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§ 2.2. Central limit theorem.

The most ideal case of the CLT is that the random variables are iid with finite variance. Although
it is a special case of the more general Lindeberg-Feller CLT, it is most standard and its proof
contains the essential ingredients to establish more general CLT. Throughout the chapter, Φ(·) is
the cdf of standard normal distribution N(0, 1).

(i). Central limit theorem (CLT) for iid r.v.s.

The following lemma plays a key role in the proof of CLT.

Lemma 2.1 For any real x and n ≥ 1,

|eix −
n∑

j=0

(ix)j

j!
| ≤ min

( |x|n+1

(n + 1)!
,
2|x|n
n!

)
.

Consequently, for any r.v. X with characteristic function ψ and finite second moment,

∣∣∣ψ(t)− [1 + itE(X)− t2

2
E(X2)]

∣∣∣ ≤ |t|2
6

E(min(|t||X|3, 6|X|2)). (2.1)

Proof. The proof relies on the identity

eix −
n∑

j=0

(ix)j

j!
=

in+1

n!

∫ x

0

(x− s)neisds =
in

(n− 1)!

∫ x

0

(x− s)n−1(eis − 1)ds,

which can be shown by induction and by taking derivatives. The middle term is bounded by
|x|n+1/(n + 1)!, and the last bounded by 2|x|n/n!. ¤

Theorem 2.2 Suppose X, X1, ..., Xn, ... are iid with mean µ and finite variance σ2 > 0. Then,

Sn − nµ√
nσ2

→ N(0, 1) in distribution.

Proof. Without loss of generality, let µ = 0. Let ψ be the common characteristic function of Xi.
Observe that, by dominated convergence

E(min(|tn||X|3, 6|X|2)) → 0 as |tn| → 0

The characteristic function of Sn/
√

nσ2 is, by applying the above lemma,

E(eitSn/
√

nσ2
) = E(eitnSn) =

n∏

j=1

E(eitXj/
√

nσ2
) = ψn(

t√
nσ2

)

= [1 +
it√
nσ2

E(X)− t2

2nσ2
E(X2) + o(

1
n

)]n = [1− t2

2n
+ o(

1
n

)]n

→ e−t2/2,

which is the characteristic function of N(0, 1). Then, Levy’s continuity theorem implies the above
CLT. ¤

In the case the common variance is not finite, the partial sum, after proper normalization, may or
may not converge to a normal distribution. The following theorem provides sufficient and necessary
condition. The key point here is whether there exists appropriate truncation, which is a trick that
we have used so many times before.
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Theorem 2.3 Suppose X, X1, X2, ... are iid nondegenerate. Then, (Sn − an)/bn converges to a
normal distribution for some constants an and 0 < bn →∞, if and only if

x2P (|X| > x)
E(X21{|X|≤x})

→ 0, as x →∞. (2.2)

The proof is omitted. We note that (2.2) holds if Xi has finite variance σ2 > 0, in which case
CLT of Theorem 2.2 holds with an = nE(X) and bn =

√
nσ. Theorem 2.3 is of interest when

E(X2) = ∞. In this case, one can choose to truncate the Xis at

cn = sup{c : nE(|X|21{|X|≤c})/c2 ≥ 1}

With some calculation, condition (2.2) ensures

nP (|X| > cn) → 0 and nE(|X|21{|X|≤cn})/c2
n → 1.

Separate Sn into two parts, one with Xi beyond ±cn and the other bounded by ±cn. The former
takes value 0 with chance going to 1. The latter, when standardized by

an = nE(X1{|X|≤cn}) and bn =
√

nE(X21{|X|≤cn}) ≈ cn.

converges to N(0, 1), which can be shown by repeating the proof of Theorem 2.2 or by citing
Lindeberg-Feller CLT. We note that bn ≈

√
nvar(X1{|X|≤cn}) by (2.2).

Example 2.5 Recall Example 1.13, in which X,X1, X2, ... are iid symmetric such that P (|X| >
x) = x−α for some α > 0 all large x. Then, Theorem 2.3 implies (Sn − an)/bn → N(0, 1) if and
only if α ≥ 2. Indeed, when α > 2, the common variance is finite and CLT applies. When α = 2,

Sn/(n log n)1/2 → N(0, σ2)

for some σ2.

When α < 2, the condition in Theorem cannot hold. As to be seen in Section 1.3, Sn when properly
normalized shall converge to non-normal distribution.

(ii). The Lindeberg-Feller CLT.

Theorem 2.4 Lindeberg-Feller CLT. Suppose X1, ..., Xn, ... are independent r.v.s with mean
0 and variance σ2

n. Let s2
n =

∑n
j=1 σ2

j denote the variance of partial sum Sn = X1 + · · ·+ Xn. If,
for every ε > 0,

1
s2

n

n∑

j=1

E(X2
j 1{|Xj |>εsn}) → 0, (2.3)

then Sn/sn → N(0, 1). Conversely, if maxj≤n σ2
j /s2

n → 0 and Sn/sn → N(0, 1), then (2.3) holds.

Proof. “⇐=” The Lindeberg condition (2.3) implies

max
1≤j≤n

(σ2
j

s2
n

)
≤ ε2 +

1
s2

n

max
1≤j≤n

E(X2
j 1{|Xj |>εsn}) → 0, (2.4)

by letting n →∞ and then ε ↓ 0. Observe that for every real x > 0, |e−x−1+x| ≤ x2/2. Moreover,
for complex zj and wj with |zj | ≤ 1 and |wj | ≤ 1,

|
n∏

j=1

zj −
n∏

j=1

wj | ≤
n∑

j=1

|zj − wj |, (2.5)
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which can be proved by induction. With Lemma 2.1, it follows that, for any ε > 0,

|E(eitXj/sn)− e−t2σ2
j /2s2

n |

≤ |E
(
1 + itXj − (tXj)2

2s2
n

)
−

(
1− t2σ2

j

2s2
n

)
|+ E

[
min

( t2X2
j

s2
n

,
|tXj |3
6s3

n

)]
+

t4σ4
j

8s4
n

≤ E
( t2X2

j

s2
n

1{|Xj |>εsn}
)

+ E
( |tXj |3

6s3
n

1{|Xj |≤εsn}
)

+
t4σ4

j

8s4
n

≤ t2

s2
n

E(X2
j 1{|Xj |>εsn}) +

|t|3ε
s2

n

E(X2
j ) +

t4σ2
j

s2
n

max
1≤k≤n

σ2
k

s2
n

Then, for any fixed t,

|E(eitSn/sn)− e−t2/2|

= |
n∏

j=1

E(eitXj/sn)−
n∏

j=1

e−t2σ2
j /2s2

n |

≤
n∑

j=1

|E(eitXj/sn)− e−t2σ2
j /2s2

n | by (2.5)

≤
n∑

j=1

( t2

s2
n

E(X2
j 1{|Xj |>εsn}) +

|t|3ε
s2

n

E(X2
j ) +

t4σ2
j

s2
n

max
1≤j≤n

σ2
j

s2
n

)

≤
( t2

s2
n

n∑

j=1

E(X2
j 1{|Xj |>εsn}) + ε|t|3 + t4 max

1≤j≤n

σ2
j

s2
n

)

→ ε|t|3, as n →∞, by (2.3) and (2.4).

Since ε > 0 is arbitrary, it follows that E(eitSn/sn) → e−t2/2 for all t. Levy’s continuity theorem
implies Sn/sn → N(0, 1).

“⇐=” Let ψj be the moment generating function of Xj . The asymptotic normality is equivalent
to

∏n
j=1 ψj(t/sn) → e−t2/2. Notice that (2.1) implies

|ψj(t/sn)− 1| ≤ 2
t2σ2

j

sn
(2.6)

Write, as n →∞,
n∑

j=1

[ψj(t/sn)− 1] + t2/2

=
n∑

j=1

[ψj(t/sn)− 1− log ψj(t/sn)] +
n∑

j=1

[log ψj(t/sn)] + t2/2

≤
n∑

j=1

|ψj(t/sn)− 1− log ψj(t/sn)|+ +o(1)

≤
n∑

j=1

|ψj(t/sn)− 1|2 + o(1)

≤ max
1≤k≤n

|ψk(t/sn)− 1| ×
n∑

j=1

|ψj(t/sn)− 1|+ o(1)

≤ 4 max
1≤k≤n

t2σ2
k

sn
×

n∑

j=1

t2σ2
j

sn
+ o(1) by (2.6)

= o(1), by the assumption maxj≤n σ2
j /s2

n → 0.
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On the other hand, by definition of characteristic function, the above expression is, as n →∞,

o(1) =
n∑

j=1

[ψj(t/sn)− 1] + t2/2

=
n∑

j=1

E(eitXj/sn − 1) + t2/2 =
n∑

j=1

E(cos(tXj/sn)− 1) + t2/2 + i

n∑

j=1

E(sin(tXj/sn))

=
n∑

j=1

E{(cos(tXj/sn)− 1)1{|Xj |>εsn}}+
n∑

j=1

E{(cos(tXj/sn)− 1)1{|Xj |≤εsn}}+ t2/2

+imaginary part (immaterial).

Since cos(x)− 1 ≥ −x2/2 for all real x,

1
s2

n

n∑

j=1

E(X2
j 1{Xj |>εsn}) = 1− 2

t2

n∑

j=1

E(
t2X2

j

2s2
n

1{Xj |≤εsn})

≤ 2
t2

( t2

2
+

n∑

j=1

E{(cos(tXj/sn)− 1)1{|Xj |≤εsn}}
)

≤ 2
t2

(
|

n∑

j=1

E{(cos(tXj/sn)− 1)1{|Xj |>εsn}}|+ o(1)
)

≤ 2
t2

n∑

j=1

2P (|Xj | > εsn) + o(1)

≤ 4
t2

n∑

j=1

σ2
j

(εsn)2
+ o(1) by Chebyshev inequality

≤ 4
t2ε2

+ o(1).

Since t can be chosen arbitrarily large, Lindeberg condition holds. ¤

Remark. Sufficiency is proved by Lindeberg in 1922 and necessity by Feller in 1935. Lindeberg-
Feller CLT is one of the most far-reaching results in probability theory. Nearly all generalizations
of various types of central limit theorems spin from Lindeberg-Feller CLT, such as, for example,
CLT for martingales, for renewal proceses, or for weakly dependent processes. The insights of the
Lindeberg condition (2.3) are that the “wild” values of the random variables, compared with sn,
the standard deviation of Sn as the normalizing constant, are insignificant and can be truncated
off without affecting the general behavior of the partial sum Sn.

Example 2.6. Suppose Xn are independent and

P (Xn = n) = P (Xn = −n) = n−α/4 and P (Xn = 0) = 1− n−α/2,

with 0 < α < 3. Then, σ2
n = E(X2

n) = n2−α/2 and s2
n =

∑n
j=1 j2−α/2, which increases to ∞

at the order of n3−α. Note that Lindeberg condition (2.3) is equivalent to n2/n3−α → 0, i.e.,
0 < α < 1. On the other hand, max1≤j≤n σ2

j /s2
n → 0. Therefore, it follows from Theorem 2.4 that

Sn/sn → N(0, 1) if and only if 0 < α < 1. ¤

Example 2.7 Suppose Xn are independent and P (Xn = 1) = 1/n = 1− P (Xn = 0). Then,

[Sn − log(n)]/
√

log(n) → N(0, 1) in distribution.

It’s clear that E(Xn) = 1/n and var(Xn) = (1 − 1/n)/n. So, E(Sn) =
∑n

i=1 =
∑n

i=1 1/i, and
var(Sn) =

∑n
i=1(1− 1/i)/i ≈ log(n). As Xn are all bounded by 1 and var(Sn) ↑ ∞, the Lindeberg
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condition is satisfied. Therefore, by the CLT,

Sn −
∑n

i=1 1/i

[
∑n

i=1(1− 1/i)/i]1/2
→ N(0, 1), in distribution.

Then, [Sn−log(n)]/
√

log(n) → N(0, 1) in distribution since | log(n)−∑n
i=1 1/i| ≤ 1 and var(Sn)/ log(n) →

1. ¤

Theorem 2.2 as well as the following Lyapunov CLT are both special cases of the Lindeberg-Feller
CLT. Nevertheles they are convenient for application.

Corollary (Lyapunov CLT) Suppose Xn are indendent with mean 0 and
∑n

j=1 E(|Xj |δ)/sδ
n → 0

for some δ > 2, then Sn/sn → N(0, 1).

Proof. For any ε > 0, as n →∞,

1
s2

n

n∑

j=1

E(X2
j 1{|Xj |>εsn}) =

n∑

j=1

E(
X2

j

s2
n

1{|Xj |/sn>ε}) ≤
1

εδ−2

n∑

j=1

E(
Xδ

j

sδ
n

) → 0.

Lindeberg condition (2.3) holds and hence CLT holds. ¤

In Example 2.6, for any δ > 2,
∑n

j=1 E|Xj |δ =
∑n

j=1 jδj−α/2 which increasing at the order nδ−α+1,
while sδ

n increases at the order of n(3−α)δ/2. Simple calculation shows, when 0 < α < 1, Lypunov
CLT holds.

(iii). CLT for arrays of random variables.

Very often Lindeberg-Feller CLT is presented in the form of arrays of random variables as given in
the textbook.

Theorem 2.5 (CLT for arrays of r.v.s) Let Xn,1, ..., Xn,n be n independent random variables
with mean 0 such that, as n →∞,

n∑

j=1

var(Xn,j) → 1 and
n∑

j=1

E(X2
n,j1{|Xn,j |>ε}) → 0, for any ε > 0.

Then, Sn ≡ Xn,1 + · · ·+ Xn,n → N(0, 1).

This theorem is slightly more general than Lindeberg-Feller CLT, although the proof is identical
to that of the first part of Theorem 2.4. Theorem 2.4. is a special case of Theorem 2.5 by letting
Xn,i = Xi/sn. Thus Xn,k are undertood as the usual r.v.s normalized by the standard deviation of
the partial sums. Thus Sn in this theorem is already standardized.

DIY Exercises

Exercise 2.5 Suppse Xn are independent with

P (Xn = nα) = P (Xn = −nα) =
1

2nβ
and P (Xn = 0) = 1− 1

nβ

with 2α > β − 1. Show that the Lindeberg condition holds if and only if 0 ≤ β < 1.

Exercise 2.6 Suppose Xn are iid with mean 0 and variance 1. Let an > 0 be such that s2
n =∑n

j=1 a2
i →∞ and an/sn → 0. Show that

∑n
i=1 aiXi/sn → N(0, 1).

Exercise 2.7 Suppose X1, X2... are independent and Xn = Yn + Zn, where Yn takes values 1 and
−1 with chance 1/2 each, and P (Zn = ±n) = 1/(2n2) = (1 − P (Zn = 0))/2 Show that Lindeberg
condition does not hold, yet Sn/

√
n → N(0, 1).

Exercise 2.8 Suppse X1, X2, ... are iid nonnegative r.v.s with mean 1 and finite variance σ2 > 0.
Show that 2(

√
Sn −

√
n) → N(0, 1).


