Math4424 Homework 4

8.1. Determine the population principal components Y_1 and Y_2 for the covariance matrix

$$\boldsymbol{\Sigma} = \left[\begin{array}{cc} 5 & 2 \\ 2 & 2 \end{array} \right].$$

Also, calculate the proportion of the total population variance explained by the first principal component.

8.3. Let

$$\mathbf{\Sigma} = \left[\begin{array}{rrr} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{array} \right]$$

Determine the principal components Y_1, Y_2 and Y_3 . What can you say about the eigenvectors (and principal components) associated with eigenvalues that are not distinct?

8.4. Find the principal components and the proportion of the total population variance explained by each when the covariance matrix is

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma^2 & \sigma^2 \rho & 0\\ \sigma^2 \rho & \sigma^2 & \sigma^2 \rho\\ 0 & \sigma^2 \rho & \sigma^2 \end{bmatrix}, \qquad -\frac{1}{\sqrt{2}} < \rho < \frac{1}{\sqrt{2}}.$$

8.5. (a). Find the eigenvalues of the correlation matrix

$$\boldsymbol{\rho} = \begin{bmatrix} 1 & \rho & \rho \\ \rho & 1 & \rho \\ \rho & \rho & 1 \end{bmatrix},$$

Are your results consistent with (8-16) and (8-17)?

(b). Verify the eigenvalue-eigenvector pairs for the $p \times p$ matrix ρ given in (8-15).

8.6. Data on x_1 = sales and x_2 = profits for the 10 largest companies in the world were listed in Exercise 1.4 of Chapter 1. From Example 4.12,

$$\bar{\mathbf{x}} = \begin{bmatrix} 155.60\\ 14.70 \end{bmatrix}, \qquad \mathbf{S} = \begin{bmatrix} 7476.45 & 303.62\\ 303.62 & 26.19 \end{bmatrix}.$$

(a). Determine the sample principal components and their variances for these data. (You may need the quadratic formula to solve for the eigenvalues of \mathbf{S}).

(b). Find the proportion of the total sample variance explained by \hat{y}_1 .

(c). Sketch the constant density ellipse $(\mathbf{x} - \bar{\mathbf{x}})'\mathbf{S}^{-1}(\mathbf{x} - \bar{\mathbf{x}}) = 1.4$, and indicate the principal components \hat{y}_1 and \hat{y}_2 on your graph.

(d). Compute the correlation coefficients $r_{\hat{y}_1, x_k}$, k = 1, 2. What interpretation, if any, can you give to the first principal component?