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§ 1.7. Strong law of large numbers.

Strong law of large numbers (SLLN) is a central result in classical probability theory. The conver-
gence of series estabalished in Section 1.6 paves a way towards proving SLLN using the Kronecker
lemma.

(i). Kronecker lemma and Kolmogorov’s criterion of SLLN.

Kronecker Lemma. Suppose an > 0 and an ↑ ∞. Then
∑

n xn/an < ∞ implies
∑n

j=1 xj/an → 0.

Proof. Set bn =
∑n

i=1 xi/ai and a0 = b0 = 0. Then, bn → b∞ < ∞ and xn = an(bn− bn−1). Write

1
an

n∑

j=1

xj =
1
an

n∑

j=1

aj(bj − bj−1) =
1
an

[ n∑

j=1

ajbj −
n∑

j=1

ajbj−1

]

= bn +
1
an

[n−1∑

j=1

ajbj −
n∑

j=1

ajbj−1

]
= bn +

1
an

[ n∑

j=1

aj−1bj−1 −
n∑

j=1

ajbj−1

]

= bn − 1
an

n∑

j=1

bj−1(aj − aj−1)

→ b∞ − b∞ = 0.

¤
The following proposition is an immediate application of the Kronecker lemma and the Khintchine-
Kolmogorov convergence of series.

Proposition (Kolmogorov’s criterion of SLLN). Suppose X1, X2..., are independent such that
E(Xn) = 0 and

∑
n var(Xn)/n2 < ∞. Then, Sn/n → 0 a.e..

Proof. Consider the series
∑n

i=1 Xi/i < ∞, n ≥ 1. Then Theorem 1.6 implies
∑

n Xn/n < ∞ a.s..
And the above Kronecker Lemma ensures Sn/n → 0 a.s.. ¤
Obviously, if X, X1, X2, ... are iid with finite variance, the above proposition implies the SLLN:
Sn/n → E(X) a.s.. In fact, a stronger result than the above SLLN is also straightforward:

Corollary. If X1, X2, ... are iid with mean µ and finite variance. Then,

Sn − nµ√
n(log n)δ

→ 0 .a.s.

for any δ > 1.

We leave the proof as an exercise.

The corollary gives a rate of a.s. convergence of sample mean Sn/n to population mean µ at a rate
n−1/2(log n)δ with δ > 1/2. This is, although not the sharpest rate, close to the sharpest rate of
a.s. convergence at n−1/2(log log n)1/2 given in Kolmogorov’s law of iterated logarithm:





lim sup Sn−nµ√
2σ2n log log n

= 1 a.s..

lim inf Sn−nµ√
2σ2n log log n

= −1 a.s..

for iid r.v.s with mean µ and finite variance σ2. We do not intend to cover the proofs of Kolmogorov’s
law of iterated logarithm.

(ii) Kolmogorov’s strong law of large numbers.

The above SLLN requires finite moments of the series. The most standard classical SLLN, estab-
lished by Kolmogorov, for iid r.v.s. holds as long as the population mean exist. In statistical view,
the sample mean shall always converge to the population mean as long as the population mean
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exists, without any further moment condition. In fact, the sample mean converges to a finite limit
if and only if the population mean is finite, in which case, the limit is the population mean.

Theorem 1.7. Kolmogorov’s strong law of large numbers. Suppose X, X1, X2, ... are iid and
E(X) exists. Then,

Sn/n → E(X), a.s..

Conversely, if Sn/n → µ which is finite, then µ = E(X).

Proof. Suppose first E(X1) = 0. We shall utilize the above proposition of Kolmogorov’s criterion
of SLLN. Consider

Yn = Xn1{|Xn|≤n} − E(Xn1{|Xn|≤n}).

Write
∞∑

n=1

var(Yn)
n2

≤
∞∑

n=1

1
n2

E(X21{|X|≤n}) = E
(
X2

∞∑
n=1

1
n2

1{|X|≤n}
)

≤ E
(
X2

∞∑

n≥|X|∨1

2
n(n + 1)

)
≤ 2E(|X|+ 1) < ∞

It then follows from Kolmogorov’s criterion of SLLN that

1
n

n∑

i=1

Yi → 0 a.s..

Next, since E(Xn1{|Xn|≤n}) → E(X) = 0.
∑n

i=1 E(Xi1{|Xi|≤i})/n → 0. Hence,

1
n

n∑

i=1

Xi1{|Xi|≤i} → 0 a.s..

Observe that E(X) = 0 implies E|X| < ∞, and

E|X| < ∞⇐⇒
∑

n

P (|X| > n) < ∞⇐⇒ P (|Xn| > n, i.o.) = 0 ⇐⇒ Xn/n → 0 a.s..

Therefore,
∑n

i=1 Xi1{|Xi|>i}/n → 0 a.s.. As a result, the SLLN holds.

Suppose E(X) < ∞. the SLLN holds by considering Xi − E(X), which is mean 0.

Suppose E(X) = ∞. Then, (1/n)
∑n

i=1 Xi ∧ C → E(X1 ∧ C) a.s., which ↑ ∞ when C ↑ ∞. Since
Sn ≥

∑n
i=1 Xi ∧ C, the SLLN holds. Likewise for the case E(X) = −∞.

Conversely, if Sn/n → µ a.s. where µ is finite, Xn/n → 0 a.s.. Hence, E|X| < ∞ and µ = E(X)
by the SLLN just proved. ¤

Remark Kolmogorov’s SLLN also holds for r.v.s that are pairwise independent following the same
distribution, which is slightly more general. We have chosen to follow the historic development of
the classical probability theory.

(iii). Strong law of large numbers when E(X) does not exist.

Kolmogorov’s SLLN in Theorem 1.7 already shows that the classical SLLN does not hold if E(X)
does not exist, i.e., E(X+) = E(X−) = ∞. The SLLN becomes quite complicated. We introduce
the theorem proved by W. Feller:

Proposition Suppose X, X1, ... are iid with E|X| = ∞. Suppose an > 0 and an/n is nondecreas-
ing. Then, {

lim sup |Sn|/an = 0 if
∑

n P (|X| ≥ an) < ∞
lim sup |Sn|/an = ∞ if

∑
n P (|X| ≥ an) = ∞.
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The proof is somewhat technical but still along the same line as the that of Kolmogorov’s SLLN.
Interested students may refer to the textbook (page 67). We omit the details.

Example 1.10. (The St. Petersburg Paradox) See Example 1.5 in which we have shown

Sn

n log n
→ 1

log 2
in probability

Analogous to the calculation therein,

∞∑
n=2

P (X ≥ n log n) =
∞∑

n=2

P (X ≥ 2log(n log n)/ log 2) ≥
∞∑

n=2

2− log(n log n)/ log 2 =
∞∑

n=2

1/(n log n) = ∞

By the above proposition,

lim sup
Sn

n log n
= ∞ a.s..

On the other hand, one can also show with same calculation that, for δ > 1,

lim sup
Sn

n(log n)δ
= 0 a.s..
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The following Marcinkiewicz-Zygmund SLLN is useful in connecting the rate of convergence with
the moments of the iid r.v.s.

Theorem 1.8. (Marcinkiewicz-Zygmund strong law of large numbers). Suppose
X, X1, X2, ... are iid and E(|X|p) < ∞ for some 0 < p < 2. Then,

{
Sn−nE(X)

n1/p → 0, a.s. for 1 ≤ p < 2
Sn

n1/p → 0 a.s. for 0 < p < 1.

Proof. The case with p = 1 is Kolmogorov’s SLLN. The cases with 0 < p < 1 and 1 < p < 2 are
consequences of the corollary following Theorem 1.6 and the Kronecker lemma. ¤

Example 1.11 Suppose X, X1, X2, ... are iid and X is symmetric with P (X > t) = t−α for some
α > 0 and all large t.

(1). α > 2: Then, E(X2) < ∞, Sn/n → 0 a.s. and, moreover, Kolmogorov’s law of iterated
logarithm gives the sharp rate of the a.s. convergence.

(2). 1 < α ≤ 2: for any 0 < p < α
Sn

n1/p
→ 0, a.s.

It implies that Sn/n converges to 0 a.s. at a rate faster than n−1+1/p, but not at the rate of
n−1+1/α. In particular, if α = 2, Sn/n converges to E(X) a.s. at a rate faster than n−β with any
0 < β < 1/2, but not at the rate of n−1/2.

(3). 0 < α ≤ 1: E(X) does not exist. For any 0 < p < α,

Sn

n1/p
→ 0, a.s.

Moreover, the above proposition implies

lim sup
|Sn|
n1/α

= ∞ a.s. and
Sn

n1/α(log n)δ/α
→ 0 a.s.

for any δ > 0.
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Remark. In the above example, for 0 < α < 2, Sn/n1/α converges in distribution to a nonde-
generate distribution called stable law. In particular, if α = 1, Sn/n converges in distribution to a
Cauchy distribution. For α = 2, Sn/(n log n)1/2 converges to a normal distribution, and for α > 2,
Sn/n1/2 converges to a normal distribution,

¤

DIY Exercises.

Exercise 1.25 If X1, ... are iid with mean µ and finite variance. Then,

Sn − nµ√
n(log n)δ

→ 0 a.s.

for any δ > 1.

Exercise 1.26 Suppose X,X1, ... are iid. Then, (Sn − Cn)/n → 0 a.s. if and only if E(|X|) < ∞.

Exercise 1.27 Suppose X, X1, ... are iid with E(|X|p) = ∞ for some 0 < p < ∞. Then,
lim sup |Sn|/n1/p = ∞ a.s..

Exercise 1.28 Suppose Xn, n ≥ 1 are independent with mean µn and variance σ2
n such that µn → 0

and
∑n

j=1 σ2
j →∞. show that ∑n

j=1 Xj/σ2
j∑n

j=1 σ−2
j

→ 0 a.s.

Hint: Consider the series
∑n

j=1(Xj − µj)/(σ2
j

∑j
k=1 σ−2

k ).


