃11 · · · l̃1m
...

...
...

l̃p1 · · · l̃pm


 = (l̃(1)

... · · · ...l̃(m))

= (
√

λ̂1ê1

... · · · ...
√

λ̂mêm).

Based on the fact that σii =
∑m

j=1 l2ij + ψi and use sii to estimate σii. Then, Ψ is estimated by

Ψ̃ =




ψ̃1

. . .
ψ̃p


 where ψ̃i = sii −

m∑

j=1

l̃2ij .

Example 9.1 Analysis of weekly stock return data. (Example 8.1 continued) Suppose
m = 1. λ̂1 = 2.856. p = 5. Then,

L̃ =
√

λ̂1ê1 =
√

2.856ê1 =




0.783
0.773
0.793
0.713
0.712




and

h̃2
i =

∑m
j=1 l̃2ij = l2i1 ψ̃i = sii − h̃2

i = 1− h̃2
i

h̃2
1 = 0.7832 = 0.61 ψ̃1 = 1− h̃2

1 = 0.39
...

...
h̃2

5 = 0.7122 = 0.49 ψ̃5 = 1− h̃2
5 = 0.51
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The proportion of total variation explained by the first (and only one) factor is
∑p

i=1 l̃2i1∑p
i=1 sii

=
λ̂1

λ̂1 + · · ·+ λ̂5

=
2.856

5
= 57.1%.

9.3 Estimation by maximum likelihood approach.

Assume X1, ..., Xn are iid ∼ MN(µ, Σ). Then, the likelihood is

lik(µ, Σ) ≡ (2π)−np/2|Σ|−n/2exp{−1
2

n∑

i=1

(Xi − µ)′Σ−1(Xi − µ)}.

Under the orthogonal factor model (9.1), Σ = LL′ + Ψ. Then, the likelihood becomes

lik(µ,L, Ψ) ≡ (2π)−np/2|LL′ + Ψ|−n/2exp{−1
2

n∑

i=1

(Xi − µ)′(LL′ + Ψ)−1(Xi − µ)}.

With certain restriction, the MLE of L and Ψ can be computed. We denote them by L̂ and Ψ̂.
(Actual computation of the MLE is not required.)

9.4 A test of the number of common factors.

The orthogonal factor model (9.1) pre-specifies m, the number of the common factors. In practice,
m is often unknown. Here we consider, for a given m, a statistical test to test whether such an m
is appropriate. Presented in terms of statistical hypothesis as

{
H0 : Σ = LL′ + Ψ where L is p×m matrix and Ψ is diagonal
Ha : otherwise.

A generalized likelihood ratio test statistic is

2 log
( max{lik(µ, Σ) : µ,Σ}

max{lik(µ,L, Ψ) : µ,L, Ψ}
)

= 2 log
( lik(X̄, (n− 1)/nS)

lik(X̄, L̂, Ψ̂)

)

∝ 2 log
( |(n− 1)/nS|−n/2

|L̂L̂′ + Ψ̂|−n/2

)
= n log

( |L̂L̂′ + Ψ̂|
|(n− 1)/nS|

)

With some further refinement called Bartlett correction, the appropriate signficance level α test is

reject H0 when [n− 1− (2p + 4m + 5)/6] log
( |L̂L̂′ + Ψ̂|
|(n− 1)/nS|

)
> χ2

0.5[(p−m)2−p−m](α).

9.5 Factor rotation.

As remarked in Section 9.1, the orthogonal factor model is not identifiable up to a rotation of the
common factors or factor loading matrix. In other words,

X − µ = LF + ε = L∗F ∗ + ε

for L∗ = LT and F ∗ = T ′F where T is any m × m orthonormal matrix. Therefore, up to a
rotation, it is legitimate and often desirable to choose a pair (L,F ) so that it may achieve better
interpretability.

A criterion called varimax criterion can be applied to find an optimal rotation. Let L̂∗ be the p×m
rotated factor loading matrix with elements l̂∗ij . Define l∗ij = l̂∗ij/ĥi, and

V =
m∑

j=1

[1
p

p∑

i=1

(l∗ij)
4 − {1

p

p∑

i=1

(l∗ij)
2}2

]
,



40

which is the sum of the column-wise variance of the squares of scaled factor loadings. Find the
optimal l∗ij such that V achieves maximum. Then, the optimal rotated factor loading matrix is
l̂∗ij = ĥi × (the optimal l∗ij).

9.6 Factor scores.

Let x1, ..., xn be a sample of n observations of X that follows the orthogonal factor model (9.1).
Write

xi − µ = Lfi + ei

Then, fi and ei may be regarded as the realized but unobserved values of the common factors and
the errors that produced the i-th observation xi. Note that xi is p× 1, fi is m× 1 and ei is p× 1.
Factor scores refer to estimator of fj , denoted by f̂j or f̃j . There are two commonly used methods
of estimation.

(i). Method 1: weighted/unweighted least squares method.

Notice that, if one minimize
(x− µ− Lf)′Ψ−1(x− µ− Lf)

over all m dimensional vector f . Then, the minimizer f is (L′Ψ−1L)−1L′Ψ−1(x− µ).

With this minimization, we can obtain factor scores as

(1). Maximum likelihood approach:

f̂j = (L̂′Ψ̂L̂)−1L̂′Ψ̂−1(xj − x̄)

where (L̂, Ψ̂) are MLE of (L,Ψ). And êj = xj − x̄− L̂f̂j is the estimator of ej .

(2). Principal component approach:

f̃j = (L̃′L̃)−1L̃′(xj − x̄)

where L̃ is the estimator of L based on the P.C. approach. And ẽj = xj − x̄− L̃f̃j is the estimator
of ej .

(ii). Method 2: Regression method.

The motivation for this method comes from linear regression. The orthogonal factor model implies

var
(

X
F

)
= var

(
LF + ε

F

)
=

(
LL′ + Ψ L

L′ Im

)

and
E(F |X = x) = 0 + L′(LL′ + Ψ)−1(x− µ) = L′Σ−1(x− µ)

citing from a proposition in Chapter 4. Then fj is estimated by

f̂j = L̂′S−1(xj − x̄).

9.7 A general guideline.

To perform a complete factor analysis, some guidelines are useful. The following steps are recom-
mended.

1. Perform principal component factor analysis, with care of the issue of standardization.

2. Perform a maximum likelihood factor analysis.

3. Compare the results of step 1 and step 2.

4. Change number of common factors m and repeat steps 1-3.

5. For large set of data, split them in half, perform the above analysis on each half and compare
the results.


