
GREEN’S IDENTITIES AND GREEN’S

FUNCTIONS

Green’s first identity

First, recall the following theorem.

Theorem:

(Divergence Theorem) Let D be a bounded solid region
with a piecewise C1 boundary surface ∂D. Let n be the
unit outward normal vector on ∂D. Let f be any C1 vector
field on D = D ∪ ∂D. Then

∫∫∫

D

~∇ · f dV =

∫∫

∂D

f · n dS

where dV is the volume element in D and dS is the surface
element on ∂D.

By integrating the identity
~∇ · (v~∇u) = ~∇v · ~∇u + v ∆u

over D and applying the divergence theorem, one gets
∫∫

∂D

v
∂u

∂n
dS =

∫∫∫

D

~∇v · ~∇u dV +

∫∫∫

D

v∆u dV

where ∂u/∂n = n · ~∇u is the directional derivative in the
outward normal direction. This is Green’s first identity.

1



Constraint on Neumann problems

Let v = 1. Green’s first identity becomes
∫∫

∂D

∂u

∂n
dS =

∫∫∫

D

∆u dV. (∗)

Consider the Neumann problem in any domain D:

∆u = f (x) in D

∂u

∂n
= h(x) on ∂D.

Applying the above identity, one gets
∫∫

∂D

h dS =

∫∫∫

D

f dV.

Therefore h and f cannot be freely selected, else the problem
may have no solution.

Mean value property

In three dimensions, the average value of any harmonic func-
tion over any sphere equals its value at the center. Applying
the identity (∗) to a sphere with radius a in spherical coordi-
nates, one gets

∫ 2π

0

∫

π

0

ur(a, θ, φ)a2 sin θdθdφ = 0

= a2

∫ 2π

0

∫

π

0

ur(a, θ, φ) sin θdθdφ

This gives
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d

dr

[

1

4πr2

∫ 2π

0

∫

π

0

u(r, θ, φ)r2 sin θdθdφ

]

=
1

4π

∫ 2π

0

∫

π

0

ur(r, θ, φ) sin θdθdφ = 0

Thus the mean value inside the rectangular bracket is inde-
pendent of r and

1

4πr2

∫ 2π

0

∫

π

0

u(r, θ, φ)r2 sin θdθdφ = u(0).

Maximum principle

If D is a connected solid region, a non-constant har-
monic function in D cannot take its maximum value
inside D, but only on ∂D.

This can be shown in the same way as the two dimensional
case.

Uniqueness of Dirichlet’s problem

By substituting v = u, a harmonic function, in Green’s first
identity, one gets

∫∫

∂D

u
∂u

∂n
dS =

∫∫∫

D

|~∇u|2dV.

Let u1 and u2 be two solutions of the same Dirichlet problem,
then their difference u = u1−u2 is a harmonic function satis-
fying the zero boundary Dirichlet problem, then

∫∫∫

D
|~∇u|2dV

= 0 ⇒ |~∇u|2 = 0 ⇒ u = constant = 0.
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For Neumann problem, the solution is unique up to a constant
on D.

Dirichlet’s principle

Among all the C1 functions w(x) in D that satisfy the
Dirichlet boundary condition w = h(x) on ∂D, the har-
monic function u that satisfies the boundary condition
minimize the energy:

E[w] =
1

2

∫∫∫

D

|~∇w|2dx.

Proof:

Let w = u + v where both w and u satisfy the Dirichlet
boundary condition, but u is a harmonic function. Then
v is a function that has zero value on ∂D.

E[w] =
1

2

∫∫∫

D

|~∇(u + v)|2dx.

= E[u] +

∫∫∫

D

~∇u · ~∇v dx + E[v]

As v = 0 on ∂D and ∆u = 0 in D, Green’s first identity
gives

∫∫∫

D
~∇u · ~∇v dx = 0. Therefore,

E[w] = E[u] + E[v] ≥ E[u].

This means that the energy is smallest when w = u.
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Green’s second identity

Switch u and v in Green’s first identity, then subtract it from
the original form of the identity. The result is

∫∫∫

D

(u∆v − v∆u)dV =

∫∫

∂D

(

u
∂v

∂n
− v

∂u

∂n

)

dS.

This is Green’s second identity. It is valid for any pair of
function u and v.

Special boundary conditions can be imposed on the functions
to make the right hand side of these identity zero, so that
∫∫∫

D u∆v =
∫∫∫

D v∆u.

Definition:

A boundary condtion is called symmetric for the operator

∆ on D if

∫ ∫

∂D

(

u
∂v

∂n
− v

∂u

∂n

)

dS = 0 for all pairs of

functions u, v that satisfy the boundary condition.

Dirichlet, Neumann, and Robin BCs are symmetric.

Representation formula

Let K(x,x0) ≡ −1/(4π|x − x0|). Any harmonic function u
in an open solid region D can be express as an integral over
the boundary ∂D as
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u(x0) =

∫∫

∂D

[

u(x)
∂

∂n
K(x,x0) − K(x,x0)

∂u

∂n

]

dS

where x0 ∈ D and x is on ∂D.

Proof:

First, note that ∆K(x,x0) = 0 except at x = x0. There-
fore, both u and K are harmonic in the domain D′ =
D−Bε(x0) where Bε(x0) a ball in D, centered at x0, and
with radius ε > 0. Applying Green’s second identity to u
and K in D′, one gets

∫∫

∂(D−Bε)

[

u(x)
∂

∂n
K(x,x0) − K(x,x0)

∂u

∂n

]

dS = 0.

With x0 put at the origin of a spherical coordinate system,
the unit normal for the directional derivative at the surface
of Bε is pointing towards the origin. Flipping the unit
normal outward introduces a minus sign in front of the
flux integral over ∂Bε. The equation can be rewritten as:
∫∫

∂D

[

u(x)
∂

∂n
K(x,x0) − K(x,x0)

∂u

∂n

]

dS

=
1

4π

∫∫

∂Bε

[

u(x)
∂

∂r

(

−1

r

)

−

(

−1

r

)

∂u

∂r

]

dS

=
1

4π

∫∫

r=ε

[

u + ε
∂u

∂r

]

sin θdθdφ → u(0) as ε → 0+.

The formula is thus obtained.
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This formula is not useful for finding a solution. For a Dirichlet
problem, u is uniquely determined by its value on ∂D. There
is no freedom in choosing ∂u/∂n. However, this formula is
a step towards Green’s function, the use of which eliminates
the ∂u/∂n term.

Green’s Function

It is possible to derive a formula that expresses a harmonic
function u in terms of its value on ∂D only.

Definition:

Let x0 be an interior point of D. The Green’s function
G(x,x0) for the operator ∆ and the domain D is a function
defined for x ∈ D such that:

(i) Let K(x,x0) = −1/(4π|x−x0|). The function H(x) ≡
G(x,x0)−K(x,x0) has continuous second derivatives and
is harmonic in D (including the point x0).

(ii) G(x,x0) = 0 for x ∈ ∂D.

Requirement (i) implies that as a function of x, G(x,x0) pos-
sesses continuous second derivatives and ∆G = 0 in D, ex-
cept at the point x = x0. Requirement (ii) implies that the
value of H on ∂D is given by H(x) = −K(x,x0) where x

is on ∂D. If the solution of a Dirichlet problem with arbi-
trary boundary value (described by a continuous function
on ∂D) exists, then H exists (and so does G). However, this
important existence theorem is not to be proven here.

Theorem:
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If G(x,x0) is the Green’s function, then the solution of the
Dirichlet problem is given by the formula

u(x0) =

∫∫

∂D

u(x)
∂G(x,x0)

∂n
dS.

Proof:

Recall that the representation formula is

u(x0) =

∫∫

∂D

(

u
∂K

∂n
− K

∂u

∂n

)

ds.

The result of applying Green’s second identity to the
pair of harmonic functions u and H is

∫∫

∂D

(

u
∂H

∂n
− H

∂u

∂n

)

ds = 0.

Adding the two equations, the result becomes

u(x0) =

∫∫

∂D

(

u
∂G

∂n
− G

∂u

∂n

)

ds =

∫∫

∂D

u
∂G

∂n
ds.

It is the formula needed.

Principle of reciprocity

The Green’s function G(x,x0) of a region D is symmetric,
i.e.

G(x,x0) = G(x0,x) for x 6= x0.

This relation ensures the C2 and harmonic properties of G as
a function of x0 (as long as x0 6= x).
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Proof:

Apply Green’s second identity to the pair of functions
u(x) ≡ G(x, a), v(x) ≡ G(x,b) in the region D′ =
D − Bε(a) − Bε(b) in which u, v are harmonic. The
result is
∫∫∫

D′

(u∆v − v∆u)dV

=

∫∫

∂D

(

u
∂v

∂n
− v

∂u

∂n

)

dS − Iε(a) − Iε(b)

where

Iε(a) =

∫∫

∂Bε(a)

(

u
∂v

∂n
− v

∂u

∂n

)

dS

and

Iε(b) =

∫∫

∂Bε(b)

(

u
∂v

∂n
− v

∂u

∂n

)

dS.

Note that the unit normals for the directional derivatives
in these two flux integrals are outward from the centers of
the balls. Since ∆u, ∆v = 0 in D − Bε(a) − Bε(b) and
u, v vanish on ∂D

Iε(a) + Iε(b) = 0 for any ε > 0.

To evaluate Iε(a), put a at the origin of a spherical coor-

dinate system, so that |x − a| = r and
∂

∂n
=

∂

∂r
. Then,

take the limit
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lim
ε→0+

Iε(a) =

lim
ε→0+

∫∫

r=ε

[(

−
1

4πr
+ H

)

∂v

∂r
− v

∂

∂r

(

−
1

4πr
+ H

)]

r2 sin θdθdφ

= − lim
ε→0+

∫∫

r=ε

v
1

4πr2
r2 sin θdθdφ = −v(a).

Similarly, lim
ε→0+

Iε(a) = u(b).

Therefore, −v(a) + u(b) = 0. ⇒ G(a,b) = G(b, a).

The Green’s function can also be applied to solve the Poisson
equation.

Theorem:

The solution of the problem

∆u = f in D u = h on ∂D

is given by

u(x0) =

∫∫

∂D

u(x)
∂G(x,x0)

∂n
dS +

∫∫∫

D

f (x)G(x,x0) dV.
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Green’s function in special geometries

Even though the proof of the existence for Green’s function
in a general region is difficult, Green’s functions can be found
explicitly (therefore shown to exist) for certain special cases.

The half-space

For the half-space with z > 0, the Green’s function is

G(x,x0) = −
1

4π|x − x0|
+

1

4π|x − x∗
0|

.

where x∗
0 = (x0, y0,−z0) for x0 = (x0, y0, z0).

As n is pointing downward at the boundary,

∂G/∂n = −∂G/∂z|z=0 =
1

2π

z0

|x − x0|3
.

Therefore,

u(x0) =
z0

2π

∫∫

∂D

h(x)

|x − x0|3
dS.

The Ball

The Green’s function for the ball D = {|x| < a} is

G(x,x0) = −
1

4π|x − x0|
+

q∗

4π|x − x∗
0|

.

where q∗ = a/|x0| (> 1) and x∗
0 = (a/|x0|)

2x0 = q∗2 x0.

For any x on the surface of the ball,
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|x−x0| =

∣

∣

∣

∣

|x0|

a
x−

a

|x0|
x0

∣

∣

∣

∣

=
|x0|

a
|x−x∗

0| = (q∗)−1|x−x∗
0|.

Therefore, G(x,x0) = 0.

Furthermore, as

~∇G =
x − x0

4π|x − x0|3
−q∗

x − x∗
0

4π|x − x∗
0|

3
=

1 − (q∗)−2

4π

x

|x − x0|3
,

∂G

∂n
=

x

a
· ~∇G =

a2 − |x0|
2

4πa|x − x0|3
.

Thus,

u(x0) =
a2 − |x0|

2

4πa

∫∫

|x|=a

h(x)

|x − x0|3
dS.

—– Problem Set 10 —–
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