MATH4424 Homework3

1. We want to find out whether students from HKU, CU, and HKUST are up to the same standard in the subject of mathematics and literature. For this purpose, 100 students are randomly selected from each university and are assigned same exams of mathematics and literature. The sample mean and sample variances are

$$\begin{aligned} & \text{HKU}: & \quad \bar{X}_1 = \begin{pmatrix} 99\\ 94 \end{pmatrix}, \quad S_1 = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} \\ & \text{CU}: \quad \bar{X}_2 = \begin{pmatrix} 90\\ 96 \end{pmatrix}, \quad S_2 = \begin{pmatrix} 2 & -1\\ -1 & 1 \end{pmatrix} \\ & \text{HKUST}: \quad \bar{X}_3 = \begin{pmatrix} 96\\ 95 \end{pmatrix}, \quad S_3 = \begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix} \end{aligned}$$

Construct the MANOVA table and test the hypothesis whether the three university students are at about same level in terms of mathematics and literature. (Use the χ^2 approximation for the distribution of the test statistic, and use significance level 5%).

5/20. A wildlife ecologist measured x_1 = tail length (in millimeters) and x_2 = wing length (in millimeters) for a sample of n = 45 female hook-billed kites. These data are displayed in Table 5.12. Using the data in the table,

Table 5.12 Bird Data									
x ₁ (Tail length)	x_2 (Wing length)	x_1 (Tail length)	(Wing length)	x ₁ (Tail length)	x ₂ (Wing length)				
191	284	186	266	173	271				
197	285	197	285	194	280				
208	288	201	295	198	300				
180	273	190	282	180	272				
180	275	209	305	190	292				
188	280	187	285	191	286				
210	283	207	297	196	285				
196	288	178	268	207	286				
191	271	202	271	209	303				
179	257	205	285	179	261				
208	289	190	280	186	262				
202	285	189	277	174	245				
200	272	211	310	181	250				
192	282	216	305	189	262				
199	280	189	274	188	258				

Source: Data courtesy of S. Temple.

- (a) Find and sketch the 95% confidence ellipse for the population means μ_1 and μ_2 . Suppose it is known that $\mu_1 = 190$ mm and $\mu_2 = 275$ mm for *male* hook-billed kites. Are these plausible values for the mean tail length and mean wing length for the female birds? Explain.
- (b) Construct the simultaneous 95% T^2 -intervals for μ_1 and μ_2 and the 95% Bonferroni intervals for μ_1 and μ_2 . Compare the two sets of intervals. What advantage, if any, do the T^2 -intervals have over the Bonferroni intervals?
- (c) Is the bivariate normal distribution a viable population model? Explain with reference to Q-Q plots and a scatter diagram.

J6.22. Researchers interested in assessing pulmonary function in nonpathological populations asked subjects to run on a treadmill until exhaustion. Samples of air were collected at definite intervals and the gas contents analyzed. The results on 4 measures of oxygen consumption for 25 males and 25 females are given in Table 6.12 on page 348. The variables were

 X_1 = resting volume O_2 (L/min) X_2 = resting volume O_2 (mL/kg/min) X_3 = maximum volume O_2 (L/min) X_4 = maximum volume O_2 (mL/kg/min)

- (a) Look for gender differences by testing for equality of group means. Use $\alpha = .05$. If you reject H_0 : $\mu_1 \mu_2 = 0$, find the linear combination most responsible.
- (b) Construct the 95% simultaneous confidence intervals for each $\mu_{1i} \mu_{2i}$, i = 1, 2, 3, 4. Compare with the corresponding Bonferroni intervals.
- (c) The data in Table 6.12 were collected from graduate-student volunteers, and thus they do not represent a random sample. Comment on the possible implications of this information.
- **7.25.** Amitriptyline is prescribed by some physicians as an antidepressant. However, there are also conjectured side effects that seem to be related to the use of the drug: irregular heartbeat, abnormal blood pressures, and irregular waves on the electrocardiogram. among other things. Data gathered on 17 patients who were admitted to the hospital after an amitriptyline overdose are given in Table 7.6. The two response variables are

 $Y_1 = \text{Total TCAD plasma level (TOT)}$

 Y_2 = Amount of amitriptyline present in TCAD plasma level (AMI)

The five predictor variables are

 $Z_1 = \text{Gender: 1 if female, 0 if male (GEN)}$

 Z_2 = Amount of antidepressants taken at time of overdose (AMT)

 $Z_3 = PR$ wave measurement (PR)

 Z_4 = Diastolic blood pressure (DIAP)

 $Z_5 = QRS$ wave measurement (QRS)

- (a) Perform a regression analysis using only the first response Y_1 .
 - (i) Suggest and fit appropriate linear regression models.
 - (ii) Analyze the residuals.
 - (iii) Construct a 95% prediction interval for Total TCAD for $z_1 = 1$, $z_2 = 12$ $z_3 = 140$, $z_4 = 70$, and $z_5 = 85$.
- (b) Repeat Part a using the second response Y_2 .
- (c) Perform a multivariate multiple regression analysis using both responses Y_1 and Y_2 .
 - (i) Suggest and fit appropriate linear regression models.
 - (ii) Analyze the residuals.
 - (iii) Construct a 95% prediction ellipse for both Total TCAD and Amount of amitriptyline for $z_1 = 1$, $z_2 = 1200$, $z_3 = 140$, $z_4 = 70$, and $z_5 = 85$. Compare this ellipse with the prediction intervals in Parts a and b. Comment.

Table 7.6 Amitriptyline Data									
y_1 TOT	AMI	$\operatorname*{GEN}^{z_{1}}$	$\operatorname*{AMT}^{z_{2}}$	\Pr^{z_3}	$\overset{z_4}{\mathrm{DIAP}}$	QRS^{z_5}			
3389	3149	1	7500	220	0	140			
1101	653	1	1975	200	0	100			
1131	810	0	3600	205	60	111			
596	448	1	675	160	60	120			
896	844	1	750	185	70	83			
1767	1450	1	2500	180	60	80			
807	493	1	350	154	80	98			
1111	941	0	1500	200	70	93			
645	547	1	375	137	60	105			
628	392	1	1050	167	60	74			
1360	1283	1	3000	180	60	80			
652	458	1	450	160	64	60			
860	. 722	1	1750	135	90	79			
500	384 ·	0	2000	160	60	80			
781	501	0	4500	180	0	100			
1070	405	0	1500	170	90	120			
1754	1520	1	3000	180	0	129			

Source: See [24].