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§ 2.2. Central limit theorem.

The most ideal case of the CLT is that the random variables are iid with finite variance. Although
it is a special case of the more general Lindeberg-Feller CLT, it is most standard and its proof
contains the essential ingredients to establish more general CLT. Throughout the chapter, ®(-) is
the cdf of standard normal distribution N(0,1).

(i). Central limit theorem (CLT) for iid r.v.s.
The following lemma plays a key role in the proof of CLT.
Lemma 2.1 For any real z and n > 1,
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Consequently, for any r.v. X with characteristic function 1 and finite second moment,
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Proof. The proof relies on the identity
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which can be shown by induction and by taking derivatives. The middle term is bounded by
|z|**1/(n + 1)!, and the last bounded by 2|x|"/n!. O
Theorem 2.2 Suppose X, X1, ..., X, ... are iid with mean p and finite variance o> > 0. Then,

Sy — o
S N N(0,1) in distribution.
no?

Proof. Without loss of generality, let ;4 = 0. Let 1 be the common characteristic function of X;.
Observe that, by dominated convergence

E(min([t,||X[?, 6|X|*)) -0 as |t,| =0
The characteristic function of S,,/v'no? is, by applying the above lemma,
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which is the characteristic function of N(0,1). Then, Levy’s continuity theorem implies the above
CLT. O

In the case the common variance is not finite, the partial sum, after proper normalization, may or
may not converge to a normal distribution. The following theorem provides sufficient and necessary
condition. The key point here is whether there exists appropriate truncation, which is a trick that
we have used so many times before.
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Theorem 2.3 Suppose X, X1, Xs,... are #id nondegenerate. Then, (S, — a,)/b, converges to a
normal distribution for some constants a,, and 0 < b,, — oo, if and only if

2?P(|X| > x)

—— — (), as r — o0. 2.2
E(X?1{x|<a}) 22

The proof is omitted. We note that (2.2) holds if X; has finite variance o2 > 0, in which case
CLT of Theorem 2.2 holds with a, = nE(X) and b, = /no. Theorem 2.3 is of interest when
E(X?) = oo. In this case, one can choose to truncate the X;s at

cn = sup{c: nE(|X|*1{x|<q)/¢* > 1}
With some calculation, condition (2.2) ensures
nP(|X|>¢,) —0 and nE(|X|*1{x|<e0y)/ch — 1.

Separate .S, into two parts, one with X; beyond =+c¢,, and the other bounded by +c,,. The former
takes value 0 with chance going to 1. The latter, when standardized by

an=nE(X1(x|<e,)  and by = \/nB(X?1x1<0,)) X n.

converges to N(0,1), which can be shown by repeating the proof of Theorem 2.2 or by citing
Lindeberg-Feller CLT. We note that b, ~ \/nvar(X1{x|<c,}) by (2.2).

EXAMPLE 2.5 Recall Example 1.13, in which X, X1, Xo, ... are iid symmetric such that P(|X| >
x) = @ for some o > 0 all large . Then, Theorem 2.3 implies (S, — a,)/b, — N(0,1) if and
only if @ > 2. Indeed, when « > 2, the common variance is finite and CLT applies. When a = 2,

Sn/(nlogn)'/* — N(0,0?)

for some o2.

When a < 2, the condition in Theorem cannot hold. As to be seen in Section 1.3, S,, when properly
normalized shall converge to non-normal distribution.

(ii). The Lindeberg-Feller CLT.

Theorem 2.4 LINDEBERG-FELLER CLT. Suppose Xy, ..., Xy, ... are independent r.v.s with mean
0 and variance o2. Let s2 = >."_, 02 denote the variance of partial sum S, = X1 + -+ + X,,. If,

Jj=1"J
for every e > 0,
n

1
;QZE(Xflﬂxnmn}) — 0, (2.3)
noj=1

then Sy /s, — N(0,1). Conversely, if maxj<n 03 /s;, — 0 and S, /s, — N(0,1), then (2.3) holds.
Proof. “«<=" The Lindeberg condition (2.3) implies
2

9 2, 1 2
11;1]_62(” (?) set s2 1I£J'a§Xn EXGHx,1>e03) = 0, (2:4)

by letting n — oo and then € | 0. Observe that for every real z > 0, |e=% —1+z| < 22/2. Moreover,
for complex z; and w; with |z;| <1 and |w;| <1,

Tz = [T wl <D 1z —wyl, (2.5)
j=1 j=1 j=1
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which can be proved by induction. With Lemma 2.1, it follows that, for any € > 0,
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elt|?, as n — 0o, by (2.3) and (2.4).

Since € > 0 is arbitrary, it follows that E(e5»/sn) — e=t*/2 for all t. Levy’s continuity theorem
implies S, /s, — N(0,1).

“<=" Let 9; be the moment generating function of X;. The asymptotic normality is equivalent
to [T, ¥;(t/sn) — e~t*/2_ Notice that (2.1) implies

Write, as n — o0,
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o(1), by the assumption max;<, 07 /s% — 0.
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On the other hand, by definition of characteristic function, the above expression is, as n — oo,

[(t/50) — 1] +£°/2
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Since cos(x) — 1 > —x2/2 for all real x,
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4
S ﬁ + 0(1).
Since t can be chosen arbitrarily large, Lindeberg condition holds. O

REMARK. Sufficiency is proved by Lindeberg in 1922 and necessity by Feller in 1935. Lindeberg-
Feller CLT is one of the most far-reaching results in probability theory. Nearly all generalizations
of various types of central limit theorems spin from Lindeberg-Feller CLT, such as, for example,
CLT for martingales, for renewal proceses, or for weakly dependent processes. The insights of the
Lindeberg condition (2.3) are that the “wild” values of the random variables, compared with s,
the standard deviation of S, as the normalizing constant, are insignificant and can be truncated
off without affecting the general behavior of the partial sum S,,.

EXAMPLE 2.6. Suppose X,, are independent and
P(X,=n)=PX,=-n)=n"%/4 and P(X,=0)=1-—n"%/2,

with 0 < a < 3. Then, op = E(X7) = n* /2 and s; = Y7, j°~/2, which increases to oo
at the order of n3~. Note that Lindeberg condition (2.3) is equivalent to n?/n3=% — 0, i.e.,
0 < @ < 1. On the other hand, maxi<;<n sz/si — 0. Therefore, it follows from Theorem 2.4 that
Sn/sn — N(0,1) if and only if 0 < a < 1. O

EXAMPLE 2.7 Suppose X,, are independent and P(X,, =1) =1/n=1— P(X,, =0). Then,

[Sn — log(n)]/+/log(n) — N(0,1) in distribution.

It’s clear that E(X,) = 1/n and var(X,) = (1 — 1/n)/n. So, E(S,) = .1, = >, 1/i, and

var(S,) = > i (1 —1/i)/i ~log(n). As X,, are all bounded by 1 and var(S,,) | oo, the Lindeberg
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condition is satisfied. Therefore, by the CLT,

Sn — Z?:1 1/i
s e VO,

in distribution.

Then, [S,,—log(n)]/y/log(n) — N(0,1) in distribution since | log(n)— i, 1/i| < 1 and var(S,)/log(n) —

1. |

Theorem 2.2 as well as the following Lyapunov CLT are both special cases of the Lindeberg-Feller
CLT. Nevertheles they are convenient for application.

Corollary (Lyapunov CLT) Suppose X,, are indendent with mean 0 and Z?Zl E(1X;1%)/s3 — 0
for some § > 2, then S, /s, — N(0,1).

Proof. For any € > 0, as n — o0,

= 2 B x seny) = D Bl ssa) < 555 D E(5) = 0.
=1 =1 n j=1 n
Lindeberg condition (2.3) holds and hence CLT holds. O

In Example 2.6, for any § > 2, Y"_, E|X;|° = Y%, j°j~/2 which increasing at the order n®~**1,

while s0 increases at the order of n(®~®)%/2 Simple calculation shows, when 0 < a < 1, Lypunov
CLT holds.

(iii). CLT for arrays of random variables.

Very often Lindeberg-Feller CLT is presented in the form of arrays of random variables as given in
the textbook.

Theorem 2.5 (CLT FOR ARRAYS OF R.V.S) Let X, 1, ..., X, be n independent random variables
with mean 0 such that, as n — o0,

n

Zvar(Xnyj) -1 and Z E(X?L,jlﬂxn,j\x}) — 0, for any € > 0.
j=1 j=1

Then, Sp = Xp1+ -+ Xpn — N(0,1).

This theorem is slightly more general than Lindeberg-Feller CLT, although the proof is identical
to that of the first part of Theorem 2.4. Theorem 2.4. is a special case of Theorem 2.5 by letting
Xn,i = X;/sn. Thus X,,  are undertood as the usual r.v.s normalized by the standard deviation of
the partial sums. Thus .S, in this theorem is already standardized.

DIY EXERCISES
Exercise 2.5 Suppse X,, are independent with

with 2ac > 8 — 1. Show that the Lindeberg condition holds if and only if 0 < 3 < 1.

Exercise 2.6 Suppose X, are iid with mean 0 and variance 1. Let a, > 0 be such that s =
>oi_yai — oo and a, /s, — 0. Show that 3" | a; Xi/s, — N(0,1).

FExercise 2.7 Suppose X1, Xs... are independent and X,, = Y,, + Z,,, where Y,, takes values 1 and
—1 with chance 1/2 each, and P(Z, = 4+n) = 1/(2n?) = (1 — P(Z,, = 0))/2 Show that Lindeberg
condition does not hold, yet S,,/v/n — N(0,1).

Exercise 2.8 Suppse X1, Xo, ... are iid nonnegative r.v.s with mean 1 and finite variance o2 > 0.

Show that 2(y/S,, — v/n) — N(0,1).



