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In recent years, the theory of solar (and stellar) convection has made funda-
mental advances due to the increasing cost effectiveness of supercomputers and
the constant improvement of numerical techniques. It is expected that the nu-
merical approach will become a dominant trend for the future. Here, we report
on these new advances. First, we provide a brief review of the subject. In Sec.
1, references to theoretical studies on phenomena related to solar convection
are compiled. The objective is to provide a view of the breadth, not to be ex-
haustive. The next three sections then discuss three numerical studies of solar
convection in greater detail, so as to provide the readers with some general
understanding of the numerical techniques being used and the results obtained.
The discussion starts, in Sec. II, with a two-dimensional study of the spectro-
scopic properties of solar granules. While the two-dimensional limitation is
severely detrimental to some important hydrodynamical processes, it is both
economical and able to provide some initial understanding of the gross features
of solar convection. Section III discusses the testing of the well-known mixing-
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length theory with three-dimensional numerical experiments. It also gives an
example of applying the numerically gained knowledge to analytical study, in
this case the behavior of compressible convection as a heat engine. Section IV
describes a realistic, three-dimensional simulation of solar granulation; many
observational features of solar granules are faithfully reproduced. It is the most
sophisticated numerical calculation of this sort today.

I. INTRODUCTION

As illustrated by discussions in various other chapters, it is difficult to
find a solar phenomenon that is not somewhat affected by the solar convection
zone. The need for accurate modeling of convective processes is great. In
recent years, with the aide of supercomputers, the theoretical handling of
many complicated, highly nonlinear phenomena associated with solar con-
vection have made remarkable progress. In this chapter; we discuss some new
developments in this very active area of solar research.

As solar convection touches upon many related areas and the length of
discussion must be limited, we arrange this chapter in the following manner:
In this section, a compilation of references to the theoretical studies of solar
convection problems is given. It is intended to provide a bird’s-eye-view of
the subject and therefore the bibliography is not exhaustive. However, by
putting the many related phenomena together, we hope to present an inte-
grated picture of the solar convection system. In later sections, in depth dis-
cussions are presented for several numerical studies that illustrate the tech-
niques and results of present-day efforts in the theory of solar convection.

Table I gives a list of problems closely associated with the solar convec-
tion zone. The other columns show different types of theoretical approaches.
For each entry, examples of a few of the earliest works are given. The theo-
retical approaches are roughly divided into three groups: the analytical/one-
dimensional group, the modal group and the multi-dimensional simulation
group. The analytical and one-dimensional approaches are grouped together
as the final steps of most analytical studies result in differential equations of
one spatial dimension. The modal approach cannot be strictly separated from
the multi-dimensional group as the modes are multi-dimensional. However,
the number of modes used in actual calculations are usually very limited
and the amplitudes of the modes are described by one-dimensional differential
equations that are relatively simple to solve. Multi-dimensional simulations
usually require much more computing resources than the other approaches
and their results display much more complexity.

Approximations are sometimes used in multi-dimensional simulations to
reduce the demand on computing resources. The most popular are the Bous-
sinesq (1903; Spiegel and Veronis 1960) and anelastic approximations (Ogura
and Phillips 1962; Gough 1969). The main reason for using these approxi-
mations is to eliminate the acoustic modes which generally limit the time
steps of a calculation to very small values (the CFL condition; see Richtmyer
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TABLE I
Theoretical Studies of Problems Related to Solar Convection
Problem Analytical/1-D Modal Approach  Multi-
Approach Dimensional
Simulation
Dynamics of Bierman (1932) Gough et al. Graham (1975)
stratified Vitense (1953) (1975b); Latour et Deupree (1977)
convection Spiegel (1963) al. (1976) Hurlburt et al.
(1984)
Overshooting Unno (1957) Veronis (1963) Sofia and Chan
Shaviv and Latour et al. (1981) (1984); Hurlburt et
Salpeter (1973) al. (1986)
Granulation Musman et al. Nelson and Cloutman (1979)
(1976) Musman (1977) Nordlund (1980)
Van der Borght and
Fox (1983)
Photospheric Voight (1956) Beckers and Dravins et al.
effects Schroter (1957) Nelson (1978) (1981)
Interaction with Unno (1967) Gabriel et al. Steffen (1988)
pulsation Stein (1967) (1975); Goldreich ~ Chan and Sofia
. and Kumar (1977)  (1988); Stein et al.
(1988)
Interaction with Wasiutynski (1946) Durney (1970) Gilman (1972)
rotation 3 Kippenhahn (1963) Busse (1970) Young (1974)
‘ Glatzmaier (1984)
Interaction with Parker (1963) Weiss (1966); Schussler (1979)

small-scale
magnetic field

Interaction with
large-scale
magnetic field

Weiss (1964)

Parker (1955b)
Babcock (1961)
Steenbeck et al.
(1966)

Clark and Johnson
(1967) '

Yoshimura (1972)
Stix (1973)

Galloway and
Moore (1979)
Nordlund (1985b)

Gilman et al.
(1981); Glatzmaier
(1985a)

and Morton 1968) and therefore make the total number of steps prohibitively
large. The Boussinesq approximation is a straightforward extension of the
technique used in studying liquids; it eliminates all the effects of compressi-
bility except the idealized buoyancy term. In recent years, it has generally
been abandoned for computations involving large density stratifications. The
anelastic approximation eliminates sound waves by neglecting the Eulerian
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variation of density in the continuity equation, but the Lagrangian variation
of density is kept; it is applicable to situations with some density stratifica-
tion. However, it is not valid unless the Mach number is much less than 1
(not always true in the upper region of the solar convection zone) and when
the acoustic waves are unimportant to the dynamics. More and more research-
ers now chose to solve the fully compressible fluid equations. For concise-
ness, most of the references listed below will not be differentiated according
to their levels of approximation as discussed here.

A. Convection Dynamics

The most direct problem of solar convection concerns the hydrodynam-
ics of the process (1st row of Table I). The following questions need to be
addressed: what are the patterns of the flows; how can the convective turbu-
lence be described; and how should the flows be related to the structure of
the convection zone (i.e., depth distributions of the mean temperature, pres- -
sure, etc.)? The last question is particularly important for understanding the
internal structure and evolution of the Sun. Up to now, almost all such cal-
culations use the mixing-length theory (Biermann 1932; Vitense 1953). This
theory has the advantage of being simple to manipulate analytically and easy
to implement computationally. However, it is based on a hypothetical picture
of heat carrying bubbles which is not rigorously derived from the fluid equa-
tions. Therefore, this theory is only applied with some reluctance, and the
results are viewed with caution.

Numerous attempts to improve on the mixing-length theory have been
made. The most significant improvement is the generalization to nonlocal
theories (Spiegel 1963; Unno 1969; Ulrich 1970; Travis and Matsushima
1973; Nordlund 1976; Xiong 1981; Kuhfuss 1986). Furthermore, modifica-
tion of the theory to account for the opacity difference in upward and down-
ward flows has been considered (Deupree 1979). Variable mixing-length ra-
tios have also been proposed (Deupree and Varner 1980; Chan et al. 1981;
Cloutman 1987).

To study the problem on a more fundamental level, attempts have been
made to reconstruct a uniform convective flux by a linear superposition of
unstable modes generated by the superadiabatic structure (Hart 1973; Bogart
et al. 1980; Narashima and Antia 1982; Antia et al. 1983). However, effects
of the neglected nonlinear interactions cannot be properly assessed.

The most reliable way to study convection theory is to solve the fluid
dynamical equations. To reduce the computational load, the modal approach
uses a very limited number (usually 1 or 2) of planforms to represent the
horizontal patterns of the convective motions; the vertical variation of the
amplitudes of the modes can be computed in high resolution (Gough et al.
1975b; Van der Borght 1975; Latour et al. 1976,1983; Toomre et al. 1976;
Fox and Van der Borght 1985; Fox 1985; Legait 1986).
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Multi-dimensional solutions of the Navier Stokes equations for convec-
tive layers traversing several pressure scale heights were first obtained by
Graham (1975,1977). Since then, the simulation approach flourishes in the
study of convection dynamics (Deupree 1977; Marcus 1979,1980; Nordlund
1980,1982; Chan et al. 1982,1987; Hurlburt et al. 1984,1986; Yamagushi
1984,1985; Woodward and Porter 1987; Gigas 1989; Cataneo et al. 1990;
Nordlund and Dravins 1990). However, the stratification of the solar convec-
tion zone is much too large for any single computation; so far, numerical
computations can only study different regions of the solar convection zone.

B. Overshooting

The study of convective overshooting into neighboring stable regions is
a natural extension of the study of dynamics. It has significant implication in
the elemental distribution and evolution of the Sun (Bohm 1963; Weymann
1965; Straus et al. 1976; Chiosi 1986). Most of the theories are based on
some extension of the mixing-length theory (Unno 1957; Shaviv and Salpeter
1973; Cogan 1975; Maeder 1975; Roxburgh 1978; Cloutman and Whitaker
1980; Van Ballegooijen 1982; Schmitt et al. 1984; Pidatella et al. 1986).
Enlightening results have been obtained by modal calculations (Veronis 1963;
Latour et al. 1981; Massaguer et al. 1984) and multi-dimensional simulations
(Sofia and Chan 1984; Hurlburt et al. 1986).

C. Granulation

Granulation is the most prominent convective feature on the solar sur-
face. A one-dimensional model based on energy balance has been considered
by Musman and Nelson (1976), and two-dimensional single-mode models
have been computed by Nelson and Musman (1977) and Van der Borght and
Fox (1983). By solving the Navier Stokes equations in two dimensions,
Cloutman’s model (1979) included a treatment of the thermodynamics of the
partially ionized gas. Nordlund’s (1980,1982,1985b) anelastic model solved
the Navier Stokes equations in three dimensions and included a sophisticated
treatment of radiative transfer. Detailed behavior of axisymmetric two-
dimensional models have been studied by Steffen and Muchmore (1988) and
Steffen et al. (1989); also see Sec. II. Recently, Stein and Nordlund extended
Nordlund’s code to compute fully compressible three-dimensional models
(see Sec. IV).

D. Effects on the Photosphere

The effects of convection on the photosphere is closely related to the
granulation, the most important aspect being the influence on the radiation
spectrum, because that is the fundamental diagnostic tool for observation.
The significance of the convective turbulence on the radiative transfer in the
photosphere was recognized very early (Voight 1956; Schroter 1957). Using
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a sinusoidal model to represent the motions of the granules, Beckers and
Nelson (1978) presented a theory for the solar limb effect based solely on the
effects of convective motions. Using the kinematic information from Nor-
dlund’s granulation model, Dravin et al. (1981,1986,1990a,b) have com-
puted details of line asymmetries and wavelength shifts of photospheric spec-
tral lines. Steffen (1987) made a similar study on the spectroscopic properties
of solar granulation with his axisymmetric stationary models.

E. Interaction with Pulsation

The study of pulsations or waves in the Sun has grown into a very large
field. The 5-min oscillations discovered by Leighton et al. (1962) and Noyes
and Leighton (1963) have become a very important diagnostic tool for the
internal condition of the Sun (Ulrich 1970; Leibacher and Stein 1971; Wolff
1972; Unno et al. 1979; Cox 1980; Duval and Harvey 1983; Ulrich and
Rhodes 1983; Deubner and Gough 1984; Gough 1985b; Christensen-
Dalsgaard et al. 19854, Christensen-Dalsgaard 1986). However, studies on
the connection of solar convection and waves were originally developed for
the heating of the chromosphere and corona (Whitaker 1963; Athay 1966;
Schatzman and Souffrin 1967, Ulmschneider 1971). The convective turbu-
lence was proposed to be the source of waves that supply mechanical energy
to the upper atmosphere of the Sun (Unno 1967; Stein 1967,1968). This
branch of development is merging with the study of convective effects on
nonradial pulsations (Gabril et al. 1975; Goldreich and Keeley 1977b; Gonczi
and Osaki 1980; Stellingwerf 1982; Goldreich and Kumer 1988). The gen-
eration of p-mode oscillations by convection was recently simulated in multi-
dimensional calculations (Steffen 1988; Chan and Sofia 1988; Stein et al.
1988,1989). Excitation of gravity waves by penetrative convection was illus-
trated by the calculation of Hurlburt et al. (1986).

F. Interaction with Rotation

Like most astrophysical objects, the Sun is rotating. Rotation introduces
much complication in the theory of convection. One important problem is the
generation of the latitudinal differential rotation (Newton and Nunn 1951;
Howard and Harvey 1970). Many theories on the origin of solar differential
rotation have been proposed; most of them were based on the anisotropic
action of the convective turbulence or on the latitudinal variation of convec-
tive heat transfer (Wasiutynski 1946; Kippenhahn 1963; Weiss 1965; Durney
1970; Busse 1970; Durney and Roxburgh 1971; Belvedere and Paterno 1977;
Durney and Spruit 1979; Rudiger 1980,1989; Stix 1981; Pidatella et al. 1986;
Tuominen and Rudiger 1989; Durney 1989). It also has been proposed that
the differential rotation is the zonal velocity field of an axisymmetric convec-
tive mode (Chan et al. 1987). Numerical simulation of solar differential ro-
tation was pioneered by Gilman (1972,1977a); elaborations were made in



SOLAR CONVECTION THEORY 229

later years (Young 1974; Gilman and Glatzmaier 1981; Glatzmaier and Gil-
man 1981; Glatzmaier 1984). However, recent results from helioseismology
(Brown et al. 1989; Libbrecht 1989; Dziembowski et al. 1989) indicate that
the distribution of angular velocity inside the Sun is substantially different
from those predicted by the numerical models. Thus a reconsideration of the
numerical problem is being undertaken (Gilman et al. 1989; Chan and Mayr
1989).

G. Interaction with the Global Magnetic Field: the Dynamo Model

The magnetic field adds another dimension of difficulty to the problem
of solar convection. The origin of the 11-yr sunspot cycle is a problem that
has occupied the minds of many generations of solar physicists (Hale 1908;.
Cowling 1934; Alfvén 1950). The prediction of the magnitude of a cycle has
very practical application in space aeronautics (Schatten and Sofia 1987). In
most solar dynamo models, the azimuthal field is generated by the nonuni-
form rotation stretching the poloidal field, and the poloidal field is produced
by the cyclonic convective motions twisting the azimuthal field (Parker
1955b; Babcock 1961; Steenbeck et al. 1966; Steenbeck and Krause 1969a,b;
Leighton 1969; Kohler 1970,1973; Roberts 1972). Global kinematic dynamo
models compute the evolution of the global magnetic field with assumed pat-
terns of the global scale convection (Yoshimura 1971,1972,1975a; Stix
1973,1976a). Dynamically self-consistent dynamo models further take ac-
count of the feedback of magnetic actions on the fluid motions (Gilman and
Miller 1981,1986; Gilman 1983; Glatzmaier 1985b; Brandenburg et al.
1990). So far, such numerical models have not been successful in generating
solutions compatible with the essential features of the solar magnetic cycle.
Recently, attentions have been brought to locating the dynamo region in a
thin layer near the bottom of the convection zone (DeLuca and Gilman
1986,1988; Gilman et al. 1989).

H. Interaction with the Magnetic Field in Smaller Scales

Studying the interaction of convection with the magnetic field in the
small scales is fundamental to the understanding of sunspots, active regions
and the fibrils that are the constituents of the global field (Parker
1955b,1975a,19794,1982a,b; Weiss 1964; Leighton 1964; Gurm and Wen-
tzel 1967; Mullan 1974; Piddington 1975; Schussler 1979,1980; Moffatt
1978; Spruit and Zweibel 1979b; Schatten et al. 1986). Many numerical stud-
ies have been made on the different aspects of the problem (Weiss
1966,1981a; Clark and Johnson 1967; Proctor and Weiss 1982; Galloway and
Moore 1979; Schussler 1979; Nordlund 1983,1985b,1986; Deinzer et al.
1984a,b; Cattaneo and Hughes 1986; Hurlburt and Toomre 1988; Knolker et
al. 1988; Nordlund and Stein 1989; Brandenburg et al. 1989).



230 K. L. CHAN ET AL.

II. TWO-DIMENSIONAL NUMERICAL SIMULATIONS AND
SPECTROSCOPIC PROPERTIES OF SOLAR GRANULES

A. Introduction

In this section we describe two-dimensional (cylindrical) hydrodynami-
cal models of solar granular convection cells, obtained from numerical sim-
ulations of turbulent compressible convection in a stratified medium, includ-
ing realistic thermodynamics and a detailed treatment of radiative energy
transfer. Based on these models, we discuss the dynamical and thermal struc-
ture of the solar photosphere. For a direct comparison with various spectro-
scopic observations, spatially resolved and horizontally averaged synthetic
spectra have been computed from the models. We conclude that basic prop-
erties of the solar granulation can be reproduced and understood by our two-
dimensional simulations.

The theoretical understanding of the phenomenon of solar granulation is
one of the topics of present-day solar physics. Despite extensive observa-
tional and theoretical efforts, our knowledge about the velocity and tempera-
ture fluctuations associated with granulation in the solar photosphere is still
incomplete. Commonly, granulation is interpreted as a pattern of surface con-
vection cells at the boundary between the hydrogen convection zone and the
photosphere, but from time to time even the convective character of granula-
tion has been questioned, as in a recent study by Roudier and Muller (1986)
who suggest that granules smaller than about 1000 km might actually be
turbulent eddies, owing their existence to larger-scale flows of which they are
just decay products, in contrast to convection cells, that are autonomous
structures driven by buoyancy. ’

It has become evident over the years that it is impossible to obtain a
consistent quantitative picture of the conditions prevailing in the solar gran-
ulation layers from a purely empirical analysis of existing observational ma-
terial (see, e.g., Bray et al. 1984). To make progress, theoretical granulation
models having the potential to provide data that can be compared directly to
solar observations are indispensable.

Notoriously, the calculation of convection in stellar atmospheres is a
complex problem, requiring the application of time-dependent, nonlinear hy-
drodynamics to a highly turbulent flow that, to complicate the situation,
strongly interacts with the photospheric radiation field. Although in principle
the problem is well defined by a few differential equations, an analytical
solution is impossible when realistic background physics is to be included.
Relevant results can only be obtained from numerical simulations on powerful
computers.

The purpose of this section is to demonstrate what kind of results can be
obtained from two-dimensional models of granular convection cells. In Sec.
II.B we give some motivation for doing two-dimensional calculations. Sec-
tion II.C briefly describes the basic foundations of the numerical simulations,
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while in Secs. II.D and E some of the results are presented along with cor-
responding observations.

B. Why Two-Dimensional Hydrodynamics?

Turbulent convection is intrinsically a three-dimensional process.
Strictly two-dimensional flows are nowhere found in nature; they are an ideal-
ization applied to flows in computer simulations. It is well known that two-
dimensional turbulence has basically differént cascade properties compared
to three-dimensional turbulence (cf. review by Kraichnan and Montgomery
1980). While in three-dimensional systems the energy cascade is from larger
to smaller spatial scales, it is from higher to lower wavenumber modes in
two-dimensional flows, i.e., the largest possible spatial scales are preferred
here. But it is not necessarily true that all the energy in two-dimensional flows
resides at the largest wavelengths. If the flow is strongly driven at smaller
wavelengths, there can be significant energy also at those smaller wave-
lengths. However, it is clear that some interesting phenomena are missed even
qualitatively in two dimensions. For example, ‘vertical vorticity cannot be
modeled and there is no vortex stretching.

Nevertheless, there are good reasons to perform two-dimensional simu-
lations of stellar convection. One important aspect is that in the case of the
solar granulation the preferred horizontal scales are known observationally.
Although granules down to very small sizes may exist, the overwhelming
contribution to the surface area (and hence to the emergent spectrum) comes
from granules measuring between 700 and 1500 km in diameter (Roudier and
Muller 1986). Furthermore, the visual impression of the granulation pattern
suggests that the structure of a single granule is roughly axially symmetrical,
especially for undisturbed granules. On this basis, it seems reasonable to
model isolated granular convection cells in cylindrical symmetry, with model
diameters corresponding to scales that dominate the appearance of the solar
granulation.

There are in fact examples of two-dimensional convection calculations
that have been successfully applied to describe actual convective phenomena
accessible to experimental verification. For example, the behavior of fireballs
could be realistically predicted by two-dimensional models for a large range
of events (Ruppel and Norton 1975). For a reasonable agreement between
simulation and nature it seems important that the appropriate spatial scales
are imposed on the models and that the actual mean flow is essentially two-
dimensional.

Further justification for two-dimensional calculations comes from a
comparison between otherwise identical simulations in two and three dimen-
sions, as carried out, e.g., by Deupree (1984a,b) and by Chan and Sofia
(1986). These authors find that the corresponding results are phenomenolog-
ically similar and many basic properties found in two-dimensional flows per-
sist in three dimensions.



232 ‘ K. L. CHANET AL.

Finally, it is important to note that restricting the problem to two dimen-
sions is an enormous advantage in terms of computer requirements. The cal-
culation of three-dimensional models is much more severely restricted by
available computer capacities than two-dimensional calculations, in particular
if detailed radiative transfer is to be taken into account. This has important
consequences: the spatial resolution achievable with two-dimensional models
is at least an order of magnitude better than with three-dimensional models;
or, alternatively, the simulated volume can be correspondingly larger in two
dimensions. Moreover, it is often necessary to repeat a simulation with a
variety of different parameters to understand the physical (or numerical) cause
for a certain phenomenon found in the calculations. It is simply not feasible
to do a large number of test runs with fully three-dimensional models. In
practice, this is not merely a quantitative difference, but constitutes a quali-
tative advantage of two-dimensional calculations. For example, the three-
dimensional compressible simulations described by Stein et al. (1989) took
600 CPU hr on a vector machine to cover 3 solar hr. In contrast, the two-
dimensional models discussed here need approximately 5 to 10 hr of CPU
time on a CRAY X-MP to simulate 3 hr of real time.

Apart from the problem of properly displaying three-dimensional infor-
mation, the added complexity makes the numerical results more difficult to
understand. In contrast, the two-dimensional (cylindrical) models described
in the following are comparatively simple, especially if the steady-state so-
lutions are considered. Under these circumstances it is more readily possible
to study in some detail the physical mechanisms governing granular convec-
tion.

Summarizing, modeling granular convection cells in two dimensions is
well motivated. It is clear that two-dimensional simulations cannot replace
fully three-dimensional calculations. Rather, they must be understood as a
complementary approach, which may prove advantageous for certain appli-
cations. Our aim is to investigate to what extent such an idealized description
is useful to explain the observations. The least we can expect is that two-
dimensional models including detailed thermodynamics and realistic radia-
tive transfer will be able to give a much better representation of the dynamical
and thermal structure of the solar photosphere than the commonly used one-
dimensional solar atmospheric models based on mixing-length concepts.

C. The Numerical Simulations

1. Foundations of the Numerical Simulations.  The framework of the
model calculations is given by the time-dependent, nonlinear equations of
hydrodynamics prescribing the conservation of mass, momentum and energy
in a stratified compressible fluid. To account for the highly turbulent character
expected for the solar granular flow (Reynolds number =~ 10°) viscosity terms
are included to model roughly the turbulent exchange of momentum and en-
ergy on subgrid scales. The corresponding subgrid scale eddy viscosity is
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calculated according to the scheme given by Deardorff (1970,1971). In cylin-
drical coordinates (r,¢,z), assuming axial symmetry but not permitting a ¢-
component of the flow velocity, the conservation equations for mass and mo-
mentum read:

Dp
— + p di =0 1
Dt pavy M
Du 19dp
— +-=—-g =0 2
Dt por Brvis @
Dv  1adp
—_— 4+ —-=—g +g=0 3
Dt p aZ ) gz,vts g ( )
where — = 9 + u— + v—a—' the Lagrangean (substantial) derivative alon
e eDt = uar o is grang ial) derivative along

the particle path, ¢ denotes time, r and z represent the horizontal and vertical
spatial coordinates (z increasing upwards), p is the mass density, p the gas
pressure; 4 and v are the horizontal and vertical velocity components, respec-
tively, div v = 0u/dr + u/r + 9v/dz; g is the acceleration of gravity (directed
downwards) while g, . and g, stand for the viscous acceleration in r and z
direction, respectively, representing functions of the spatial derivatives of the
velocity field. .
The energy equation may be written as

DsE:v

Dt Dt

rad D Xy dif

dis 4 Ds
Dt

Dr @

stating that the specific entropy s of a moving fluid element is in general not
constant (as in the adiabatic case), but changes due to: (1) exchange of radia-
tion, (2) viscous dissipation of kinetic energy, (3) turbulent diffusion of heat.
The radiative damping term is given by

E rad

417f°°
=— 1 k — S)d 5
Dl = o), KU~ S )

where T is temperature, k, is the monochromatic total absorption coefficient
(cm™1), J, is the angle-averaged monochromatic intensity and S, is the source
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function which in LTE is equal to the Planck function B,. The dissipation
term reads

dis

Ds
Dt

(0}
oT (6)

with

ou\2 av\2 u\2 ou aviz 2 R
P = M [2(5;) +2(5;) + 2(;) + (5; + 5) — g(le V) J )

m is the dynamical viscosity which itself is a complicated function of the
velocity field. The turbulent heat transfer is modeled as

Dsjr _ divf,, ®
Dt pT
where
S 2
£,,= — ETn grad s. )

The Prandtl number Pr is taken to be 1. Note that here the heat diffusion is
proportional to the local entropy gradient, which is substantially different
from the commonly used proportionality to the temperature gradient. This
concept is more compatible with the idea that turbulence has the tendency to
produce isentropic conditions, as opposed to the diffusive action based on
temperature (see also Chan and Sofia 1986). It is worth pointing out that the
convective energy flux according to mixing-length theory may be written,
without restriction to the case of an ideal gas, as

1 ds
= - Tous
F. 2 P

(10)
This is essentially the same expression as Eq. (9). The main quantitative
difference is that while the mixing length / in Eq. (10) is of the order of one
pressure scale height, it is of the order of the grid resolution in Eq. (9). The
calculations show that in the solar photosphere, the effect of dissipation is
about one order of magnitude smaller than that of turbulent heat transfer,
which, in turn, is roughly one order of magnitude smaller than radiative
damping, the dominant mode of energy exchange, at least in the layers
around optical depth unity.

The thermodynamical relations entering the computations explicitly al-
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low for temperature and pressure dependent ionization of hydrogen that has
a critical influence on the specific heats, the adiabatic temperature gradient,
and hence on the strength of convection in the upper layers of the solar con-
vection zone. Helium ionization is negligible in the temperature/pressure do-
main represented by the current models.

Equally important, a realistic modeling of granular convection requires
a reasonable description of the interaction of hydrodynamics and radiative
transfer. Because the simulation of photospheric convection has to include
the optically thick and optically thin (visible) layers at the same time, it is not
appropriate to calculate the radiation field from the local temperature gradient
by applying the often-used diffusion approximation; this is only acceptable in
the deep, optically thick layers where, however, radiative transfer is of minor
importance for the gas dynamics. In the transition region from optically thick
to optically thin conditions, radiative cooling becomes a very important fac-
tor. Here and in the higher layers, the radiation field has a nonlocal character
and the diffusion approximation is no longer valid. More accurate (but also
more costly) methods are needed to derive the radiation field at the critical
boundary between convective and radiative layers. Notably, the thermal and
dynamical structure of this so-called overshoot region are of considerable
interest, because it is here that most of the emergent spectrum originates.

Our approach is to solve the equation of radiative transfer.

A, = —k(, — S,)dl (11)

along a large number of rays crossing the model in various directions and
with different inclinations. Angle-averaging of the intensities resulting from
Eq. (11) yields J, needed in Eq. (5). In this way, nonlocal radiative exchange
is taken into account both vertically and horizontally. Using a realistic Rosse-
land mean opacity as a function of pressure and temperature, the gray ap-
proximation in LTE has been adopted so far.

The equations of radiative transfer and hydrodynamics are solved simul-
taneously without introducing simplifications such as linearizations or the
anelastic approximation. The numerical scheme uses an iterative procedure
based on the method of bi-characteristics. The code was derived from that of
Stefanik et al. (1984). Several extensions were applied to adapt it for the
simulation of solar granulation, including the introduction of turbulent vis-
cosity, hydrogen ionization and two-dimensional radiative transfer.

2. Model Parameters, Boundary and Initial Conditions.  Typically, the
models extend vertically from 250 km below to 600 km above the 7, = 1
level, i.e., they span several pressure scale heights. The vertical grid distance
ranges from about 20 km in the lower, convective part (more than 10 grid
points per pressure scale height) to about 40 km in the upper, radiative region.

The diameter of the cylindrical model is a free parameter which has been
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varied between 260 and 2600 km. Depending on the model diameter, the
horizontal resolution of the grid lies between 10 and 40 km.

The time step is typically less than 1 s by the requirement that it must
not exceed the sound-travel time between any two adjacent grid points (Cour-
ant condition).

Boundary conditions appropriate to the situation in the solar atmosphere
must be imposed before the differential equations can be solved numerically.
At the axis of symmetry (r = 0) the horizontal component of the velocity
must be zero, while for all remaining variables the horizontal derivative must
vanish. Similar conditions are imposed at the lateral boundary (r = R). For
the upper boundary we have two options. Either we use a stress-free closed
top (v = du/dz = 0) or the upper boundary is made transmitting for simple
acoustic waves as described by Stefanik et al. (1984), to permit (initial) pres-
sure disturbances to leave the computational domain instead of being re-
flected.

For our purpose, the stratification of the solar convection zone is much
too large to be included in a single simulation. We model only the very top
of the convection zone. In this situation, the lower boundary is most critical
because there is no way to place it at a position where conditions naturally
allow a simple boundary condition to be used; considering that at the location
of the lower boundary nearly all the energy is carried by convection, a closed
bottom seems unreasonable. Much effort was needed to devise an open lower
boundary condition, allowing a free flow of gas out of and into the model.
The basic idea in the formulation of this boundary condition is to assume a
spatially constant pressure p* along those parts of the bottom where the flow
is directed upward. Two principal versions have been tested. In the first one
(a), p* is constant also in time. Then the value of p* fixes the depth of the
lower boundary within the atmosphere. Alternatively (version b) p* is ad-
justed from time step to time step such that the total mass within the model
volume is conserved. In this case, the depth of the model is determined by
its (initial) total mass. The entropy of the gas entering the model from below
is automatically adjusted in such a way as to make the radiative flux through
the upper boundary correspond to the specified effective temperature. The
time constant for this entropy adjustment is chosen to be of the order of 1
turnover time. Both versions of the lower boundary condition are physically
consistent and flexible enough to allow the flow itself to choose the horizontal
positions of rising and sinking regions at any time during the simulation.
While versions (a) and (b) are the same for steady-state situations, condition
(b) seems in general to give more reasonable results.

For radiative transfer we assume no incident radiation at the top, while
at the bottom we can safely apply the diffusion approximation as a boundary
condition. The lateral boundary is chosen to be reflective in order to mimic
closely conditions in the solar granulation where each convection cell is sur-
rounded by several similar ones. This choice also guarantees that the net
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energy flow through the side walls is zero, and no assumptions about the
surroundings of the model need to be made.

In principle, any arbitrary configuration can be taken as an initial con-
dition. In practice, however, the initial state must not be too far from the
mean relaxed state that develops during the subsequent time evolution. Oth-
erwise numerical problems can arise if the flow velocities go supersonic and
shocks are generated in a too violent initial phase of relaxation.

3. Computation of the Emergent Spectrum. It is essential to have the
possibility to calculate synthetic spectra from the numerical models in order
to investigate their observational implications. Although in the numerical
simulation itself radiative transfer is treated in the gray approximation, it is
possible (somewhat inconsistently) to use the two-dimensional hydrodynam-
ical model atmospheres for detailed line-formation calculations to derive ba-
sic spectroscopic properties of the models. Employing a modified version of
the LTE package ATMOS/LINFOR, developed by the Kiel Group for the
analysis of stellar spectra, the emergent spectrum at arbitrary wavelengths
can be obtained as a function of the inclination of the line of sight against the
vertical axis p. Such spectrum synthesis calculations are performed only at
selected instants of time for diagnostic purposes, e.g., to evaluate the contin-
uum intensity contrast or the asymmetry of spectral line profiles.

D. Resulting Granular Flows

1. Steady-State Solutions.  Starting with appropriate initial conditions,
we can follow the time evolution of the flow. From a first series of models,
we found that the flow developed towards a steady state if the chosen diameter
of the cell was less than a critical upper limit of roughly 2000 km. Subse-
quently, the calculation of the radiation field was improved to give a better
angular resolution, using more than 10 times as many rays as before. Further-
more, the new scheme was designed to assure a much better numerical con-
servation of energy. The resulting series of second-generation models shows
no steady-state solutions down to cell diameters of about 1000 km. It is pres-
ently not known whether the new models become stationary if the cell size is
further reduced; the corresponding runs have not yet been carried out.

Although the new, nonstationary models are certainly more realistic, we
discuss the first-generation steady-state models here, because they reveal
more clearly some of the basic physics governing granular convection. A
typical steady-state solution is displayed in Fig. 1, where the model diameter
is 1750 km. All stationary models show similar characteristic flow patterns
in the lower, convectively unstable part of the model. A strong downdraft at
the axis of symmetry with maximum velocities of the order of 6 km s~' is
surrounded by a broader ring-like upflow of hot gas with lower velocities
(<2.5 km s—1) that again turns into a narrow downflow near the side walls.
The convective velocity field extends considerably into the stable layers, a
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result that cannot be obtained within the framework of local mixing-length
theories. The amount of overshooting is clearly a function of the horizontal
size of the convection cells. While the absolute value of the rms vertical
velocity v, _ is typically 1 km s~! at a height of approximately 30 km above
7 = 1, quite independent of cell size, we find that the scale height of v, _in
the overshooting region H, depends on the model diameter D roughly as H,
~ D%7, i.e., vertical motions decline more rapidly with height above smaller
granules as compared to the larger ones. Similarly, the magnitude of the max-
imum rms horizontal velocity, u,, ... depends on D approximately as
Ups mae ~ D°°. This means that the horizontal return flows occurring in the
layers around T = 1, where the vertical motions are decelerated and turned
into a horizontal direction, are more pronounced in large granules.

The corresponding temperature structure is also indicated in Fig. 1. The
lines of constant temperature illustrate that granulation generates large hori-
zontal temperature differences, typically more than 4000 K just 100 km be-
low the visible surface (1 = 1). At first sight, this value seems exceedingly
large. However, it is easily verified that temperature differences of this mag-
nitude are necessary to carry the solar energy flux by convection with flow
velocities of a few km s~1. :

Equally remarkable, the calculations produce a very steep temperature
gradient at the top of the ascending part of the flow (=40 K km™~!) where the
hot gas reaches the optically thin layers and loses its excess energy within a
short time by efficient radiative cooling. The steep temperature gradient in
concert with the recombination of hydrogen produces a local density inver-
sion about 50 km below T = 1; i.e., a layer of relatively higher density lies
on top of gas with lower density. In contrast, density increases monotonically
with depth in the cool, intergranular regions.

In the overshooting layers, the temperature fluctuations change sign:
these layers are relatively cooler above the ascending granular parts and rel-
atively warmer above the descending intergranular regions. This behavior is
a consequence of the penetration of the convective motions into stably strat-
ified atmospheric layers.

The uppermost part of the model is essentially in radiative equilibrium.
Here the temperature is nearly constant with height as expected for a gray
radiative atmosphere. In these layers, horizontal temperature fluctuations be-
come insignificant for the steady-state models. For a detailed study of the
calculated steady-state velocity and temperature fields as a function of hori-
zontal cell size see Steffen et al. (1989).

Test calculations have shown that details of the initial conditions are
unimportant in the sense that the final steady state seems to be largely inde-
pendent of the initial configuration. In particular, an initial model suggesting
the flow to ascend at the axis of symmetry and descend in a ring surrounding
the central part, resulted in a reversal of the motions after a short time. This
behavior seems to be a consequence of the symmetry conditions required at
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the axis, and not due to a problem with the code or the lower boundary
condition. This notion is supported by the numerical simulation study of
compressible convection by Chan and Sofia (1986). They found that down-
drafts are attracted and enhanced by impenetrable lateral boundaries (centers
of symmetry). Thus, the ring-shaped granules emerging from our calculations
may well be related to the so-called “exploding granules,” a common phe-
nomenon in quiet granulation (Title et al. 1987a).

Finally, it is worthwhile mentioning that oscillations, superimposed on
the convective flow, seem to be ubiquitous. Typically, we find periods of the
order of 250 s (Steffen 1988). Current evidence suggests that the oscillation
frequency is related to the acoustic cutoff frequency in the layers around 7 =
1. Test runs have confirmed the frequency to increase in proportion to g, the
acceleration of gravity.

2. Time-Dependent Flows.  Simulations with model diameters exceed-
ing the critical upper limit mentioned above never reach a steady state, not
even asymptotically; they are truly nonstationary. For diameters close to the
critical limit, we find long quiet periods of time (about 20 to 30 min) where
the topology of the flow is basically like that of the steady-state solutions
with smaller horizontal size. After some time, however, oscillations with in-
creasing amplitude develop and finally lead to a violent reorganization of the
flow structure: the extended rising regions become separated by a downflow,
implying that large convection cells temporarily split into smaller fragments
(rings). This configuration typically lives for 5 to 10 min, after which adja-
cent regions of hot rising gas have the tendency to merge again. When the
initial topology is restored, another quiet-time interval begins. The down-
drafts at the axis of symmetry and at the side walls persist throughout the
simulated time interval of approximately 2 hr of real time.

A similar behavior is found from the more recent simulations carried out
with the improved version of the code (see above). For all cases studied so
far, the resulting flows exhibit a distinctly nonstationary character.

The time evolution of the flow can be characterized as stochastic. Sig-
nificant changes occur on time scales of the order 10 min (corresponding to
approximately 1 turnover time), comparable to typical granular life times.
Alterations of the flow topology may be interpreted as a continuous splitting
and merging of granules under the constraints imposed by the cylindrical
symmetry. Sometimes these changes are strong enough to cause supersonic
flow velocities in the higher layers, leading to the formation of upward trav-
eling shocks above the central downdraft.

A snapshot from a nonstationary simulation, using the more advanced
version of the code, is shown in Fig. 2. Here the center of the rising part of
the flow has collapsed, resulting in the formation of two “granules” separated
by a downflow. In the subphotospheric layers, velocity and temperature fluc-
tuations are comparable in magnitude to those found in the steady-state mod-
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Fig. 2. Snapshot from a nonstationary nimerical simulation of granular convection in a cell measuring 2100 km in diameter. The velocity and
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els. However, the layers above T = 1 are much more strongly affected by
granular convection. In contrast to the steady-state models, we have to con-
clude that the thermal structure of the higher layers (where the spectral lines
are formed) is not exclusively determined by the condition of radiative equi-
librium. Rather, the velocity field due to overshooting motions from the con-
vection zone seems to have an important impact on the temperature stratifi-
cation of the upper solar photosphere.

The development of more than one ring of rising gas may be an indica-
tion that the assumption of cylindrical symmetry is no longer a good choice.
Perhaps a more reasonable alternative would be to use two-dimensional rec-
tangular coordinates, where the granules are rolls of infinite length instead of
rings. Of course, the real topology of granulation can only be modeled in
three dimensions (see Sec. III and IV).

E. Spectroscopic Properties of the Two-Dimensional Model Granules

1. Continuum.  From radiative transfer calculations along rays parallel
to the axis of symmetry, we can simulate spectroscopic observations at disk
center. Viewed in continuum light, the steady-state models show a dark center
surrounded by a bright ring that is bounded by an outer dark lane (resembling
an “exploding granule”). For steady-state models with diameters between
1000 and 2000 km the rms intensity contrast of the two-dimensional intensity
pattern ranges between 14 and 16% in the continuum at 5000 A, which seems
to be in reasonable agreement with observational evidence (see, e.g., Witt-
mann 1979; Bray et al. 1984). For the larger, time-dependent models we
obtain a-somewhat higher value of the rms intensity contrast. Averaged over
time, 20% at 5000 A is a typical value.

Towards smaller granular scales the amplitude of the horizontal intensity
fluctuations declines strongly. As discussed in detail by Steffen et al. (1989),
the main reason is that horizontal radiative exchange becomes increasingly
more efficient with decreasing cell size, reducing horizontal temperature fluc-
tuations particularly in the continuum-forming layers. Observations and
model calculations indicate that the continuum intensity contrast 8/, de-
pends on wavelength roughly as 8/, ~ 1/\, essentially reflecting the wave-
length dependence of the Planck function.

Spectrum synthesis for different disk positions requires more extensive
calculations with inclined rays (u = cos 6 < 1). Table II gives 8, (w)/
81,.(1) at \ 5380 A as a function of . for a steady-state model measuring
1050 km in diameter (column A) and for the larger model shown in Fig. 2
(column B), representing a typical phase during the time evolution of a non-
stationary simulation (no time average).

We note a monotonic decline of the granular contrast towards the limb
for both models. It is obvious that the nonstationary model (column B) pro-
duces a slower decrease of the granular contrast towards the limb, because it
shows larger temperature inhomogeneities in the higher layers (see above).
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TABLE II
Simulated and Observed Center-to-Limb Variation
of rms Intensity Contrast at 5380 A

8l (n)/el,, (1)
R A B C
1.0 1.00 1.00 1.00
0.8 0.88 0.89 0.93
0.6 0.70 0.76 0.75
0.4 0.44 0.61 0.52
0.2 0.14 0.52 0.25

The original observational results found by Schmidt et al. (1979) are given in
column C of Table II showing the same general trend as derived from the
simulations. It must be mentioned, however, that according to Wiesmeier and
Durrant (1981), the values given in column C should be corrected by a factor
1/A/i. Accordingly, the observed center-to-limb variation of the granular in-

tensity contrast is even smaller than indicated by the simulated results listed
in'column B.

2. Line Spectrum.  The profiles of spectral lines can be calculated with
a spatial resolution that corresponds to the horizontal grid distance of the
hydrodynamical models (typically between 10 and 40 km). Although cur-
rently no spectroscopic observation is capable of such an extremely high spa-
tial resolution, it is nevertheless instructive to look at the predicted individual
line profiles. The general picture emerging from the numerical simulations
may be summarized as follows.

The cores of absorption lines originating from the bright granular re-
gions are blue shifted (relative to the laboratory wavelength), and the blue
wing of the line profile is depressed relative to the red wing, resulting in a
considerable line asymmetry. Lines formed in the dark intergranular lanes
exhibit an even stronger asymmetry, but in the opposite direction, their cores
being red shifted (Fig. 3). The horizontally averaged line profile, obtained as
a superposition of the spatially resolved profiles, turns out to be much less
asymmetrical than most of the line profiles seen at high spatial resolution.

The residual intensity in the cores of weak spectral lines, which are
formed near the continuum-forming layers, varies across the granulation pat-
tern in accordance with the continuum intensity. In contrast, the intensity in
the cores of the stronger lines tends to be anti-correlated with the continuum
intensity: the cores of these lines are darker in the granules and brighter in
the intergranular lanes (Fig. 3). This behavior is due to the change of sign of
the temperature fluctuations in the overshooting layers mentioned in Sec.
II.D.1.
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LINE PROFILES (INDIVIDUAL SUARFACE ELEMENTS)
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Fig. 3. Spatially resolved profiles of an artificial Fe I line at X 6000 A at disk center, calculated
from a steady-state model measuring 1050 km in diameter. In granular regions with high
continuum intensity, the line profiles are blue-shifted and exhibit a blue asymmetry, whereas
the lines are red-shifted and show a strong red asymmetry in the intergranular regions with low
continuum intensity. Numbers indicate the horizontal position within the cylindrical model
seen from above (1 = near axis, 35 = near lateral boundary). The horizontally averaged line
profile has an equivalent width of 53.5 mA. Referred to the local continuum, the line is weak-
est in the dark regions with an equivalent width of 42.5 mA and strongest in the bright granular
parts, equivalent width 59.5 mA.. From this model we obtain a continuum intensity contrast of
31, (6000 A) = 11.5%.

It is encouraging to see that recent spectroscopic observations with high
spatial resolution carried out at the Observatorio del Teide in the Canary Is-
lands (Wiehr and Kneer 1988; Holweger and Kneer 1989) indeed confirm
these spectroscopic characteristics predicted by our hydrodynamical models.

Figure 4 illustrates the situation in terms of the line bisectors. In the
bright parts of the granulation, the corresponding line bisectors are inclined
to the blue (the top portion near the continuum being blue shifted relative to
the line core); in the dark intergranular regions, the line bisectors are inclined
even stronger, but to the red. The different slopes of the spatially resolved
bisectors reflect the different depth dependence of temperature and convective
velocity at the various horizontal positions within a granular convection cell.
Remarkably, the bisector of the horizontally averaged line profile exhibits the
typical C-shape in close agreement with observation. Clearly, opposite asym-
metries of the spatially resolved profiles cancel to a large degree when the
spectrum is averaged over the granulation pattern. Spectroscopic evidence for
such a behavior was found by Mattig et al. (1989).

A series of synthetic line spectra has been obtained from a nonstationary
simulation for Fe II, X 5197.6 A. The bisector of the horizontally averaged
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LINE BISECTORS (INDIVIDUAL SURFACE ELEMENTS)
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Fig. 4. Bisectors corresponding to the line profiles shown in Fig. 3. They are given on an absolute
velocity scale (solar reference frame). Numbers indicate the horizontal position within the
cylindrical model seen from above (1 = near axis, 35 = near lateral boundary). A denotes the
bisector of the horizontally averaged line profile (C-shape).

line profile is shifted back and forth (typically +1 km s-) and heavily dis-
torted as the flow evolves in time. However, the shape of a “C” is more or
less retained; inverted “C’s” were not found. Spatial and temporal averaging
results in a line profile can be compared directly to standard solar spectra. In
Fig. 5 we compare the observed line bisector of Fe II, A 5197.6 A with that
of the mean synthetic line profile obtained by averaging 70 computed spectra
(each one again an average of 35 spatially resolved spectra) separated in time
by 100 s, covering a total interval of almost 2 hr. The agreement between
observed and calculated bisector shape is excellent. However, the absolute
convective blueshift of about 0.2 km s~ (line core) seems too small if the
value of AV = —0.8 km s~!, given by Dravins et al. (1986), is taken as a
reference. On the other hand, the line broadening provided by the simulated
photospheric velocity field is sufficient to account fully for the observed line
width without invoking the usual ad hoc parameters micro- and macroturbul-
ence.

Finally, an example of how the bisector of a synthetic spectral line varies
across the solar disk is shown in Fig. 6, based on the snapshot model dis-
played in Fig. 2. Note that the large blueshift indicated by the bisectors is
due to the fact that the whole upper atmosphere is moving upward at this
instant. A time-averaged spectrum will result in a substantially smaller net
blueshift (cf. Fig. 5). In qualitative agreement with observation, the bisector
near the limb at w = 0.2 has the shape of an inverted “C”.
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Fig. 5. Comparison of calculated and observed bisector of Fe II, A 5197.6 A at solar disk center,
which has an equivalent width of roughly 90 mA. The observed bisector (right) is arbitrarily
displaced relative to the calculated bisector (left, on an absolute velocity scale). Based on a
nonstationary simulation in a cell measuring 2100 km in diameter, the synthetic bisector was
obtained as a combined spatial and temporal average of 2450 individual line profiles. The
differences near the continuum are due to a weak blend in the observed spectrum. (FTS obser-
vation courtesy of W. Livingston, National Solar Observatory, Tucson, U.S.A.)
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Fig. 6. Calculated center-to-limb variation of the bisector of Ni I, A 6767.8 A (GONG line).
From left to right cos 6 = wis 1.0, 0.8, fd, 0.6, 0.4 and 0.2, respectively (fd = bisector of
disk-integrated line profile). Spectrum synthesis is based on the model granule shown in Fig.
2 (no time average).
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F. Conclusions and Future Prospects

We have calculated detailed hydrodynamical models of cylindrical pho-
tospheric convection cells. This two-dimensional problem requires consider-
ably less computational effort than the full three-dimensional case. Based on
the two-dimensional models, we have discussed the dynamical and thermal
structure of the solar photosphere. The nonstationary simulations suggest that
even the higher photosphere is not in radiative equilibrium but exhibits sub-
stantial temperature inhomogeneities induced by overshooting motions from
the convection zone. Using spectrum synthesis techniques, observable quan-
tities have been derived from our models. The results obtained so far indicate
that basic properties of solar granular convection can be reproduced and
understood by the two-dimensional model calculations. For example, the
computed continuum intensity contrast and asymmetry of spectral lines com-
pare well with observations.

'~ We plan to perform further simulations of solar convection using two-
dimensional rectangular geometry instead of axial symmetry, allowing the use
of periodic boundary conditions in the horizontal direction. In this way, the
development of exceedingly strong downdrafts at the lateral boundaries will
be avoided. Another improvement under way is the implementation of non-
gray radiative transfer. Simulations with the future code should be extended
to somewhat deeper layers than the present models.

Apart from studying solar granulation, future applications of the two-
dimensional simulations will include the exploration of the hydrodynamical
conditions in the atmospheres of F- and A-type stars.

III. BEHAVIOR OF DEEP, EFFICIENT CONVECTION

A. The Search for Hydrodynamical Principles of Convection

In the central region of the solar convection zone (from 1 to 16 pressure
scale heights below the photosphere), radiation is ineffective for energy trans-
port. Over 98% of the outward energy flux is carried by convection. This is
a region where convection is mainly controlled by purely  hydrodynamical
effects, little complicated by radiation; we call this efficient convection. It
would be easier to extract the hydrodynamical principles (if any) of deeply
stratified convection by studying this region. These principles are not only
important for understanding the structure and evolution of the Sun, but sim-
ilarly important for other stars.

The mixing-length theory of convection is a set of assumed hydrody-
namical principles. It supposes that energy transport is performed by heat-
carrying bubbles which travel and then dissolve in about 1 to 2 pressure or
density scale heights (the mixing length). The extent of the bubbles is scaled
by the mixing length. This picture is mainly based on considering the effects
of stratification (Schwarzschild 1961). As neighboring rising bubbles travel
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across some scale heights, their volumes and cross sections have to expand
by a large factor. There would be no room for them to continue, and the
pushing and squeezing would generate turbulent (twisting) motions which
destroy the vertical coherence of the velocity (Chan et al. 1981). However,
all numerical simulations of convection before 1980 did not reveal any scal-
ing effects or dynamical significance associated with the scale heights. The
only important vertical length scale found was the total depth of the convec-
tive region.

B. Controversy over Effects of Stratification

In 1982, Chan, Sofia, and Wolff reported that convection cells with sizes
ranging from the total depth of the convection zone to the smallest scale
height at the top of the zone co-exist in their two-dimensional simulation.
Furthermore, the longitudinal correlation function of the vertical velocity was
found to be scaled by the local scale heights. This report has generated con-
troversies because for quite a few years after that, no other group obtained
similar results. In particular, the flows of the other calculations would pro-
duce vertical auto-correlation coefficients close to unity throughout the total
depths of the convection zones. Conclusive comparison could not be made
between the calculations of the different groups because the model problems
were very different. The study made by Chan et al. differed from the other
studies in two important aspects. First, they studied efficient and turbulent
convection. Effects of diffusion which tend to smother small-scale motions
were minimized. Second, they paid special attention to resolving the scale
heights at all depths. This of course is a necessary requirement for any study
interested in the effects of scale heights.

Did some kind of numerical approximation or parameterization generate
the reported behavior artificially? Specifically, the following questions have
been raised: (1) Chan et al. used an alternating direction implicit method to
increase the numerical speed of solving the Navier Stokes equations (Chan
and Wolff 1982). The temporal truncation error of this method is relatively
large due to the use of an operator-splitting technique (Chan 1983). Are the
smaller cells simply numerical noise? (2) To parameterize the effects of
subgrid-scale turbulence, Chan et al. used a nonlinear viscosity (Smagorinsky
1963) in their calculation. Can this added nonlinearity generate the smaller
cells? These are valid concerns.

To examine these possibilities, Chan and Sofia (1986) made several
three-dimensional calculations with different numerical techniques and vis-
cosity models to intercompare. The scaling effects of the local scale heights
persisted, even when a standard, explicit, time-marching scheme was used,
as well as when a constant viscosity was used. Therefore, the behavior is
robust.

The three-dimensional flows do not behave in a way identical to that
conceived by the mixing-length picture (which is not surprising however).
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Particularly, the upflows and downflows are highly asymmetric, and the
stronger, more concentrated downflows can penetrate many scale heights, in
agreement with those found by modal and two-dimensional calculations (see
the references quoted in Sec. I). Recently, Stein and Nordlund reported that
effects associated with stratification and scale heights appeared in their sim-
ulation of solar granules (see Sec. IV for a vivid description of such phenom-
ena).

C. Dynamics of Efficient Convection

The demonstration of the effects of stratification, although important, is:
only one of the many aspects of efficient convection studied in the series of
numerical work by Chan et al. To present an overall view on the behavior of
this kind of convection, the following results are collected here to make a
concise summary:

1. The energy-containing eddies of the convective turbulence decrease in size
toward the top region where the lengths of the scale heights drop. The
amplitudes and time scales of the fluctuation of the convective flux also
decrease toward the top (Chan et al. 1982). The implication of this is that
while the brightness fluctuation at the solar surface is only moderate, the
absolute fluctuation can be much larger in the interior.

2. The convective velocity, temperature fluctuation and the enthalpy flux can
be approximately computed from the mean superadiabatic gradient, with
mixing-length type formulae (Chan and Sofia 1987). The result thus gives
support to the mixing-length theory not only qualitatively, but also quan-
titatively.

3. The vertical correlation lengths of the vertical velocity and the temperature
fluctuation are both scaled by the pressure scale height, not by the density
scale height. This provides evidence that the mixing length in the mixing-
length theory is indeed scaled by the pressure scale height, as most stellar
evolution codes use.

4. In the upper part of the convection zone, vorticity in the vertical direction
tends to associate with funnel-like downflows (Chan and Sofia 1986). This
is similar to the behavior of the flows obtained by Nordlund (1985b). The
correlation coefficient of the downward velocity and the absolute vertical
vorticity is, however, found to be small, only ~ 0.1. This is consistent
with the rare occurrence of fully developed vortices in the photosphere
(Brandt et al. 1989).

5. Contrary to an implicit assumption of the mixing-length theory, the kinetic
energy generated by the buoyancy can work form a large energy flux with
amplitude approaching the size of the total flux. The direction of the me-
chanical flux is downward in most of the convection zone. This confirms
the modal result of Massaguer and Zahn (1980) and the two-dimensional
result of Hurlburt et al. (1984). The distribution of this flux is poorly
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modeled by the diffusion approximation, but is found to be scaled by F. /C,
where F is the total flux and C, is the specific heat under constant pressure
(Chan and Sofia 1989).

6. The production and dissipation of the kinetic energy do not parallel each
other. Production is scaled by the total flux, and the local production rate
is essentially a function of the local mean variables (see Sec.II.D). The
dissipation is clearly nonlocal; a significant amount of kinetic energy is
carried away from the production region, to be dissipated in lower regions.

7. The effective viscosity generated by the convective turbulence can be
roughly estimated as V,” H,/3 where V" is the root-mean-square vertical
velocity and H,, is the pressure scale helght (Chan et al. 1987).

8. Long-lived oscﬂlatlons co-exist with the convective turbulence (Chan and
Sofia 1988). Their frequencies are shown to be almost identical to the
eigenfrequencies of acoustic modes.

Chan and Sofia (1989) have compiled a list of numeral-empirical for-
mulae which describe the quantitative relationships among the mean vari-
ables, root-mean-square fluctuations and correlations of the convective tur-
bulence. However, the variables used in that paper are dimensionless. For the
convenience of application, the list is recast in Table III in terms of dimen-
sional variables. These formulae contain interesting information about the
thermodynamical behavior of efficient convection. Below, two of them will
be used to show that efficient convection is a very peculiar heat engine.

D. Efficient Convection as a Heat Engine

If no motions were allowed in the solar convection zone, the outward
transfer of energy would have been very difficult. With convection, the pro-
cess is much easier, but a price must be paid for moving the fluid against the
turbulence (eventually the gas viscosity). This supply of energy comes from
the heat entering at the bottom with a higher temperature 7, and leaving the
top with a lower temperature T, (see Fig. 7); considered in this way, the con-
vecting gas is a heat engine. The rate of work W is the production rate of
kinetic energy, which is eventually dissipated back into heat; therefore, the
mean heat flux F going through the upper level must be the same as that going
through the lower level.

At first glance, one may think that W is restricted by the Carnot limit:
(1-T/T,)F. However, we now show that this limit can apparently be ex- -
ceeded. Applying the formulae 15 and 20 in Table II to relate the local
production rate of kinetic energy w to the flux F, one obtains

w= —<Vp>g=<V><p>g~038 (FIC)) (g/T) 12)

where V,, p’, g are the vertical velocity, density fluctuation and the gravita-
tional acceleration, respectively; the brackets < > denote averaging. At the
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TABLE III
A List of Approximate Relationships Obtained from fitting Three-Dimensional
Numerical Results

Identifier Approximate Formula
1 V"(orV”)~061V”
2 p"/<p> ~ (.89 T"/<T>
3 pi<p> = 0.57 T'I<T>
4 S” = 0.94 C,T"KT>
5 p =~ 0.26 <p e
6 p’=0.51<p > v
7 T'KT> = 0. 90 <p> V,"2<p>
8 C[T',5'1=0.99
9 Clp',S8'] = —0.89
10 Clp', T'l = ~0.82
11 Clp’, T'] = 0.49
12 ClV,T'] = 0.81
13 C[v,S'1=0.81
14 ClV,p'l= —0.74
15 <y p’> = — <Y )(p)
16 <V, p> = 1.24 <y 2<p>
17 <VT'> = 1.26 <V >
18 <V2S’>~ 1. 20C<V>
19 <V> =~ (.58 <p> V”3/<p>
20 F,, =~ 1.25(C/R) <p><V>
21 F,_=0.72 (C /R) <p?V "3
22 T7<T> ~ 1,05 AV + 0.0027
23 <p>V?<p> = 1.17 AV + 0.0032
24 AV = 1.04 [(RIC )F]¥? <p>V¥<p>-1 — 0.002
25 Vpv»> ~ 1.03 {p><v >
26 V> = 1.13<V»>
27 p'V-V> =<V p'>/H,
Notations
! fluctuation with respect to the mean
" root-mean-square (rms) deviation
<> the mean value at a certain depth
Cl.] correlation coefficient
C, specific heat under constant pressure
F total flux
F, enthalpy flux
H, density scale height
p pressure
p density
R gas constant
T temperature
S entropy
Vo, horizontal velocities
Vv, vertical velocity
4 rms velocity
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Fig. 7. The convection zone considered as a heat engine operating between two temperatures.
The temperature at the bottom of the zone T, is higher than the temperature at the top 7,. When
a heat flux F flows through the system, a certain amount of mechanical power W is generated
to drive the fluid motions.

moment, without affecting the validity of our argument, we ignore the differ-
ence between the total flux F and the enthalpy flux here. Integrating w over
the depth z of the convection zone, one obtains

W= [wdz =08 FIC,) [ (g/T)dz~ 0.8 F (R/C,) f d(In p)
~'0.8 F In(T,/T) (13)

for which the hydrostatic approximation d(In p)/dz ~ g/RT and the almost-
adiabatic approximation In(p,/p,) ~ (R/C,) In (T/T) have been used. Equa-
tion (13) shows that W is proportional to the total number of temperature
scale heights in the convection zone; it can make W greater than F. Does this
mean that the laws of thermodynamics are being violated?

The Carnot limit given above is based on taking the whole convection
zone as a single engine, but how about considering the zone as composed of
a series of heat engines stacking one over another as shown in Fig. 8. For the
convenience of analysis, let us suppose that the ratios of temperature drops
that the engines operate on are the same; namely, T,_,/T, = A, where A>1 is
a constant. To satisfy the boundary conditions, AV = T,/T, where N is the
total number of engines. Now the total allowed power is

W=2ZW,=FN({ - IU\) =FIn(T/T) (1 — 1/\N)/In(\). (14)
The optimal value of this sum is obtained as A — 1; the upper limit is now

W < F In(T,T). (15)
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Fig. 8. The convection zone considered as a stack of heat engines. The i-th engine operates
between temperatures T, and T, ,; it can generate mechanical work at the rate W,.

Therefore, Eq. (13) is only at the 80% level of this limit and is in line with
the laws of thermodynamics. One may consider such nonoptimal efficiency
to be due to the existence of nonadiabatic heat diffusion. Alternatively, one
could assume that the engines have 100% efficiency, then Eq(14) can be used
to deduce a value of 1.6 for A, implying that the engines operate between
levels separated by about half a temperature scale height. The real situation
should be somewhere between these two extremes.

The story does not stop here. When the buoyancy work integrals are
evaluated directly with numerical data from the computations, some cases
(with low C,) show that W can even exceed slightly the limit given by Eq.(15)
(on the order of 1%).

This turns out to be caused by the negative flux of kinetic energy that
feeds energy to the lower portion of the convection zone. In the above deri-
vation, we have ignored the difference between the enthalpy flux and the total
flux. In fact, the enthalpy flux is not uniform and is larger than F' in most of
the convective region because it has to balance the substantial negative flux
of kinetic energy. From another point of view, one can say that the back-
feeding of mechanical energy to the lower portion of the convective region
enhances the energy supply to the enthalpy flux. The sum over W, in Eq.(14)
can actually be larger.

The example shown in Fig. 9 illustrates the operation of the energy loop-
back process. For simplicity, a single heat engine is considered here. The
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Fig. 9. An illustration of the loop-back process. Mechanical energy produced in the upper region
is transported to the lower region, dissipated back to heat, and fed into the thermal flux inside
the system.

mechanical energy, instead of being dissipated and fed to the low-temperature
reservoir (top) as assumed previously, is now transferred to the bottom, dis-
sipated there, and looped into the thermal flux. The Carnot limit for such a
situation can be written as:

W<QQ-T/T,) (F+W) (16)
which can be rearranged as
W< @yr)(1-T/T)F 17

This limit is much more liberal than (Eq. 15). The loop-back effect is more
significant for cases with smaller C, because the magnitudes of the mechani-
cal fluxes are relatively larger (see point 5 in the previous section—III.C).

In all of the above arrangements, the real trick is that W does not deliver
energy to outside the system. It does not generate real work for the external
world. But taken at face value, the convection zone can indeed generate an
amazing amount of mechanical power.
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IV. REALISTIC, 3D SIMULATIONS OF SOLAR CONVECTION

A. Introduction

The nature of the upper solar convection zone can be explored using
numerical simulations, and we have made such a model of the upper 2.5 Mm
of the convection zone and the photosphere. By using a realistic equation of
state and by including radiative energy transfer, we have been able to compare
the results directly with observations. The simulation shows that the topology
of solar convection is dominated by effects of stratification, and that convec-
tion consists of broad, gentle, structureless, warm, adiabatic, diverging up-
flows, with embedded filamentary, cool, fast, twisting, converging down-
drafts. The flow topology is hierarchical, with downflows around many small
cells close to the surface merging into fewer, filamentary downdrafts at
greater depths. This merging of downdrafts into fewer, more widely separated
plumes may persist through the entire depth of the convection zone. Radiative
cooling at the surface provides the entropy deficient plasma that drives the
circulation. A comparison of observable features from the simulation with
recent granulation and mesogranulation observations shows that they are in
accord.

B. Simulation

The upper solar convection zone is modeled by solving the equations of
hydrodynamics, i.e., the equation of mass conservation

al
TI;Q=—u-Vlnp—V'u (18)

the equation of momentum conservation

ad P
5‘;=—-u-Vu+g—EVInP (19)

and the equation of energy conservation

9 P
_f' = —WU - Ve - V ‘ua + Qrad + Qvisc' (20)
dt P |

These are rewritten from Eqgs. 1-4. Here p is the mass density, u is the veloc-
ity, e is the internal energy, P is the pressure, and Q,, and Q. are the radia-
tive heating and viscous dissipation, respectively. In order to model actual
solar convection as realistically as possible, we use a tabular equation of state
P = P(p,T), which includes ionization and excitation of hydrogen and other
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abundant atoms, and formation of H,, CO and other molecules (Gustafsson
1973).

This form of the equations, in terms of per-unit-mass quantities rather
than the conventional per-unit-volume quantities, is advantageous when deal-
ing with a strongly stratified atmosphere. The per-unit-volume quantities
(density, momentum and energy per unit volume), vary exponentially with
depth, and we are presently performing simulations with density ratios bot-
tom/top of the order of 105. The logarithm of the density and the energy per
unit mass vary nearly linearly with depth, both in the optically thin atmo-
sphere and in the subsurface layers. Also, the velocities vary much less with
depth than the linear momenta. The per-unit-mass quantities therefore allow
a more accurate finite difference representation of derivatives. Although the
per-unit-volume variables offer the possibility of exact conservation of mass,
momentum and energy, small errors in mass and energy conservation are
harmless in a stratified model, because the hydrostatic and energy equilibria
enforce a very well-defined mean state. These equations were tested for one-
dimensional shock tubes and found to give a good representation of the so-
lution for pressure jumps up to one million.

We evaluate the radiative energy exchange

Qi = £L kK, o — S)dQdN (21)

by solving the transfer equation for the specific intensity I, ¢

dl}\,.ﬂ

dr,

= Lo — S (22)

along inclined rays. dr, is the optical depth increment along the ray, and S,
is the source function. We assume that the source function is equal to the
Planck function, and approximate the detailed wavelength integral with a sum
over 4 bins. Absorption coefficients are calculated with a standard stellar
atmosphere code (Gustafsson et al. 1975), and are sorted into bins represent-
ing continua, weak lines, intermediate lines and strong lines (cf. Nordlund
1982; Nordlund and Dravins 1990). This treatment is sufficiently elaborate to
describe the sudden release of radiation by ascending hot gas in a thin layer
at the solar surface, and the subsequent re-absorption of a small but energet-
ically significant fraction of this energy in the upper layers of the photo-
sphere.

Nonlinear time-stepping methods, such as van Leer’s monotonic second-
order upwind method (Van Leer 1977), and Colella and Woodward’s piece-
wise parabolic method (Colella and Woodward 1984) are difficult to combine
with radiative energy transfer and magnetic fields. As we are primarily inter-
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ested in using our code as a test bed for understanding the interaction of
convection, radiation and magnetic fields near stellar surfaces, conceptual
simplicity and ease of implementation are important factors in our choice of
numerical methods.

We advance the numerical solution in time with the Adams-Bashforth
method, chosen for its high accuracy and modest memory requirements (cf.
Gear 1971; Gazdag 1976). Because of a truncation error which corresponds
to a weak but negative diffusion, Adams-Bashforth time stepping is weakly
unstable and requires a small compensating positive diffusion to be added to
all equations for stability. Stable methods were tested on model problems and
found to offer no advantage, but to require more memory or input/output.
Most stable methods (except those with large truncation errors) still need
numerical diffusion near shocks. Independent of whether the diffusivity is
provided explicitly (through spatial numerical diffusion) or implicitly
(through truncation errors in the time stepping), the required net diffusivity
is similar, and so are the actual results. As the magnitude of the numerical
dissipation is decreased, the effective resolution of a code increases. If the
dissipation is too small, structures smaller than the code can resolve and
develop, and eventually the time evolution becomes unstable.

We use a diffusion coefficient with three types of contributions: (1) a
term proportional to the sound speed, to stabilize the Adams-Bashforth time
stepping; (2) a term proportional to the fluid velocity, to prevent ringing at
sharp changes in advected quantities; and (3) a term proportional to the finite
difference velocity convergence (where positive) to stabilize shock fronts.

One of the main difficulties with applying these equations to a specific
simulation problem is the treatment of the “yirtual boundaries”; i.e., bound-
aries of the computational domain that do not correspond to real boundaries,

‘but just delimit the volume we choose (or can afford) to simulate. We deal
with this problem by using periodic horizontal boundary conditions, and by
constructing top and bottom boundary conditions which are as transmitting
as we can easily make them while still preserving stability. At the top, we
take an extra large boundary zone (= scale height). In this zone, we impose
the conditions that the amplitude of the velocity and the density fluctuations
remain constant, while the energy density at the boundary is fixed at its initial
average value. At the bottom, we impose constant pressure by adjusting the
density, and we require du/dz = 0. The vertical heat flux is kept from drifting
by specifying the internal energy of inflowing material at the bottom bound-
ary. For additional discussion of our numerical methods see Nordlund and
Stein (1990).

We simulated a region 6 X 6 Mm horizontally, in order to cover scales
at least marginally larger than granulation, and extending vertically from the
temperature minimum (— 0.5 Mm) to a depth of 2.5 Mm (Stein and Nordlund
1989). We used a grid of 63 X 63 X 63 points, which gave a resolution of
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95 km horizontally and 50 km vertically. The calculations were performed on
an Alliant FX/80 at the University of Colorado.

C._ Results

1. Surface Topology: Granulation.  The granulation pattern visible at
the solar surface consists of hot upflowing plasma in disconnected cells, sur-
rounded by cold downflowing plasma in narrow topologically connected in-
tergranular lanes (Fig. 10). The primary process that occurs in the granulation
is the radiation of energy from the hot upwelling fluid, which cools it and
reduces its entropy. Higher pressure in the hot, ascending granule centers
pushes the cooling fluid toward the intergranular lanes. The entropy deficient
fluid then starts to sink under the pull of gravity.

The granulation pattern is asymmetrical with respect to the direction of
time, as well as with respect to the connectivity of ascending and descending
gas and, indeed, the two are closely related. The ascending fluid, which ex-
pands horizontally because of the density stratification, meets expanding fluid
from neighboring cells along common borders. At these cell borders, the flow
is deflected horizontally along the border and vertically downward. The flows
along borders eventually converge at the common corners of three or more
cells. The “arrow of time” is provided by the dissipative processes in con-
junction with the asymmetry between the expansion of the ascending flow
and the convergence of descending flow.

The horizontal flow is driven by horizontal pressure fluctuations, which
in turn are caused by temperature fluctuations and the Bernoulli effect. In the
anelastic approximation (V - (pu) = 0), the pressure is determined by

VP =V-[pET)g —puV-u] (23)

which shows that the instantaneous pressure field is determined by the diver-
gence of the forces. The first term on the right-hand side is the gravitational
force, and the second term is the inertial “force”.

Qualitatively, the resulting pattern of horizontal pressure fluctuations is
easy to understand. For small velocities and sufficiently large horizontal
scales the vertical derivatives dominate; the vertical pressure gradient force
and gravity almost balance, i.e., large-scale fluctuations are close to hydro-
static equilibrium. In hydrostatic equilibrium, the change of pressure with
height is determined by the local pressure scale height, which is proportional
to temperature. As temperature fluctuations decrease rapidly with depth in a
stratified convection zone, the pattern of horizontal pressure fluctuations at
any given depth is dominated by the temperature fluctuations in the next few
scale heights below that depth. Thus, the pressure excess in a granule (which
provides the driving for the horizontal flow from the granule centers to the
surrounding intergranular lanes), is a consequence of the temperature excess
of the ascending granular flow just below the surface.
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GRANULATION

Fig. 10. Sixteen simulated snapshots of integrated radiation intensity at the solar surface. These
approximate monochromatic continuum intensity snapshots. Each snapshot is 6 X 6 Mm (8"
x 8"). The sequence spans 30 min.

In the center of intergranular lanes, the inertial forces associated with
the convergence of flows from neighboring cells also causes local pressure
enhancements. This is obvious both from direct inspection of Eq. (23) above,
and from physical grounds; the horizontal flow towards the intergranular
lanes must be decelerated by a local pressure excess there. Hurlburt et al.
(1984) have pointed out that this may be viewed as a Bernoulli effect along
approximately horizontal streamlines near the solar surface—the pressure is
a maximum where the horizontal velocity is a minimum, at the cell centers
and in the intergranular lanes.

What determines the size of granules? When attempting to answer this
question, one should keep in mind that there is no one size of granules, but
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rather a continuous distribution of sizes (and shapes), with a relatively well-
defined upper limit to the size of single bright patches. This upper limit may
be understood in terms of the constraints from mass conservation, pressure
and energy balance.

The larger the granule, the larger the horizontal velocities needed to
carry the increasing amounts of overturning gas. The amount of ascending
- fluid is proportional to the horizontal surface area which scales quadratically
with the linear size of the granule, whereas the granule boundary, through
which it must flow, only scales linearly with the size. The pressure fluctua-
tions required to accelerate this material horizontally scale as the square of
the velocities, and hence as the square of the linear size of the granule. This
scaling has two important, and in some sense, opposite consequences. On
the one hand, the larger pressures achieved by a large granule will tend to
force the common border with neighboring cells to expand, thus further in-
creasing the size of the larger granule. On the other hand, the increasing
pressure in the interior of the granule decreases the buoyancy and eventually
leads to buoyancy braking of the ascending gas in the center of the cell. This
happens when the pressure excess in the granule is sufficient to cancel the
buoyancy due to the temperature excess. For the Sun, the temperature excess
is of the order of 2 (about 11,000 K in granules relative to about 6000 K on
the average), and hence the excess pressure can support close to sonic hori-
zontal velocities. The temperature excess can be supported and the granule
continues to grow, as long as the rate of energy advection to the surface

: 1
ple + Plpu, + Epuzuz 24)

exceeds the rate of radiation, 07%. Once the vertical velocity has been reduced
to

- ol* 25)
= several X nkT

the vertical advection of excess entropy to the surface is no longer able to
supply the entropy lost through radiation, and the granule center begins to
cool, thus strangling the granule through a lack of heat input (cf. Nordlund
1985b). The critical ascent velocity is of the order of 2 km s=!. A large
granule, which is permitted to grow with little influence from neighboring
granules, may develop into a ring of hot, ascending material, surrounding a
cool, dark and eventually descending granule center, produced by the buoy-
ancy braking (cf. Fig. 10; Nordlund 1985b). This phenomenon has been
called exploding granules in the literature.

For a rough estimate of the ratio of ascent vertical to horizontal velocity
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as a function of granule size, assume that the ascending flow has cylindrical
symmetry and a scale height of the vertical mass flux equal to H,, . Then, if

the medium is anelastic and the ascending and expanding fluid is overturning
at a radius of r, continuity requires

wr? pu/H,, = 2wrpu, (26)

or

d=2r = 4H,, (u/u) ' (27)

From the pressure equation, Eq. (23), it can be shown that large-scale pres-
sure fluctuations (and hence velocity amplitudes) decrease relatively slowly
with height as compared to the pressure itself (cf. Nordlund 1982), so the
density factor dominates the mass flux scale height. "
Collecting the constraints from the continuity equation (the ratio of as-
cent velocity to horizontal velocity), the momentum equation (the maximum
horizontal velocity), and the energy equation (the minimum ascent velocity),
we obtain an estimate of the maximum granule size by inserting the sound
speed (8 km s—1) for u,, the density scale height (0.2 Mm) for Hpuz, and 2 km

s-1 for the minimum ascent velocity. The result is a diameter of about 3 Mm,
in good agreement with observations of solar granulation (Bray et al. 1984).

Using an earlier, anelastic version of the present code, Nordlund and
Dravins (1990) found that, for stars in the vicinity of the Sun in the Hertz-
sprung-Russell diagram, the size of granules scales roughly as the density
scale height in the photosphere.

Apart from this type of “self-inflicted” death of relatively large granules,
the simulations show granules breaking up because of influence from neigh-
boring granules, whose expanding flows and pressure fluctuations constitute
a highly time-dependent environment. The external perturbations experi-
enced by an individual granule are not arranged in a nicely symmetric pattern
around the granule. Rather, the neighbors surrounding any particular granule
are likely to be of different strengths; some strong, some weak. Neighboring
granules with large expansion velocities inhibit granule growth in that direc-
tion. Thus, the external influence from neighboring granules results in distor-
tion of the shape, or even break up, of a granule.

From the perspective of an individual granule, the influence from sur-
rounding granules is a pseudo-random function of space and time; although
the surrounding granules may undergo similar evolutions, the evolutions are
not in phase. As a consequence, a pattern consisting of many granules
evolves chaotically. The evolution appears subjectively chaotic, and is indeed
most likely mathematically chaotic in the sense that two neighboring points
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in phase space depart exponentially with time. A pattern of granules evolves
through many “points of decision,” where the evolution may go one way or
the other, and a slight perturbation may tip the balance in favor of one granule
or the other. Two slightly different configurations (phase-space points) will
take different paths through such “points of decision,” and thus rapidly di-
verge. Such “points of decision” occur, for example, when granules of nearly
equal size compete for space. They also occur when a granule is breaking up,
and details of the external velocity field may have a decisive influence. For
instance, tongues of protruding cool material from surrounding granules aid
in the break up of a granule. An increase of the small-scale structure in gran-
ules increases the interaction between them; highly structured flows have a
harder time arranging a “peaceful coexistence.”

Initially, we used overly conservative estimates of the necessary numer-
ical diffusion (away from shocks), which caused a lack of small-scale details
in granules (Lites et al. 1989). Tests showed that the coefficients that control
viscosity in nonshocking parts of the flow could be reduced by about a factor
of 3, while still retaining stability. As expected, the reduction of the viscosity
resulted in increased small-scale structure, and increased the number of small
granules in the simulation. However, we found that the size of even the largest
granules depended slightly on the amount of numerical diffusion. Diffusion
increases the smoothness of the simulated granules, and hence delays the
break up of granules.

2. Subsurface Topology: Mesogranulation.  Beneath the surface, the
connected intergranular lane downflow converges into topologically discon-
nected, finger-like structures (Fig. 11). The flow topology becomes large-
scale, slow, diverging, structureless upflow of warm plasma, with embedded,
twisting, narrow, isolated, fast, converging downdrafts of cool plasma (cf.
Graham 1975; Nordlund 1985b; Chan and Sofia 1986). This change of to-
pology takes place over a vertical distance (== 0.5 Mm) which is only a frac-
tion of the typical horizontal cell size. To understand this remarkable change
of topology, we proceed to discuss qualitatively the properties of convection
below the solar surface, basing the discussion partly on the numerical results
from our simulations, and partly on inspection of the governing equations.

The flow below the visible surface may be characterized as almost pure
advection. Mass is advected with only small Eulerian changes of the density
(i.e., almost anelastically), and entropy is advected with negligible influence
from radiation and dissipation (i.e., almost adiabatically). Given the negli-
gible energy exchange, the flow may be understood in terms of fluid parcel
trajectories, the properties of a fluid parcel at a certain time is the result of
the histories of its constituent parcels.

The flow topology is primarily controlled by the density stratification.
The continuity equation, Eq. (18), may also be written
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Fig. 11. Horizontal slices, showing temperature, vertical velocity, log pressure and helicity at
depths —0.35, O (visible surface), 0.5 and 2.0 Mm. The flow topology changes radically
below the surface, from isolated cells of warm upflowing plasma surrounded by connected
lanes of cool downflowing plasma, to isolated downdrafts of cool plasma embedded in a broad
gentle upflow of warm plasma. The pressure at the surface is high in the granule centers, low
at the granule boundaries, and often has a secondary maximum in the intergranule lanes. In
addition, the pressure shows a larger-scale variation corresponding to the meso-scale subsur-
face topology.

D
div(m) = B—t(—lnp) (28)

which simply states that the expansion of the fluid flow is given by the relative
rate of decrease of the density, following the motion. To be specific, a fluid
parcel ascending from the bottom of our computational box (at z = 2.5 Mm)
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to the solar surface (at z = 0 Mm) expands by a factor of about 90; e.g., its
linear size would increase by about a factor of 4.5 if the expansion were
isotropic. In principle, one could imagine the expansion to be entirely in the
vertical, but this would not be consistent with the energy equation (constant
total energy flux is obtained with a much smaller variation of vertical velocity
with height). The ascent velocity actually varies with depth approximately as
p~95, and thus the linear horizontal size of a fluid parcel increases with about
a factor of 3 over this 2.5 Mm depth interval. Because of the horizontal
expansion, only a small fraction (about 10%) of the ascending fluid at the
lower boundary ever makes it to the surface. Conversely, descending fluid at
the surface contracts as it descends. Descending fluid parcels have a strong
tendency to be sheared and stretched out into long, twisting filaments. Thus
the horizontal size of a descending fluid parcel decreases even more rapidly
than the horizontal size of an ascending fluid parcel increases. Consequently,
the entropy deficient fluid from the surface rapidly becomes a smaller and
smaller fraction of the descending fluid. The rest of the descending flow is
made up of overturning fluid that never made it to the surface (and hence
never lost any entropy).

Thus, the topology of the flow is primarily controlled by the continuity
equation. The role of the energy equation is subsidiary; below a thin layer
near the surface, the flow is very nearly adiabatic, and the energy equation
simply traces the path of the entropy-deficient fluid from the surface as it
descends, and the (mostly numerical) spatial diffusion of the entropy fluctua-
tions. The tendency for the entropy fluctuation to spread horizontally is coun-
teracted by the horizontal convergence of the descending flow. This keeps the
descending cool filaments well defined.

Since the entropy-deficient fluid from the surface becomes a smaller and
smaller fraction of the descending flow, the relative temperature fluctuations
decrease rapidly with depth. These relative temperature fluctuations deter-
mine the pressure fluctuations (via the pressure scale height; cf. earlier dis-
cussion), which in turn determine the velocity amplitudes, which closes the
causal loop. A selfconsistent (average) state is characterized by a vanishing
average mass flux (pressure equilibrium), and a constant total energy flux
(energy equilibrium; sum of radiative, convective and kinetic energy flux is
constant).

Figure 12 shows the origin and destination of fluid parcels ascending
through the visible surface (plane z = 0) at time ¢ = 0. Most of these parcels
were also ascending at 9 solar min earlier. They ascend slowly, with nearly
the same speed, and all originate from a small source volume, both vertically
(because of the nearly uniform vertical velocity) and horizontally (because of
the diverging topology of the upflow). Going back further in time, we find
the particles in progressively smaller source volumes. Only a small subset of
all the ascending fluid at depth reaches the surface. Most of the fiuid that does
reach the surface, turns around and descends rapidly, concentrating into a few



265

SOLAR CONVECTION THEORY

“ypdop 28re] 18 sjuswey pajeredas A[opIm moj & ojul SFXoW Jer) syeIp
-UMOP OJUI SOTIOAUOD 1B ‘wO]) SUIPUIDSIP ISE SY) PUE ‘mofj SUIPUAOSE Sy} JO AIMIEU SSARINIONDS A[TedU ‘GuiSxoA1p ‘moO[s Y}
10N "I0JE[ PUE JAIIES UI JR[OS ¢ UMOYS 1B () = / SUIN) J& 0BLINS Je[os Yy} ySnory Surpusose speored pinyg Jo uonedo g1 g

(WAl X [wAl X [winl X
9 14 [4 09 14 - < 0

[Win] Z

-4,

- »%W&v.mr& . aW .sm

un G-




266 K. L. CHANET AL.

narrow downdrafts. Nine solar min later, most of the originally ascending
fluid has descended a substantial distance and outlines these filamentary
downdrafts.

The amplitude of entropy fluctuations decreases rapidly with depth in
the convection zone. The mapping of very small source volumes of these
nearly isentropic deeper layers onto all of the ascending flow close to the
surface explains why the ascending flow is so nearly isentropic, and also
justifies the use of isentropic inflow at the lower boundary of the computa-
tional domain.

We now have the necessary conceptual building blocks to understand the
topology of convection qualitatively. Ascending flow is gentle and featureless
because it is expanding; small-scale features are constantly being washed out
by the expansion of the ascending flow. Overturning flows from neighboring
updrafts collide along common borders, and are deflected towards corners
between several updrafts. Fluid that reaches the surface, and only fluid that
reaches the surface, looses entropy before overturning. Thus, at the surface,
the characteristic cell topology is made clearly visible, with bright discon-
nected islands of ascending fluid, and connected dark lanes of descending
fluid. Below the surface, the entropy-deficient fluid from the surface rapidly
contracts, and is engulfed in overturning isentropic fluid that never reached
the surface. Thus the entropy contrast between ascending and descending
fluid decreases rapidly with depth, and the connectivity of the intergranular
lanes is lost because entropy-deficient fluid in the lanes is replaced by over-
turning entropy neutral fluid.

Continuity allows fluid overturning below the surface to do so on in-
creasingly larger scales at larger depths. At a depth of 2.5 Mm, the density
scale height is significantly larger than at the surface (about 1 Mm), because
of the (== 3 times) larger temperature, and also because of the (= 2 times)
smaller mean molecular weight. Hence, Eq. (27) indicates that cell diameters
of the order of 8 to 12 Mm are permitted, if the ratio of horizontal to vertical
velocities remain of order 2 to 3. Our box was not large enough to allow this,
but we do see the scale changing from many downdrafts at vertices near the
surface to one or a few near the bottom. The scale change is caused by the
advection of the small-scale downdrafts by the horizontal velocity field asso-
ciated with the expansion of ascending fluid and is, of course, limited by the
horizontal extent of our periodic box. In the Sun, no such restrictions occur
and we expect that the scale of the horizontal flows continues to increase with
depth.

Experiments where the fluid ascending through the lower boundary was
not given a uniform entropy did not yield qualitatively different results. We
have recently started a much larger and deeper (12 X 12 X 9 Mm) simula-
tion. Similar topology occurs in this deeper simulation.

The vertical extent of the convective flows is greater than the depth of
our computational box. The granulation pattern does not correspond to a
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closed circulation pattern on the scale of the granulation. In fact, there is no
evidence for multiple cells in the vertical direction. The flows do not close
within our domain, and the merging downdrafts of cool material may possibly
extend the entire depth of the convection zone (Fig. 13). However, the solar
plasma is much less viscous than our simulated plasma, and so has a huge
Reynolds number. Hence, although our upflows are smooth, and our down-
flows are only moderately turbulent, in the Sun they are likely to be strongly
turbulent with significant generation of small-scale vorticity and eddies.

3. Convective Driving.  The flow topology has important conse-
quences also for the driving of flows on different scales. Driving is provided
by the buoyancy fluctuations associated with entropy fluctuations. But the
ever-expanding, gentle upflow is almost isentropic, so the main source of
entropy fluctuations is the entropy loss at the surface. The surface acts as a
source of cool, relatively dense material, which descends into a nearly isen-
tropic interior. From the discussion of the topology of granulation at the sur-
face, we know the initial topology of the entropy-deficient material: a con-
nected network of intergranular lanes, with accumulation of particularly cool
and dense fluid at the corners between several granules. The situation is sim-
ilar to the Rayleigh-Taylor instability of a dense fluid on top of a less dense
fluid, and a similar evolution ensues: filaments of dense material are formed,
with denser filaments descending faster; additional dense fluid is pulled down
in the wakes of the descending filaments, and the denser filaments gain an
additional advantage.

The accumulation of cool, dense fluid at the vertices is self-amplifying;
the flow is driven by the pressure deficiency caused by the smaller pressure
scale height of cooler material at the vertices, and causes further draining of
cool material from the intergranular lanes into the vertices. The overturning
material that replaces the intergranular material below the surface is not en-
tropy deficient, and hence the entropy deficiency at the intergranular lanes
vanishes rapidly below the surface. The topology thus changes from one with
cool material in connected lanes to one with cool material in narrow, nearly
vertical and descending filaments.

We showed earlier that larger-scale flows are allowed at larger depths by
the continuity equation. The descending cool filamentary material also pro-
vides driving of these larger-scale flows. The overturning fluid of larger-scale
flows advect cool descending filaments of smaller-scale flows towards the
boundaries and vertices of these larger-scale flows. Thus, the small-scale
downdrafts close to the surface merge into large-scale, more widely separated
downdrafts further from the surface, and provide the supply of entropy-
deficient material that is necessary to drive the large-scale flows. By this
process, the horizontal distribution of entropy deficient material changes
gradually with depth, from one with many closely spaced filaments near the
surface to one with fewer, less closely spaced filaments at depth.
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This can be clearly seen in the vertical kinetic energy flux, pu’u, (Fig.
14). Only the downflow is visible, because the upflow is slow and structure-
less. The merging of the granular downflows into the isolated, filamentary,
mesogranulation downflow is clearly revealed. Notice also, that in our simu-
Jation, with its transmitting lower boundary, there is no sign of the downflow
turning around into upflow within our simulation domain.

At first glance, the situation may seem somewhat absurd, with the low-
density surface layers apparently providing the driving for large-scale flows
at great depth, where the density is orders of magnitude larger (“tail wagging
the dog”). However, consider the distribution and evolution of kinetic energy
density in the flow. Most of the kinetic energy is concentrated in the strong
downflows (cf. Fig. 14), and its evolution is controlled by a balance of buoy-

RAIN FOREST: Side view of the vertical kinetic energy flux

Fig. 14. Vertical kinetic energy flux, puu,. Transparent side views through the computational
domain, along the x-axis, are shown at 2-min intervals. Only the downward flux is visible,
because the upflow is much slower, broader and featureless. The merging of downflows into
isolated filaments, and the increasing horizontal separation of fewer filaments at greater depths
is clearly revealed. The downdrafts penetrate through the transmitting lower boundary with
little, if any, return flow.
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ancy work, kinetic energy flux divergence and dissipation. Kinetic energy
flux is even more concentrated into the downflows than the kinetic energy
itself. The net kinetic energy flux is directed downwards, and almost entirely
represents advection of kinetic energy density by the downflows. Buoyancy
work (which is proportional to the product of density fluctuation and velocity)
is positive in both the up and down flows, but is mainly performed on the
downflows, where the density fluctuations and velocity are much larger.
Hence, the energy input to the convective flow occurs primarily in the cool
material from the surface layers.

This situation, where the “flow of information” is directed downwards
(even though the total energy flux is directed outwards) is fortunate for the
numerical simulation of solar surface layers, because it diminishes the con-
sequences of having to introduce a computational lower boundary in the midst
of the convection zone. Conversely, it necessitates a special treatment at a
computational upper boundary in simulations of global solar convection
(where these same surface layers have much too short characteristic time
scales to be included).

4. Photospheric Phenomena.  Our simulation results can be analyzed
for other phenomena associated with the upper solar convection zone. We
briefly indicate two of these.

Shocks developing from vertically propagating acoustic waves are
thought to contribute to heating the chromosphere. Our simulation did not
extend above the temperature minimum, so we can not investigate chromo-
spheric heating. However, we do see shocks developing in the photosphere.
These shocks are not due to vertically propagating acoustic waves, but rather
to quasi-steady horizontal flows associated with the granulation pattern. Some
of the ascending gas penetrates into the stable photosphere before being de-
flected sideways. The horizontal flow produces nearly stationary vertical
shocks around bright granules which are being squeezed out of existence by
their neighbors.

Helicity in the convection zone is thought to be essential in the dynamo
process that produces the solar magnetic field (Parker 1955b; Gilman 1983).
Although our simulation does not include rotation, we find that significant
helicity occurs in the intergranule lanes and especially in the downdrafts (cf
Fig. 11). When a magnetic field is present, this helicity will produce copious
Alfvén waves, that will propagate along the field, and may contribute to chro-
mospheric and coronal heating (Osterbrock 1961; Wentzel 1976; Ionson
1978; Holweg 1984).

D. Comparison with Observations

1. Granulation.  Lites et al. (1989) used a sequence of simultaneous
spectra in the Fe I 6302.5 A line and narrowband slit-jaw images from the
Swedish Vacuum Solar Telescope on La Palma, Canary Islands, Spain to
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determine granular intensity and velocity fluctuations, and the granule size
distribution. They compared these with the results of our simulation. The
original simulations had a granule size distribution with significantly fewer
small granules than observed. Because the amount of artificial viscosity
needed for stabilization had initially been overestimated, a reduction of the
magnitude of the terms that are proportional to the flow and sound speeds by
a factor of 2.5 was possible, while still maintaining stability. This increased
the effective spatial resolution of the code sufficiently to bring the sizes of the
Jarge simulated and observed granules into agreement.

The radiative energy transfer calculation, which is performed at each
time step, yields, as a side effect, images in the total radiation intensity at the
surface of the model. These images may be used as a convenient approxi-
mation of monochromatic continuum images. This has been verified by direct
comparisons of images in total radiation intensity with monochromatic con-
tinuum images calculated with a separate program. Figure 10 shows a se-
quence of 16 such images. The time separation between images is 2 min. The
size of each image is 6 X 6 Mm, corresponding to approximately 8" X 8".
Because most features in an image change only moderately in a few minutes,
there is some continuity from frame to frame in the sequence, and a single
strip is in some sense analogous to an 8" X 32" image. More direct compar-
isons may be made, by smearing the synthetic images with point spread func-
tions representing the telescope and atmospheric transmission functions (cf.
Lites et al. 1989).

Figure 15 shows an 8" X 24" strip from an observed continuum image
on the same scale as Fig. 10 (Lites et al. 1989). It is evident that the simula-
tions do indeed produce surface patterns that qualitatively resemble the ob-
served solar granulation. However, even with a reduced viscosity (the mini-
mum allowed that maintains stability of the simulations), there are more

Fig. 15. Monochromatic continuum image of solar granulation, obtained at the Swedish Vacuum
Solar Telescope on La Palma (Lites et al. 1989). The image is of a region 6 X 18 Mm 8" x
24"). Compare this image with Fig. 10, which has the same scale. Note the similarity in large-
scale features between the observation and simulation, but the presence of much more small-
scale structure in the observation.
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small-scale structures in the observations than in the simulations. Thus,
the observations currently have a higher resolution than the simulations.
A further increase of the spatial resolution of the simulations can only be
obtained by decreasing the horizontal mesh spacing. Such simulations are un-
der way.

Lites et al. also compared the amplitudes of the intensity and velocity
fluctuations in the observed slit-jaw spectra to synthetic slit-jaw spectra. The
magnitude of the observed intensity and velocity fluctuations depend on the
(unknown) modulation transfer function (MTF) of the atmosphere (seeing)
and telescope, so a direct comparison could not be made. However, by apply-
ing trial MTF’s to the synthetic images, it was found that the ratio of intensity
to velocity fluctuations is insensitive to the amount of smearing by the MTF,
and that the ratio obtained from the simulations agrees with the observed
ratio. On the other hand, the width of the (spatially unresolved) Fe I line
provides a seeing independent check on the magnitude of the velocity fluc-
tuations. From the average line width of the slit-jaw spectrum, Lites et al.
conclude that the rms amplitude of the vertical velocities in the Fe I formation
layers are consistent with the observations, and that consequently the inten-
sity fluctuations are likely to be consistent too.

At the visible surface, the granule centers are warm and the intergranule
lanes are cool. Our simulation shows that in the photosphere, due to adiabatic
expansion, the diverging upflow above the bright granules becomes cooler
than the converging downflow above the intergranule lanes (cf. Fig. 11). This
reversal of bright and dark regions is observed (Evans and Catalano 1972;
Canfield and Mehltretter 1973; Altrock and Musman 1976; Keil and Canfield
1978; Balthasar et al. 1990).

2. Mesogranulation.  Granulation is the only scale for which the cell
structure is directly visible at the surface, with cell boundaries delineated by
cool, dark material. However, the larger scales are indirectly visible on the
surface. The pressure fields induced by the larger-scale flows at depth extend
to the surface. From the solutions of the anelastic pressure equation (Eq. 23)
for large horizontal scales, Nordlund (1982, Eq. 46) has shown that the rel-
ative pressure fluctuations for horizontal wavenumber k in a medium with
pressure scale height H have an exp(—k?Hh) dependence on height &, i.e.,
cells with a horizontal size large relative to the scale height induce their rel-
ative pressure fluctuations over a height range comparable to or larger than
their horizontal size. These relative pressure fluctuations drive the horizontal
flows associated with the cell. Hence, the horizontal velocity fields associated
with the larger-scale subsurface cells extend to the surface. The presence of
large-scale subsurface cells thus becomes visible at the surface through the
horizontal advection of smaller-scale cells.

The large (mesogranule) scale flow manifests itself at the visible solar
surface by its effect on the growth as well as the motion of granules. Exami-
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nation of a sequence of surface intensity images (Fig. 10) reveals areas where
granule growth is enhanced and granules are large, and other areas where
granule growth is suppressed and granules are small.

This pattern of granule motion from regions of enhanced growth towards
regions of suppressed growth is just what is observed as mesogranular flows
by November and Simon (1988) and Title et al. (1989). We find that the areas
of horizontal convergence and small granules correspond to the persistent
cool downdrafts and the areas of horizontally diverging motion and large
granules correspond to the regions of warm upflows.

E. Conclusions

Only the small-scale cells at the surface (granulation) are made clearly
visible by a large temperature contrast, with bright disconnected islands of
ascending fluid, and connected dark lanes of descending fluid. The larger-
scale flows are visible at the solar surface only by the advection of smaller-
scale flows by their horizontal velocity fields. Our simulations reproduce the
observed large end of granule scale structures, but are missing the smaller-
scale structures. The simulated vertical velocities near the surface agree with
those inferred from observations, and the ratio of intensity to velocity fluc-
tuations in synthetic slit-jaw spectra agree with observed ones. The advection
of granules and variation of granule sizes over larger regions, referred to as
mesogranulation, are also reproduced.

The usual picture of turbulent convection has been of a hierarchy of
eddies, or in the mixing length picture of bubbles that move some distance
and then mix with their surroundings. Our simulations suggest a very differ-
ent picture. The dominant topology of the outer solar convection zone appears
to be one of broad, gentle, structureless, warm, adiabatic, diverging, up-
flows, with intermixed narrow, filamentary, cool, fast, twisting, converging
downdrafts. The horizontal velocity field has a hierarchical structure, with
small-scale cells at the surface, and successively larger-scale flows at larger
depths, driven by the merging of the filamentary downdrafts of the smaller-
scale cells closer to the surface. Our computational box, which is only 2.5
Mm deep, supports meso-scale flows with a horizontal extent comparable to
the horizontal size of our box (6 Mm). Stronger turbulence in the downdrafts
will increase the rate of mixing between ascending and descending fluid, but
will not change the overall contraction of descending, entropy-deficient fluid.
Thus, the filamentary downdrafts may possibly persist through the entire
depth of the convection zone, merging into fewer, more widely separated
plumes as they descend. Presumably, successively larger (supergranular) hor-
izontal flows at the surface, with sizes ranging up to at least S0 Mm (Simon
and Leighton 1964) reflect the successively increasing separation of the merg-
ing, descending plumes.

Although the descending vertical flows extend over many scale heights,
estimates based on the mixing length concept may still be relevant, as the
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overturning of most of the ascending flow within a scale height, and the
associated dilution of descending fluid, in effect resembles a mixing.
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