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In cur solar system, convective atmospheres are as common as those
that are stable, and convective and stable regions sometimes coexist in
the same atmosphere. There is a need to develop circulation models
that can handle convection and stable-layer flows simultaneously and
efficiently. This paper represents an approach to the construction of
such a model. Taking advantages of the simplicity of implementing
implicit time stepping in spectral models, we solve a non-hydrostatic,
fully compressible version of the hydrodynamic equations without the
time step restrictions imposed by acoustic and gravity waves. To sim-
plify the nonlinear terms and to conserve the total mass and total
angular momentum to round-off accuracy, we introduce a “stratified”
approximation which limits the nonlinearity of the equations to quad-
ratic. The linear terms remain intact'so that all the linear waves are
preserved. The set of assumptions made by the “stratified” approxima-
tion is a subset of those of the anelastic approximation. It offers more
generality and accuracy while the computational overhead is relatively
low. Tests are presented to illustrate the capabilities and advantages of
the present model.  © 1994 Academic Press, Inc.

1. INTRODUCTION

The study of nonlinear hydrodynamic processes in
atmospheres requires numerical computations. This is true
for the simulation or prediction of weather in the Earth’s
atmosphere. It is also true for the study of planetary
and solar atmospheres, and for identifying the key
hydrodynamic factors that control atmospheric behavior in
general. A few examples of the fundamental questions being
asked are: What generates the global zonal wind that moves

the Venusian clouds at a rate 60 times faster than the rota-
tion rate of the planet [1]? Is there a common explanation
for the alternating zonal winds of Jupiter, Saturn, Nepture,
and the Sun [2-5]? Why are the magnitudes of these zonal
winds insensitive to the planet’s distance from the Sun [6]?
What causes the failure of the Taylor-Proudman theorem
in the solar convection zone [7,8]7 These questions
involve the comparative study of a wide variety of
atmospheres.

Current general circulation models (GCM) of the Earth’s
atmosphere are often not well suited to address the above
problems, since some of the elaborate parameterizations
they carry are not always desirable or applicable. Further-
more, these GCMs are not designed to study the convective
atmospheres of the outer planets and the Sun. Some
problems are numerically so demanding that direct simula-
tions are not practical, and numerical experiments serve
better for uncovering the dynamical principles [9]. For
comparative studies, there is a need, therefore, to develop a
simpler, efficient, and general-purpose code capable of
modeling circulations in convective and stable atmospheres.
This paper describes an approach to the construction of
such a model. We present here a spectral model that solves
a non-hydrostatic, “stratified” version (see Section 2) of the
compressible Navier—Stokes equations.

Soon after the development of the transform method by
Orszag [10] and Eliasen et al. [11], the spectral approach
to atmospheric modeling [12-15] became an important
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tool in the field of general circulation study [16-217. Com-
pared to finite-difference models, the spectral transform
models have several advantages: (i) the polar regions can be
handled naturally and efficiently; (ii) at low to moderate
horizontal resolutions, they are computationally more
efficient [22-237; (iii) semi-implicit time differencing
schemes [24-257 can be easily implemented. It is the last
point that is exploited in developing our model scheme.

Many convective atmospheres are deep, and the vertical
and horizontal length scales are comparable. For this
reason the long-wave approximation, and equivalently, the
hydrostatic approximation, are not applicable. Solving the
Navier-Stokes equations directly, however, is numerically
expensive because of the restrictive Courant—Friedrichs—
Lewy (CFL) condition imposed on the time steps by the
sound waves; i.c., the time steps have to be less than the
signal crossing time of any two adjacent grid points. To
overcome this problem, the non-hydrostatic, anelastic form
of the Navier-Stokes equations [26-30] is often used. By
setting the local time derivative of the mass continuity equa-
tion to zero, the anelastic approximation eliminates sound
waves and the associated restriction. The CFL condition
associated with the flow speed remains, but it is less restric-
tive if the fluid velocities are substantially smaller than the
sound speed, as is usually the case in normal atmospheres.

There is an alternative which avoids modifying the con-
tinuity equation. The restrictive CFL condition due to the
waves only affects the numerical stability of explicit time-
differencing methods. The restriction can be avoided by
methods that handie the linear wave terms implicitly
[24, 31-327. With the spectral method used in the present
model, this is rather straightforward. However, to optimize
the conservation of the integrals of motion and to eliminate
aliasing errors, it is necessary to introduce approximations
and to reformulate the equations carefully. We discuss this
subject in the next section. Then, we discuss the numerical
implementation of the model in Section 3. Several tests to
illustrate the characteristics of the model are present in
Section 4. A summary is provided in Section 5. In the
Appendix, we expand on contrasting the present approach
with the anelastic approach and discuss the relative
significance of the time derivative term in the continuity
equation, based on an example computed by solving the
fully compressible Navier—Stokes equations.

2. THE STRATIFIED APPROXIMATION

As stated above, the linear terms will be treated implicitly;
thus, there is no need to tamper with them. For the non-
linear terms, we introduce a “stratified approximation”
which restricts the terms to be quadratic in the spectral mul-
tiplication, so that the transforms can be alias-free without
the use of too many grid points. This helps to enforce the
conservation of certain integrals of motion (e.g., total mass
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and total angular momentum) which, aside from making
the system dynamically more correct, may also enhance the
numerical stability [33-34].

For an incompressible fluid, the nonlinearities are only
quadratic. In a compressible fluid, higher degrees of non-
linearity are introduced through the variation of density in
the momentum equation and the variation of the thermo-
dynamic variables in the energy equation. Under normal
atmospheric conditions (even for deep, convecting atmos-
pheres [357), the distributions of the thermodynamic
variables (excluding the entropy or the potential tem-
perature) are dominated by the stratification; namely, at
any given height the horizontal variations are small com-
pared to the mean values. Each thermodynamic variable
can be decomposed into two parts of widely different
magnitudes; as an example, the density is shown here as

,0(?',‘0, ¢’ f):PO(”s [)+p1(r> 99 ¢’ t)' (1)

The variables are expressed in standard spherical coor-
dinate notations, where r is the radial distance, 8 is the
colatitudinal angle with respect to the north pole, and ¢ is
the azimuthal angle. The subscripts 0 and 1 denote the
horizontal average and the horizontal variation, respec-
tively. After the substitution of such expansions in the
fundamental hydrodynamic equations, the following
approximations are made:

(i) in the momentum equation, the horizontal varia-
tion of the density is ignored in the nonlinear advection
terms and the viscous terms.

(ii) in the energy equation, terms containing products
of two or more horizontal variations of the thermodynamic
variables are ignored.

These approximations are equivalent to a subset of the
anelastic approximation. One can arrive at this procedure
through a scale analysis leading to the anelastic equations
[287, with the exception that the linear terms are retained
to all orders of the perturbation expansion and no sim-
plifying assumption is required for the temporal variations.
This leaves the linear waves intact and offers a more
consistent treatment of the density variation.

First, the fundamental hydrodynamic equations are
expressed in the following form:

d,p=-V-M (2)
O, M= —-V-(MM/p)+V 6—-Vp-2QxM
+pg—px(xr) (3)

o, p=—V(pM/p)—(I'—1) pV - (M/p)
—V, T(V-f—5¢), (4)
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where M = pV is the momentum density, V is the velocity,
p is density, p is the pressure, £ is the angular velocity of the
reference system, g is the gravitational acceleration, ¢ is the
viscous stress tensor, I is the adiabatic exponent defined by
(diln p/dIn p)y, Vua=(dIn T/d1n p),, is the adiabatic
temperature gradient (see Chap. 9 of [36]), fis the radiative
or conductive energy flux, and ¢ is a heating rate per unit
volume (including the viscous dissipation of the kinetic
energy). The bold-typed symbols represent vectors or
tensors. The energy equation has been converted to the
pressure equation (4) for the convenience of time-implicit
treatment (note the linear dependence on p in Eq. (3)). For
an ideal gas, " is equal to the ratio of specific heats y, and
V.q is equal to (y — 1)/y.

As in most spectral models, we use the vorticity and
divergence instead of the horizontal velocities as prognostic
variables. The equations for these variables are obtained by
taking the horizontal curl and divergence of the momentum
equation (3). Following general practice, the centrifugal
potential (in the last term of (3)) can be combined with the
gravitational potential and the deviation of the equi-
potential surfaces from perfect spheres are neglected. For
simplicity, topography is not considered. After applying the
stratified approximation and with some manipulation, one
can reduce the hydrodynamic equations to

d,p=—D,M,—§ 5

(5)
OM,=—-0,p—pg+C,+D,+N, (6)
0,0==V.p+Cs+Ds+N, (7)
0,{=+C,+D,+N, (8)
= Dya(poM,/po) — (I'o—1) poZ,2(M,/po)
— 1o podfpo+D,+ N,

ﬁtpz
9)

where 0, is the partial derivative with respect to r; Z,,( )=
r=20,7*(); M, is the radial component of M; V2 is the
horizontal Laplacian (rs)™? (sdys0y+0;); s stands for
sin0; 6=V, M, = (rs) "' (dgsMy+3,M,) is the horizon-
tal divergence of the horizontal momentum density M ; { =
(V,xM,),=(rs)" "' (8gsM;—0,M,) is the curl of M,
along the radial direction. The subscripts r and H denote
components along the radial and horizontal directions,
respectively. For convenience, the subscript r is dropped
from the operator (V ), hereafter; it is to be understood that
the result of this operator is a single component quantity
(a scalar).

The linear terms preceding the “C” terms in Egs. (5)-(9)
contain the description of acoustic and gravity waves; for
later reference, we shall identify them as the W terms. The
Coriolis terms are represented by the symbol C:

C,=20sM, (10)
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Cs=2Q[yl—r (sM,+d,M,)] (11)
Co=—2Q[yd0—r '(sMy—s50,M,~2yM,)], (12)
where y stands for cos 6. The dissipative terms are:
D,=2%,,(u,0,V,)+u ViV, +ud,op
—2u, MOy +2r V) +0,[MD YV, +0))] (13)
Ds=2,4(1,0,0,+ 1, V3V,
+2u,(r VRV, 4 VIS5, 4+ %0,)
+A[Z,4(ViV)+ V6, ] (14)
Dy =2,4(1,0,00) + o (ViCy+2r 7)) (15)
D, =V g I'12(x,.0,p+K,0,p)
+KPHVE,]7+K’)HV§“0], (16)

where 8, =V, V,;{, =V, xV,, and 2, )=r"%0,r*().
In the derivation of Egs. (13)-(15), all the viscosity
coefficients are assumed to have no horizontal variations.
The radial and horizontal viscosities, y, and y,,, are not
necessarily equal here so that anisotropic eddy diffusion
may be emulated. 4 is the second coefficient of viscosity.
When u, and g, are equal, the expressions are equivalent to
those of the Navier-Stokes equations.

These viscous terms have two important characteristics.
First, they preserve the solid body rotation as a stress-free
state. A solid body rotation with an arbitrary angular
velocity « yields V,=0, §,=0, and {, = ya. These values
make the right-hand sides (r.h.s.) of Egs.(13)-(15) vanish.
Second, they conserve the total angular momentum
(relative to the reference frame) when the boundaries are
spherical and stress-free (both 8,6, and 0,{ are zero at the
boundaries), as is demonstrated in the following. Consider
the component of the total relative angular momentum
along the axial direction; it can be written as

j Myrs do r* dr = —-J (My0gx—s 'Mydyy) dwr’ dr
=Jx(rs)‘1 (0gsM ;—03,M,) dw r* dr
=ch dw r® dr, (17)
where dw = s df d¢ is an area element on the unit sphere.

The rate of change of this integral due to viscous action then
vanishes:

j %0,( dw r* dr = —J O(r*u,0,(,) dr dw
+ J W, (ViC+2r %)) do rt dr

=j [5710,(5000 ) + 20,1 dew p, r* dr =0.
(18)
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Generally, the coefficients of viscosity are small, the ratios
po 'M,, py ', and py '¢ can be used as approximations for
V., 0y, and (,, respectively. This converts Eqs. (13)-(15) to
be linear in the prognostic variables, enabling them also to
be treated implicitly.

In the derivation of (16), the energy flux is modeled as the
negative gradient of a certain thermodynamic variable
which is a function of p and p; the radial and horizontal
conductivities (k) are again allowed to be different. If

f= —xVT (flux is proportional to the negative gradient of
the temperature T') and the gas is ideal, it follows that
k,=kp 'and k,= —xpp > The horizontal fluctuations of

the factor (V,yI") and the conductivities can be taken to be
small and expanded in forms similar to Eq. (1). The zeroth
and first-order parts of the flux terms can be treated
implicitly; the higher order parts can be treated explicitly or
discarded.

Finally, the nonlinear terms are

Nr:“@rZ(MrVr)_VH-(MrVH)+r71MHVH (19)
N(S = _@rd[vn : (MrVH)] + VH X (CVH)
“VH.(évu)“Vi(MH VH)/2 (20)

Ne= =D, [V, x (M, V )]1-V (V,)-V,x(0V,) (21)
Ny==V-(p,V)=(Ly=1)p,V-V+V-(pop,V/py)
+ (=1 poVe(p1V/po)

— 1 peV V4V, TE (22)

The terms are arranged with the horizonal derivatives
operating on the nonlinear products of the variables so that
the number of transformations between the grid space and
the spectral space can be reduced; especially, there is no
need to transform derivatives of the prognostic variables. In
accordance with the stratified approximation, the velocity ¥
is approximated by M/p,.

In (22), the heating function ¢ includes the dissipation
function:

D=2{p,(0,V,)" + pr [0 Vo + V,)?
+(s710,V4+ V,+ Vycot 6)*]}
+ 1, [(rs) " 0y Ve+r"50,(V,/5)]?
+ [plrs) =104V, + 10 (V4 /r)]
x [(rs)~! 04V, +rd,(Vy/r)]
+ [p,r0,(Vo/r) + p,r =10, V,]

< [rd,(Ve/r)y+r7 10, V. ]+ AV V)2 (23)

Again, when 4, and p, are equal, @ reduces to the dissipa-
tion function of the Navier-Stokes equations. When they
are not equal, however, @ is not positive definite, although
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it only turns negative under very contrived conditions. To
keep the number of spectral transforms low, the velocity
derivatives in Eq. (23) are computed by finite-difference in
the grid space (with three-point Lagrangian interpolations).

An important property of the nonlinear terms above is
the conservation of the total angular momentum when there
is no external exchange. Similar to Eq. (18), the contribu-
tion of the nonlinear interaction to the rate of change of the
total angular momentum along the axial direction can be
shown to vanish:

jxatédw dr = _J 0,[r*V,, x (M, V)] dr dw
+JS(M9C+M¢5) dw pi'F dr

=f [sMy0o(sM 4)+ sM ;04(sMy) ]

xdf dg p, 'r* dr=0. (24)
The first term on the r.hus. of the first equal sign vanishes
because M, =0 at the inner and outer boundaries, and the
other term vanishes because its integrand is a differential
of 8. However, note that the C terms can change the total
relative angular momentum if Q@ # 0.

The conservation of total mass can easily be proven by

Eq. (5).
3. NUMERICAL METHODS

All the prognostic variables are scalars and therefore their
horizontal dependencies can be represented by expansions
in terms of the spherical harmonics. For example, the
density can be written as

p=2. p(r) P(x)e™ (25)
where P are the normalized associated Legendre functions.
The triangular truncation is normally adopted for the series
expansion, but in axisymmetric cases m is limited to zero.
The horizontal mean p, in (1) is equal to 27 2p.

The linear terms of Egs. (5)-(9) can be evaluated in
spectral space. They are expressed in terms of the
prognostic variables so that an implicit treatment can be
implemented. The only horizontal differential operator in
the W and D terms is V2 which can be easily evaluated
since V2P7(x)e™ = —n(n+1) P™(x)e™. By applying
standard formulas for Legendre functions, the C terms can
be put in the form

Cr=2Qr{—c(n,m){7_+cn+1,m){7,
—im[n(n+1)]17"' 67}
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C5=2Q{(n+1)c(n,m) {7 +nc(n+1,m){7, ,
+im[n(n+1)]1" 167 —imM ™ /r}
Ch=22{—(n+1)c(n,m)dé7 , —nc(n+1,m)é",

+im[n(n+ )] "+ nn+ 1) —c(n,m) M™

(27)

m—1
+e(n+1L,myM? . /r}, (28)
where the coefficient function c is defined as
c(n, m)=n""'[(n*>—m?)/(4n*> - 1)]" (29)

In the radial direction, finite differences are applied with
a staggered grid. The variables p, p, 8, and { are placed on
the same levels (K) while M, is placed on interleaving levels
(K+1, the half levels). The domain is assumed to be a
spherical shell bounded between the bottom radius r, and
top radius r,. The boundaries are chosen to be on half levels
where M, can be conveniently set to zero.

To ensure the numerical conservation of total mass
and total angular momentum, the terms of Egs. (5)-(9)
involving radial derivatives can be put in a strong conserva-
tion form (expressed as derivatives with respect to ») by
multiplying Egs. (5), (6), (9) with »* and Egs. (7), (8)
with r*. Furthermore, to preserve second-order accuracy of
the finite-differencing in a nonuniform distribution of the
radial grid points, a smooth coordinate transform can
be performed between the r-space and the index space
where the grid is always uniform and central differencing
can be used (see the Appendix of [37]). These are in fact
implemented in the code, but are not introduced in the
equations shown here to avoid further complicating the
notation.

Evaluation of the nonlinear terms is performed in the grid
space. For this purpose, the two diagnostic variables M,
and M  needed for Egs. (19)-(22) are computed from the
prognostic variables with the following formulas:

(sMy)y =r{—c(n,m)87_, +c(n+1,m) o7,

+imn(n+1)]71 {0} (30)
(M) =r{—cn,m){"_  +cn+1,m){",
—im[n(n+1)] 17} (31)

Together with the prognostic variables, these variables are
transformed to the grid space with equations like Eq. (25).
The grid values of V,, and V' are then computed as M,/p,
and M ,/p,, respectively.

The latitudinal locations of the grid points are determined
by the roots of the Legendre function P, (x), where I,,,, is
the number of Gaussian grid points from pole to pole. The
azimuthal locations of the grid points are equally spaced
in ¢; for the convenience of performing fast Fourier trans-
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forms, their total number J,,,, is chosen to be a power of
two. The number of grid points is chosen to satisfy the
standard requirements for unaliased transformation of
quadratic nonlinearities, namely,

Imax = (3nmax + 1)/2
and
Jinax =2 3 + 1,

where 7., is the maximum degree of the spherical
harmonics in the truncated expansion and m,,, is the
maximum value of m.

After the nonlinear terms are formed, three types of
transform are used to evaluate them in spectral space. Let
us consider an arbitrary term N. When the term involves
no horizontal derivatives, an inverse Fourier transform is
performed:

N7 (re)=2n) 'Y Nyge ™, (32)
where the sum is over J. The grid indices /, J, K are for the
latitudinal, azimuthal, and radial directions, respectively.
This is followed by a Gaussian quadrature

~Y N7

where the sum is over I, and w, are the Gaussian weights.

When the term has a differential operator d, at the front,
the Fourier transform is preceded by an integration by
parts:

N(rg) (), (33)

(rx)w, P

f(6¢N)e"m¢ d¢=j (imN) e~ dg. (34)

When the term has the operator s 'd,s at the front, the
Gaussian integration is changed to

j [5~'0,(sN)] P™s df = — j No, P df
— [ M(dydy) Py dy

— =Y N7 (rg) w(d/dy) P2(x,),
(35)

after a regular inverse Fourier transform.

As mentioned earlier, the time-implicit treatment of the
linear terms is an important component of this approach.
Formally, this is realized by an operator splitting technique
that partitions the r.hs. of Egs. (5)-(9) into two implicit
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steps and one explicit step [38]. For simplicity of notation,
let us consider this set of equations in the form

0 y=(W+D+C)y+N[y], (36)

where y is a column array containing all the prognostic
variables. Taking a finite difference in time yields the
following approximation to Eq. (36):

(VI -y At =B(W+D+C) y** '+ (1-BYW+D+C) y*

+ Ny T T+ (B 3) O(40) + O(47).
(37)

The superscript ¢ is the time step index; At is the time step;
B is a parameter describing the degree of implicitness; =0
and 1 correspond to the forward and backward Euler time-
differencing schemes, respectively. A number of explicit
methods [39] may be used for advancing the nonlinear
operator N. The specific choice depends upon the accuracy
requirement and efficiency consideration. Normally, a
second-order method is adequate. The truncation errros
associated with Eq. (37) can then be represented by its last
two terms; when =1, second-order accuracy in time can
be obtained. With Ay = y?*'— y9 the equation can be
rearranged as

[1—dtp(W+D+C)] dy=At[(W+D+C) y+ N4,
(38)

where the error estimates are dropped for convenience. To
obtain Ay, it is necessary to invert the matrix associated
with 1 — AiB(W+ D+ C). The W and D operators couple
vertical levels through 4, but do not couple different (s, m)
modes. The matrix associated with W+ D is blocked
tri-diagonal; the block size is 5x 5. The C operator is
troublesome because the Coriolis force couples the nth
harmonic mode to the n+ 1 and n— 1 modes; that would
enlarge the blocks by (n,,,,+ 1)? times, and thus increase
the operation counts drastically. Therefore, we split the
operator with the approximation:

L =AW+ D+ C)= [ —AtB(W+ D)][1 — A1BCT. (39)
Then Eq. (38) can be written as

[1—Atp(W+ D)][1— 41BCT] Ay

=4t[(W+D+C)y+ N (40)
The truncation error of the approximation, Eq. (39), intro-
duced into Eq. (40) has a formal order O(47%) and therefore
second-order time accuracy can be maintained for p=1
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The solution of Eq. (40) involves three steps: (i) compute
the r.h.s. explicitly; (ii) invert a block tri-diagonal matrix in
the K space (the first factor on the left-hand side of the equa-
tion); (1ii ) invert a blocked tri-diagonal matrix in the n space
(the second factor); note that the C operator does not
couple harmonic components with different m values. Each
element of these matrices is in fact a vector. For example,
when the matrix operates on the K index (due to the J,
operator), all the other indices (n and m) are untouched,
and they can be lumped together as the index of a long vec-
tor. This nice property is the key to vectorizing the implicit
code. The procedure performed in Eq. (39) is very similar to
the alternating direction implicit technique applied in
regular multiple spatial dimensions [40-41]. Here, the
directions are part spatial (W + D) and part spectral (C),
but the mathematical considerations are the same. The
advantage of including the C terms in the implicit treatment
will be illustrated in Section 4.

4. TESTS

A. The Two-Dimensional Non-divergent Barotropic Case

Using Eqs. (12), (21), and (28), the equation of motion
for this highly simplified case is reduced to

0,85 =2iQmn(n+ )]~ 7= [V, - (CV,)17 (41)

In this situation, both the kinetic energy [ V2 do and
enstrophy % [ (* dw are formally conserved, even in the
truncated spectral representation [34]. However, in actual
numerical integration, the conservation can only be
approximate, mainly due to the accumulation of truncation
errors in time stepping. We test the conservation of these
quantities and their dependencies on the time step size with
a model on the sphere r=1, truncated at n=4. Initially,
(F'=1+ifor n=1,..,4, and all other components are
zero. The maximum velocity generated by this field is about
3.4. The evolution of the model is computed primarily by
the method described in the previous section; the Coriolis
term is treated implicitly with 8 =0.5 and the advection
term is advanced by the second-order Adams—Bashforth
method [39]. For 2 = 1, the time evolutions of the energy
(lower curves) and enstrophy (upper curves) using time
steps 0.025, 0.05, and 0.1 are shown by the solid, dashed,
and dotted curves respectively in Fig. 1 (some curves over-
lap). Two points can be made here. First, when the time
steps are small, the conservation is extremely good (even
though the Adams-Bashforth method is unstable for
oscillatory modes such as advected wave structures).
Second, when the time steps get larger, the conservation
deteriorates. This shows that time truncation errors are
indeed the culprit.



STRATIFIED SPECTRAL MODEL

We have also computed cases with € = 10 and 100 with
At=0.05. These are situations where stability conditions for
explicit time integrations are violated. However, in our
implicit treatment, the energy and enstrophy curves even for
these cases are almost identical to those that are stable
(dashed curves). For comparison, the case with Q=10
and 4tr=0.05 is also computed fully explicitly by the
Adams-Bashforth method and the results are shown by the
dot-dashed curves in Fig. 1. The energy and enstrophy can
be seen to blow up quickly. This exercise illustrates that the
stability provided by the implicit treatment of the Coriolis
term helps the energy and enstrophy conservation. Being
conservative does not imply that the solutions are accurate
because the phase information may not be correct. But
being able to use larger time steps may still be an advantage
for problems that need long integration time (e.g., thermal
or dynamical relaxation) and where the transients are not
important.

At this point, it is useful to comment on the conservation
of the total mass and total angular momentum of the full-
scale model. Why can they be conserved to round-off but
the energy and enstrophy here cannot? This is because in
the former case each quantity involves only one spectral
component (e.g., {9 for the angular momentum). If the r.h.s.
of the evolutionary equation of the integral of this compo-
nent can be formally proven to be zero, then any numerical
time stepping that involves a linear combination of the r.h.s.
at different time levels preserves this property. On the other
hand, the total energy and enstrophy are nonlinear com-
binations of all the components; therefore, the formal
properties cannot be carried over to the numerical regime.
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FIG. 1. Dependence of energy (lower curves) and enstrophy (upper

curves) conservation on size of time steps. The solid, dashed, and dotted
curves show results of implicit calculations of a case with Q = 1, using time
steps 0.025, 0.05, and 0.1, respectively. The results of implicit calculations
with =10 and 100, using a time step of 0.05, almost coincide with the
dashed curve for the 2 =1 case. A second-order explicit calculation with
Q =10, using a time step of 0.05, is unstable (the dot-dashed curves).
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B. Normal Mode Analysis

A common test of global circulation models is to confirm
that the Hough modes are indeed normal modes of the
system [427]. We perform this test by locking at the solution
of the linear equation,

iwy — (W+C) y=d, (42)

where d is a driver that excites the system. This equation
comes from Eq.(36) with the viscosity, diffusion, and
nonlinear terms dropped. The temporal variation of the
solution and the driver has been taken to be ¢™’ so that
the time derivative becomes a multiplicative factor iw. Here,
we concentrate on cases with w = Q (diurnal tide) for which
the spectral expansions of the Hough modes are well
documented [43-447. When the driver d has the form of a
particular Hough mode, the solution y should come out to
be proportional to that same mode if the Hough mode is
indeed a normal mode of the system.

Since the thin-shell approximation is usually adopted in
the derivation of the Hough modes, we perform the test by
setting up a stable background atmosphere in a very thin
layer (1% of the radius). The distribution is polytropic (i.e.,
the pressure is a power function of density; see next sub-
section), but the details are not important for the Hough
modes. Figure 2 shows the latitudinal pressure distriputions
of some Hough modes (solid curves) used to drive the
system and the responses (marked by the x symbols). The
identifications of the modes are labeled next to the curves
(adopting the notations of [437]). The results demonstrate
that the Hough modes are indeed normal modes of the
system. For comparison, a driver that is not a Hough mode
(dashed curve) yields a response (dot-dashed curve) that is
very different.

2 T T

T T
PR
- Ve
1.5 R N . B
@3 ’ \\ 6.3 I ~
ST N 1 \
1 // e \\\\ /// A
L . 3 \ B,
% N 7 @, \
. /, A\
2 \ 7
0.5 e o\ 21 \
@ i - N 7 \
[ L. YN s 3
3 s N )
% ok~ \ SN //
g N
Q /
“_~-
~0.5 p - -
-1 ¢ 4
O
-1.5 L i
-2 I L | | L
0 15 30 60 75 90

45
latitude

FIG. 2. Linear responses of the model (pressure versus latitude)
driven by Hough functions (solid curves) and a non-Hough function
(dashed curve). The response to a Hough mode is represented by the x
signs and to the non-Hough mode by the dot-dashed curve.
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C. Onset of Convection in an Axisymmetric Hemispheric
Shell

Computing the onset of convection offers a very sensitive
test of the subtle balances of all the linear terms and
demonstrates the capability of the model to handle convec-
tion. The stratified spectral model is used to find the critical
Rayleigh numbers for a series of parameters, and the results
are compared to those obtained by a finite-difference model
solving the complete set of Navier-Stokes equations
[45,35]. The test problem is specified as follows: (i) The
region is an axisymmetric hemispheric shell with top bound-
ary at r,=1 and bottom boundary at r,=0.5. (ii) The
gravitational acceleration g is taken to be inversely propor-
tional to r°. (iii) The fluid is an ideal gas with constant
dynamic viscosity pu and conductivity x; A= —3%u. The
Prandtl number Pr and the ratio of specific heats y are
chosen to be 1 and 3, respectively. (iv) The initial distribu-
tion is polytropic (p oc p' *'") and in hydrostatic and
radiative equilibrium (f = —xVT),

T, =y =14+ Z(r,/r—1)/(r,/ry,—1) (43)
p/p, =y (44)
plp, =y, (45)

where the subscripts b and r denote values at bottom and
top, respectively. The parameter Z=T,/T,—1 describes
the depth of stratification. If the polytropic index n, is
smaller than 1/(y —1) (i.e., 1.5), the layer is convectively
unstable; otherwise, it is stable. In the present case, Z and n,,
are chosen to be 1 and 1.4, respectively. Hereafter, the values
of all the quantities will be expressed in units which make r,,
P Py To=1. (v) The boundaries are stress-free and the
temperatures at the top and bottom are fixed at the initial
values. The Rayleigh number is defined as [46]
Ra=PrgZ(r,—r,)* (1 = (y =1)n,) p}/(y*).  (46)
As an initial perturbation, a very small vertical velocity
field is introduced to the fluid, and its evolution is computed
to determine whether the perturbation is growing or
decaying. After a few trials, one can find the critical Rayleigh
number above which convection starts. The spectral model
has 41 vertical grid points and #,,,=30. The finite-
difference model has the same number of vertical grid points
and the number of horizontal grid points is 61. However,
the latter does not reach the pole; its pole-side boundary is
at 1.5° colatitude. A comparison of the critical Rayleigh
numbers Ra, for a number of € (in units defined above)
is given in Fig 3, where log,,(Ra,) are plotted versus
log,o(Ta). The Taylor number, Ta, is defined as

Ta=4Q%(r,~r,)* (p, /1) (47)
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FIG. 3. Comparison of critical Rayleigh numbers obtained by the
spectral code (the pluses) and the finite-difference code (squares) for
2=0.1,0.2,03, 04, and 0.5. As the rotation rate increases (2 = 0.6, 0.7,
and 0.8), the critical Rayleigh number demonstrates an asymptotic
dependence on the Taylor number, namely, Ra oc Ta?”. The dashed line
shows the % slope in the log-log plot.

The pluses and squares stand for the results of the spectral
and finite-difference models, respectively. In all the cases,
the differences are less than 4%. Considering the slight
difference in geometrical configurations and the influences
of the truncation errors, the agreement is very good.

An interesting feature revealed by Fig. 3 is the growth
of the critical Rayleigh number with the rotation rate,
showing that rotation hinders convection. We pursued this
phenomenon further using the spectral code to find the
critical Rayleigh numbers for a few higher rotation rates.
The dashed line in Fig. 3 displays a slope of 3 which is
the asymptotic (Ta — co) power dependence of Ra,. on Ta
derived for an incompressible fluid [47]. Apparently, this
behavior also occurs for the compressible fluid. To facilitate
future comparison, we list the values of Ra, for these cases
in Table L.

TABLE 1
Critical Rayleigh Numbers for Different Rotation Rates

Q Ra,

0.0 1.99 x 102
0.1 2.78 x 102
0.2 5.90 x 102
0.3 1.25%x10°
0.4 2.50 x 10°
0.5 472x10°
0.6 8.42x10°
0.7 1.42 x 10*
0.8 227 x10*
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D. Finite-Amplitude Convection in an Axisymmetric
Hemispheric Shell

The computation of finite amplitude, stationary convec-
tion provides a sensitive test of the interplay of linear and
nonlinear terms. Also, by comparing the results of the spec-
tral model using the stratified approximation with those of
the complete Navier—Stokes equations, one can assess the
magnitude of errors introduced by the approximation. The
test problem is similar to the one used in the previous
subsection, with the following differences: (i) The lower
boundary is at r,=0.7. (ii) The rotation rate is zero. The
parameter Z remains one. (iii) The number of vertical grid
points is 30. The finite-difference code uses 80 horizontal
grid points between the equator and the north pole. The
spectral code uses 40 spherical harmonics, but also uses 80
latitudinal points in real space for easy comparison with the
finite-difference results. The pole-side boundary of the finite-
difference model is at 1.2° colatitude. (iv) The flows are
initiated with rolls symmetric with respect to the equator,
and the vertical velocities at the poles are downward.

The maximum horizontal (diamonds for spectral, pluses
for finite-difference) and vertical (triangles for spectral, stars
for finite-difference) velocities in the flows are plotted
in Fig.4 for several supercritical Rayleigh numbers
(Ra,=250), and the maximum Mach numbers attained by
the flows are listed in Table I (note that maximum velocity
and maximum Mach number need not occur at the same
location). As shown in Fig. 4, the agreements between the
results of the two codes are quite good. In accord with
expectation, discrepancies increase with the Mach number
as the errors introduced by the stratified approximation
become larger. In the most vigorous case here (the
rightmost points), the Mach number reaches about 0.15 and
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FIG. 4. Maximum vertical and horizontal velocities computed by the
finite-difference and spectral codes. The symbols for the velocities are:
pluses (finite-difference, horizontal), diamonds (spectral, horizontal), stars
(finite-difference, vertical), and triangles (spectral, vertical). Discrepancies
increase with the Mach number (see Table II).

Maximal Mach Numbers for Different Rayleigh Numbers

TABLE II
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Ra Mach number No. of cells

300 0.046 3

500 0.082 3
1000 0.105 3
2000 0.133 2
3000 0.144 2
4000 0.153 2

the maximum difference is about 2 % . Both codes show that
a transition in flow pattern occurs between the Rayleigh
numbers 1000 and 2000 (from three cells to two cells
between the pole and equator); V, remains negative at the
poles in all cases.

Comparison of the transients to a steady state as com-
puted by different time steps shows how the efficiency of the
semi-implicit spectral method can be exploited. In Fig. 5,
this is done with the Ra = 300 case. The dots, pluses, and
stars represent every 10 steps of computations with
At=0.04, 0.4, and 4, respectively, corresponding to sound
speed CFL numbers about 5, 50, and 500, respectively. The
transients agree well, showing that even rather large time
steps do not destroy the time accuracy of the computation.

5. SUMMARY

In this paper, a non-hydrostatic spectral model applicable
to both convective and stable atmospheres is presented.
Even though the hydrostatic approximation is eliminated,
the model is able to use large time steps, taking advantage
of the simplicity of implementing the semi-implicit time
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FIG. 5. Comparison of transients of relaxation to a steady state, all
computed with the implicit method. The sound speed CFL numbers for the
dots, pluses, and stars are 5, 50, and 500, respectively.
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integration in a spectral approach. Essentially all of the
linear terms that appear in the Navier-Stokes equations
remain intact; therefore all the waves generated by these
terms can be exactly described (the acoustic waves are
important, for example, to the study of helioseismology
[48]). The advantage of this approach over the anelastic
approach is summarized in the Appendix. The relative
increase in computational load is quite insignificant for
moderate or large size problems in which the spectral
transforms are the dominant part of the calculation.

The stratified approximation is introduced to make the
nonlinear terms quadratic in the harmonic expansion so
that alias-free transformations can be easily implemented,
and to simplify the derivation of the prognostic equations so
that they can be put in simple closed forms similar to those
derived for the hydrostatic models. De-aliasing has several
advantages. First, it maintains total mass conservation and
total angular momentum conservation both formally and
numerically. Second, it does not break the symmetry of a
flow (e.g., equatorial symmetry) unnecessarily. Third, it
enhances numerical stability. The price to pay—assuming
that the horizontal variations of the thermodynamic
variables are small—is quite insignificant for normal
atmospheric conditions (see the Appendix). In contrast with
aliasing errors, the errors introduced by the stratified
approximation are associated with a physical approxima-
tion and can be estimated as such; they do not intrinsically
lead to numerical instabilities.

The numerical efficiency and the conservation properties
of the present model make it particularly suitable for studies
involving long-period integration. FExamples include
self-consistent thermal and dynamical relaxation of an
atmosphere, generation of prevailing circulations, and
climatic studies. The scale of vectorization of the model is
competitive with finite-difference, explicit codes; the
sustained rate of computation easily reaches 110 Mflops in
one processor of a Cray Y-MP. In an application to
compute Earth’s diurnal tides (from surface to 600 km
altitude, 226 vertical levels, n,,, = 10, m,,, =1), it takes
16 min in a Micro-Vax 3100-80 machine to compute one
day of evolution (with 15 min time steps).

Some atmospheric studies require the computation of
small scale phenomena, e.g., gravity wave breaking. In such
cases, a Cartesian configuration is more convenient.
However, the curl-divergence formulation and the stratified
approximation developed here still offer much computa-
tional advantage and can be easily implemented.

An axisymmetric version of the present model has been
used to study the spin up of the 4-day superrotation of the
Venusian atmosphere via the Hadley mechanism and a
linear version which couples the C-terms and the W-terms
in a single matrix has been applied to study the internal
rotation of the solar convection zone. Details of these
applications will be presented in later papers.
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APPENDIX: CONTRASTING THE STRATIFIED
AND ANELASTIC APPROXIMATIONS

Since both assume that the horizontal variations of the
thermodynamic variables are small, the stratified and the
anelastic approximations have some similarities. The prin-
cipal difference is that the stratified approximation does not
make this assumption for the linear terms of Egs. (2)-(4). In
some situations (e.g., a stationary mean circulation driven
by differential heating in a stable atmosphere), the horizon-
tal variations of the thermodynamic variables are propor-
tional to the flow speed and thus of first order in the Mach
number (the circulation is essentially a particular solution
of the linear part of the hydrodynamic equations plus
an external driver). Since the stratified approximation
eliminates second and higher order products of such varia-
tions only in the advection terms which already contain a
velocity factor, a formal accuracy of second order in the
Mach number is still guaranteed for this approximation, but
not for the aneclastic approximation. In time-dependent,
significantly nonlinear situations, the relative fluctuations of
the thermodynamic variables are proportional to the square
of the Mach number [35] (see also later discussion). Since
acoustic waves are in fact present, the relative error intro-
duced through neglecting d,p in the continuity equation
should be estimated as &, p/(pV * V) ~ wp  /(pokv), where o,
k, and v are certain characteristic frequency, wave number,
and velocity, respectively. Using the dispersion relationship
v, =w/k for acoustic waves (v, is the sound speed), the
above ratio can be written as (p,/po)(v,/v)~ (v/v,)~
the Mach number. It is therefore more substantial than
the errors introduced by neglecting perturbations like
(p1/po)® -+

To further illustrate the advantage of solving for the
density variation through the continuity equation directly,
we demonstrate the last point made in the above paragraph
with a numerical example which solves the fully com-
pressible Navier—Stokes equations. This example is based
on a recent study of deep convection made by Chan and
Gigas [49], and the code is the Cartesian version of the
finite-difference code used for the calculations described in
Sections 4C and D. The physical parameters and configura-
tion of the calculation described here are the same as those
in [49]; the only difference is the enhanced vertical resolu-
tion used here. The salient features of the calculation are: (i)
The Navier-Stokes equations are solved for an ideal gas in
a three-dimensional rectangular domain; the mesh contains
69 x 69 x 100 points. (ii) The upper and lower boundaries
are stress-free and impenetrable; the side boundaries are
periodic. The temperature at the top is held fixed: a constant
input flux is imposed at the bottom. (iii) The gas consists of
three layers; one thick convective layer lies between two
thinner stable layers whose main function is to separate the
convection from the upper and lower boundaries. The for-
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FIG. 6. Distributions of relative fluctuations in a convection zone
bounded by upper and lower stable layers. The boundaries between the
convection zone and the stable layers can be identified by the locations
(heights ~0.17 and 0.98) where the radiative flux (dashed curve) exhibits
jumps from near zero to large values. The r.m.s. Mach number is represented
by the dot-dashed curve. The ratios rm.s.{V-(pV)}/rms.{p¥V-V} and
rms.{p, }/po are shown by the dotted and solid curves, respectively.

mation of these layers is achieved by controlling the height
dependence of the conductivity. In the convective layer, the
conductivity is set to low values, so that more than 90 % of
the energy flux is carried by convection. (iv) Statistical
information on the fluctuating quantities are obtained
through horizontal and temporal averaging after the fluid
arrives at statistical thermal and dynamical equilibrium.

Figure 6 shows the distribution of several quantities
relevant to our present interest. All quantities are expressed
in units which set the total depth and the initial pressure,
temperature, and density at the top to one. In such units, the
total energy flux flowing through the layer has a value of
0.25. The dash curve shows the distribution of the conduc-
tive flux which stays low in the convective region, and the
boundaries between the convective and stable regions are
marked by the jumps in this flux. The Mach number is
represented by the dot-dashed curve. The root-mean-square
(rms.) of 0, p is compared with r.m.s.{pV -V} and shown
as a ratio by the dotted curve. This curve parallels that of
the Mach number and reaches above 10% at the upper
region of the convection zone where the Mach number is
~0.2. (Near the top and bottom boundaries, the dotted
curve shoots up as the upward and downward directing
flows impinge on the impenetrable boundaries.) Therefore
the ratio is of first order in the Mach number as suggested
by the previous scale analysis. In comparison, the relative
fluctuation of density, r.m.s.{p,}/p,, shown by the solid
curve is significantly smaller and is of second order in the
Mach number. Other thermodynamic variables, although
not shown here, have similar behavior.
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