Solution Set 1

1. Solve the characteristic equation, find the general solution of $u_x - u_y + yu = 0$

Answer

The characteristic equation is dy/dx = -1, so the characteristics are straight lines y = -x + k. Use the transformation

$$\xi = x, \eta = x + y.$$

The transformed differential equation is

$$w_{\xi} + (\eta - \xi)w = 0.$$

Multiply this equation by $e^{\eta\xi-\xi^2/2}$ to get

$$\frac{d}{d\xi} \left(e^{\eta \xi - \xi^2/2} w \right) = 0.$$

Then

$$we^{\eta\xi-\xi^2/2} = g(\eta),$$

SO

$$w(\xi, \eta) = g(\eta)e^{\xi^2/2}e^{-\eta\xi}.$$

In terms of x and y,

$$u(x,y) = g(x+y)e^{-xy-x^2/2}$$
.

2. Solve the characteristic equation, find the general solution of $xu_x - yu_y + u = x$.

Answer

The characteristic equation is dy/dx = -y/x. The characteristics are hyperbolas xy = k. Let $\xi = x, \eta = xy$ to get

$$\xi w_{\xi} + w = \xi,$$

with the general solution

$$w = \frac{1}{2}\xi + \frac{1}{\xi}g(\eta).$$

Then

$$u(x,y) = \frac{1}{2}x + \frac{1}{x}g(xy).$$

3. Use the method of characteristics to find a solution of the pde that passes through the given curve Γ .

$$u_x - u_y = u^2$$
; Γ is given by $y = 2x - 1$, $u = 4$.

Answer

The characteristics are given by

$$x = t + A, y = -t + B, -\frac{1}{u} = t + C.$$

Suppose that a characteristic intersects Γ at P:(s,2s-1,4) when t=0. Then

$$x = s = A, y = 2s - 1 = B, -\frac{1}{u} = t - \frac{1}{4} = C.$$

Eliminate s and t to obtain the explicit solution

$$u(x,t) = \frac{3}{y - 2x + \frac{7}{4}}.$$

4. Use the method of characteristics to find a solution of the pde that passes through the given curve Γ .

$$xu_x + u_y = e^u$$
; Γ is given by $y = x - 1, u = 0$.

Answer

The characteristics are given by

$$x = Ae^t, y = t + B, -e^{-u} = t + C.$$

Suppose that a characteristic intersects Γ at P:(s,s-1,0) when t=0. Then

$$x = A = s, y = B = s - 1, C = -1.$$

Then

$$x = se^{t}, y = t + s - 1, -e^{-u} = t - 1.$$

Eliminate s and t to obtain the implicitly defined solution

$$x = (y + e^{-u}) e^{1 - e^{-u}}$$
.

5. Use the method of characteristics to find a solution of the pde that passes through the given curve Γ .

2

$$uu_x + u_y = 0$$
; Γ is given by $y = 0, u = h(x)$.

Answer

The characteristics are given by the equations

$$dx/dt = u$$
, $dy/dt = 1$, and $du/dt = 0$.

Solutions are of the form

$$u = C(s), y = t + B(s), \text{ and } x = C(s)t + A(s).$$

At t = 0, (x, y, u) = (A(s), B(s), C(s)) and is on the curve (s, 0, h(s)). Therefore, A(s) = s, B(s) = 0, and C(s) = h(s). The solution surface is parameterized as

$$(x, y, u) = (h(s)t + s, t, h(s)).$$

The implicitly defined solution is

$$u = h(x - uy).$$