GREEN’S IDENTITIES AND GREEN’S
FUNCTIONS

Green’s first identity

First, recall the following theorem.

Theorem:

(Divergence Theorem) Let D be a bounded solid region
with a piecewise C! boundary surface OD. Let n be the
unit outward normal vector on 9D. Let f be any C* vector
field on D = D U dD. Then

// ﬁ-de://f-ndS
D oD

where dV is the volume element in D and d.S' is the surface
element on O0D.

By integrating the identity
V- (vVu) = Vo - Vu+ v Au

over D and applying the divergence theorem, one gets

// 7048 = // Vo - VudV+///vAudV

where 8u/ dn = n - Vu is the directional derivative in the
outward normal direction. This is Green’s first identity.



Constraint on Neumann problems

Let v = 1. Green’s first identity becomes

// —dS = ///Audv (%)

Con81der the Neumann problem in any domain D:
Au= f(x) inD
ou

on
Applying the above identity, one gets

!{hdS/{ fdv.

Therefore h and f cannot be freely selected, else the problem
may have no solution.

= h(x) on dD.

Mean value property

In three dimensions, the average value of any harmonic func-
tion over any sphere equals its value at the center. Applying
the identity (x) to a sphere with radius a in spherical coordi-
nates, one gets

2T T
/ / ur(a, 0, ¢)a’ sin 0dOdg = 0
0o Jo

27 T
:a2/ / u(a, 0, @) sin 0dOde
0o Jo

This gives



1 2T T
j [4 : / / u(r, 0, ¢)r*sin 0dOde
Tr mwr 0 0

1 2w pT
S / u,(r, 0, ¢) sin Odfdp = 0
477' 0 0

Thus the mean value inside the rectangular bracket is inde-
pendent of r and

2 pm
/ / u(r, 0, ¢)r’ sin §dOdo = u(0).
0o Jo

Maximum principle

Arr?

If D is a connected solid region, a non-constant har-
monic function in D cannot take its marimum value

inside D, but only on OD.

This can be shown in the same way as the two dimensional
case.

Uniqueness of Dirichlet’s problem

By substituting v = u, a harmonic function, in Green’s first
identity, one gets

// s = ///|vu|2dv

Let uy and U9 be two solutlons of the same Dirichlet problem,
then their difference u = uw; — u» 1s a harmonic function satis-

fying the zero boundary Dirichlet problem, then [f Vul|2dV
— 0= |Vu[2=0 = u = constant = 0.
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For Neumann problem, the solution is unique up to a constant
on D.

Dirichlet’s principle

Among all the Ct functions w(x) in D that satisfy the
Dirichlet boundary condition w = h(x) on 9D, the har-
monic function u that satisfies the boundary condition
minimaze the enerqy:

Elul =5 [|f [9ulax

Proof:

Let w = u+ v where both w and w satisty the Dirichlet
boundary condition, but u is a harmonic function. Then
v is a function that has zero value on 9D.

E[w]:%// ¥ (u+ ) 2dx.

= Elu +// Vu - Vodx + E[u]

Asv =10 on_)@D and Au = 01in D, Green’s first identity
gives [[[,Vu-Vvdx = 0. Therefore,

Flw| = Flu]l + Ev] > Elu.

This means that the energy is smallest when w = w.



Green’s second identity

Switch u and v in Green’s first identity, then subtract it from
the original form of the identity. The result is

/// (uAv — vAu)dV = // (ug—z — v%) ds.

This is G'reens second zdentzty. It is valid for any pair of
function v and v.

Special boundary conditions can be imposed on the functions
to make the right hand side of these identity zero, so that

JJpudv = [[Jpviu

Definition:

A boundary condtion is called symmetric for the operator

A on D it // u@—v% dS = 0 for all pairs of
on  On

D
functions u, v that satisty the boundary condition.

Dirichlet, Neumann, and Robin BCs are symmetric.

Representation formula

Let K(x,x9) = —1/(4m|x — xg|). Any harmonic function u
in an open solid region D can be express as an integral over
the boundary 9D as



) = |f [u<x> & Keoxa) — Kl xo) 00| dS
oD

where xg € D and x is on 9D.

Proof:

First, note that AK(x,xg) = 0 except at x = x(. There-
fore, both © and K are harmonic in the domain D’ =
D — Be(xq) where B¢(xg) a ball in D, centered at x, and
with radius € > 0. Applying Green’s second identity to u
and K in D', one gets

[ oo s st a5 -

d(D—B)
With xy put at the origin of a spherical coordinate system,
the unit normal for the directional derivative at the surface
of B, is pointing towards the origin. Flipping the unit
normal outward introduces a minus sign in front of the
flux integral over B,. The equation can be rewritten as:

// [u<x) %K@(, XO) - K<X XO) g:;] dS
oD
- iw// :“<X) 5 (%1) - (_71) g—ﬂ as

0B

= i// U + 6%] sin 0dfd¢ — u(0) ase — 0T,
T or

The formula 1s thus obtained.
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This formula is not useful for finding a solution. For a Dirichlet
problem, u is uniquely determined by its value on 9D. There
is no freedom in choosing du/0n. However, this formula is

a step towards Green’s function, the use of which eliminates
the du/On term.

Green’s Function

It is possible to derive a formula that expresses a harmonic
function u in terms of its value on 0D only.

Definition:

Let xo be an interior point of D. The Green’s function
G(x, xg) for the operator A and the domain D is a function
defined for x € D such that:

(i) Let K(x,%xg) = —1/(4m|x—xg|). The function H(x) =
G(x,x0) — K (x,x() has continuous second derivatives and
is harmonic in D (including the point x).

(ii) G(x,%q) = 0 for x € OD.

Requirement (i) implies that as a function of x, G(x, xy) pos-
sesses continuous second derivatives and AG = 0 in D, ex-
cept at the point x = xj. Requirement (ii) implies that the
value of H on 0D is given by H(x) = —K(x,X() where x
is on OD. If the solution of a Dirichlet problem with arbi-
trary boundary value (described by a continuous function
on OD) exists, then H exists (and so does G). However, this
important existence theorem is not to be proven here.

Theorem:



If G(x, xg) is the Green’s function, then the solution of the
Dirichlet problem is given by the formula

o) = [[ a0 T2 g
oD

Proof:

Recall that the representation formula is

- ] (48 2e)

The result of applymg Green’s second identity to the
pair of harmonic functions u and H is

[ (2 ey

Addmg the two equations, the result becomes

= ] (18- 52) - [ 26

It is the formula needed.

Principle of reciprocity

The Green’s function G(x,xq) of a region D is symmetric,

G(x,xq) = G(x0,X) for x # xq.

This relation ensures the C? and harmonic properties of G as
a function of xq (as long as xg # x).
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Proof:
Apply Green’s second identity to the pair of functions
u(x) = G(x,a), v(x) = G(x,b) in the region D' =
D — B.(a) — B¢(b) in which u, v are harmonic. The
result is

/// (uAv — vAu)dV
//(u— - v—) dS — I.(a) — L.(b)

Where
ov

0Be(@Q

// (@% - %) as

8BE
Note that the unit normals for the directional derivatives
in these two flux integrals are outward from the centers of
the balls. Since Au, Av = 0in D — B.(a) — B.(b) and
u, v vanish on 0D

I.(a)+ I.(b)=0 for any e > 0.

To evaluate I.(a), put a at the origin of a spherical coor-

0 0

dinate system, so that |x —a| = r and — = —. Then,
o on  Or
take the limit



lim I.(a

e—0T

_ Ov 0 1 5
elg(% // K 4777“ )E — Y or <_ Ay i H)] rsin Odfdg

— _elg(%// o r?sin 0d9de = —v(a).

Similarly, lim I.(a) = u(b).

c—0t

Therefore, —v(a) +u(b) =0. = G(a,b) = G(b,a).

The Green’s function can also be applied to solve the Poisson
equation.

Theorem:

The solution of the problem
Au=f inD u=~h ondD
is given by

u(x) // aGXXO dS //f G(x,x0)d
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Green’s function in special geometries

Even though the proof of the existence for Green’s function
in a general region is difficult, Green’s functions can be found
explicitly (therefore shown to exist) for certain special cases.

The half-space

For the halt-space with z > 0, the Green’s function is

1 1
G — — + .
(%, %) dm|x — xg|  A7|x — X

where x{, = (0, Yo, —20) for xg = (x0, Yo, 20).
As n is pointing downward at the boundary,

1
9G/0n = —0Gdz],—y = 0

27 |x — x|

Therefore,
2() h(X)
— dS.
u(xo) 21 // Ix — xq|3
oD
The Ball

The Green’s function for the ball D = {|x| < a} is

1 *
n q

G(X, XO) =

CArlx — x| | dwx — x|

where ¢* = a/|xo| (> 1) and x{, = (a/|x0|)*x0 = ¢** xq.

For any x on the surface of the ball,
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X0 a X0 * *\ — *
|x—xq| = uX—— ‘ = u|X—XO| = (¢") Hx—x;
a x| a
Therefore, G(x,xg) = 0.
Furthermore, as
* *\—2
- — X X — X X
Vo= "X 0 &) 2
dm|x — %02 7 Aw|x — x3|? It |x— X
oG . 2 2
0 _X g @ Ixl”
on a dralx — xo|?
Thus, ,
2
a” — |Xy| h(x)
— dsS
(o) dma // [x — %o
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