MATH4424 Homework1

Question 1. Consider a bivariate normal population with $\mu_1 = 0, \mu_2 = 2, \sigma_{11} = 2, \sigma_{22} = 1$ and $\rho_{12} = 0.5$.

(a). Write out the bivariate normal density.

(b). Write out the squared generalized distance expression $(\mathbf{x} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$ as a function of x_1 and x_2 .

(c). Determine (and sketch) the constant-density contour that contains 50% of the probability. ■

Question 2. Let X be $N_3(\mu, \Sigma)$ with $\mu' = [-3, 1, 4]$ and

$$\boldsymbol{\Sigma} = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Which of the following variables are independent? Explain.

- (a). X_1 and X_2 .
- (b). X_2 and X_3 .
- (c). (X_1, X_2) and X_3 .
- (d). $(X_1 + X_2)/2$ and X_3 .
- (e). X_2 and $X_2 \frac{5}{2}X_1 X_3$.

Question 3. Let X be $N_3(\mu, \Sigma)$ with $\mu' = [2, -3, 1]$ and

$$\boldsymbol{\Sigma} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 2 \end{bmatrix}$$

(a). Find the distribution of $3X_1 - 2X_2 + X_3$.

(b). Relabel the variables if necessary, and find a 2×1 vector **a** such that X_2 and $X_2 - (X_1, X_3)$ **a** are independent.

Question 4. Specify each of the following.

(a). The conditional distribution of X_1 , given that $X_2 = x_2$ for the joint distribution in **Question 1**.

(b). The conditional distribution of X_2 , given that $X_1 = x_1$ and $X_3 = x_3$ for the joint distribution in **Question 2**.

(c). The conditional distribution of X_3 , given that $X_1 = x_1$ and $X_2 = x_2$ for the joint distribution in **Question 3**.