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FOREWORD

The Conference on Scientific Computation '94 was held on March 17-19, 1994
at the Chinese University of Hong Kong. It is the third of its kind in Hong Kong,.
The last two were held in 1990 and 1991. There has been a tremendous growth
in the area of scientific computing in Hong Kong in the past few vears—as is
evidenced by the acquistion of three supercomputers by the local universities.
The aim of this series of conferences is to promote the research inferest in
scientific computation for local mathematicians and engineers and to foster
contacts and exchanges with experts from other parts of the world.

There were twelve talks in the 1994 conference giving by invited speakers from
the US, mainland China and local institutions. The keynote address was given
by Professor Gene Golub of Standford University. The title of his talk is “Matrs-
ces, Moments and Quadrafure” Besides the invited talks there were also twenty-
two contributed talks by local researchers in the field. More than 30 people
attended the conference.

The proceedings of the Conference is published in this issue of the SEAMS
Bulletin of Mathematics. [t contains twenty-one papers from the Conference
and is in four major areas: numerical linear algebra, algorithms, wavelets and
differential equations. The editors of the Proceedings are Wel-uin Xue (Chief
Editor), Raymond Chan, Daniel Ho and Yue-Kuen Kwok.

On behalf of the crganizers of the Conference, we would like to thank the
following sponsors for their gracious supports: the Hong Kong Mathematical
Society, the Institute of Mathematical Sciences, the Department of Computer
Science and the Department of Mathematics at the Chinese University of Hong
Kong, and the Departments of Mathematics of the City University of Hong
Kong, Hong Kong Baptist University and Hong Kong University of Science
and Technology.
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THE ‘STRATIFIED’ APPROXIMATION FOR
COMPUTING GEOPHYSICAL FLOWS

Kwing L. Chan

Department of Mathematics

Hony Kong Universily of Science and Technology
Clear Water Bay, Hong Kong

Abstract In an earlier paper, Chan et al. {1} introduced the ‘stratified’ ap-
proximation to simplify the Navier Stokes equations for numerical solution with the
spectral method. The resulting equations were written in spherical geometry. The
errors associated with this approximation are now analysed in greater detail to in-
clude cases where the horizontal variations of the thermodynamic variables are larger
than M? where M{< 1) is the Mach number. We also write down the stratified form
of the hydrodynamics equations in Carteslan geometry.

1. THE STRATIFIED APPROXIMATION

Ir geophysical fluid dynamics, the principal equations to be solved are the
Navier Stokes equations for a rotating, compressible fluid under gravity:

Bup =~V M (1)
M =-N (MM/p)+V -c~Vp4+pg—20x M (2)
hp ==V (pM/jp) — (T — 1)pV - (M/p) = Vul' (V- f —2) (3)

where 3, is the time derivative; p is the density; M (= pV') is the mass flux;
V' is the velocity; o is the viscous stress tensor; p is the pressure; 2 is the
angular velocity of the rotating frame; g is the gravitational acceleration; + is
the position vector; I' is the adiabatic exponent defined by [8in(p)/8in(p)].q;
Vad = [8In(T)/8In(p}laq is the adiabatic temperature gradient; T is the tem-
perature; f is the radiative or conductive energy flux; and £ is a heating/cooling
rate per unit volume {including the viscous dissipation of kinetic energy).
There are many advantages in handling gecphysical flow problems with the
spectral approach [2, 3]. However, the application of the spectral approach to
the compressible Navier Stokes equations (1)-(3) is troubled by the occurrence
of the 1/p factor in the nonlinear terms. Its presence generates high-order
coupling in the spectral expansions {in contrast to only second-order coupling
in the incompressible case) and thus makes de-aliasing of the transforms much
more difficult. To circumvent this problem, Chan et al. [1} introduced the so
called ‘stratified’ approximation which reduces the order of the nonlinearity to
two while preserving the compressibility and some conservation properties of
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66 KWING L. CHAN

the fluid equations. The idea was based on the observation that the horizontal
variations of p, p, and T are generally much smaller than their respective mean
values.

In other words, let ¢ be ane of the above thermodynamic variables; ¢ can
be decomposed into two parts of widely different magnitudes:

9= go+q (4)

where g9 is the horizontal mean and is only a function of the vertical coordinate
(z); q1 represents the horizontal variation which can be expressed in terms of
a series of horizontal harruonic functions whose coefficients are functions of z.
After substituting such expressions into Egs. (1)-(3), the following procedures
can be performed:

(i) The horizontal variation of density is ignored in the nonlinear advection
terms of the momentum equation.

(i) Terms containing products of two or more horizontal variations of the
thermodynamic variables are ignored in the advection terms of the energy equa-
tion.

The assumptions made by this ‘stratified’ approximation are a subset of
those of the popular anelastic approximation [4-5]. In Ref. [1], discussion of
the validity of the stratified approximation was very brief and was hinged on
the validity of the anelastic approximation. The justification of the anelastic
approximation /5], however, assumes that the relative horizontal fluctuations
of the thermodynamic variables (i.e. g1/go) are on the order of M? where M
1s the Mach number. Tn some geophysical situations, it is quite possible that
this assumption does not hold (see later discussion), and is therefore necessary
to reconsider the error estimates.

2. ERROR ESTIMATES

For small-scale or nonrotating flows, a balance is approximately maintained
between the pressure gradient and the nonlinear advection terms of the momen-
tum equation, and it is quite reasonable to assume that the relative fluctuations
of the thermodynamic quantities are on the order of M? [5, 6]. For large-scale
geophysical flows, however, the Coriolis term of Eq. (2) often changes the
situation. A prominent example is the prevalence of ‘gecstrophic balance’ in
planetary atmospheres where for latitude > 10°, the horizontal pressure gra-
dient is primarily balanced by the Coriolis force, so that the horizontal wind
blows perpendicularly to the pressure gradient. In such case, the magnitudes of
p1 and V should be related primarily as p;/{ ~ ppQ where [ and v are certain
characteristic horizontal length and velocity, respectively. Therefore

Q
=~ ()0 )
o S C
in which the radius of the planet a is used for I, and the square of the sound
speed ¢ approximates the ratio p/p. The rightmost factor in the above equation
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THE ‘STRATIFIED' APPROXIMATION FOR COMPUTING -.. 67

is the Mach number M. The factor in front of it is the rotational speed of the
planet divided by the sound speed; for Barth and Jupiter, it is on the order of 1
and 10, respectively. Therefore, the effect of rotation on the horizontal pressure
variation is very significant, and the relative fluctuations of the thermodynamic
quantities are first-order in M,

What is then the size of errors introduced to Eq. (2) by the stratified
approximation? According to Procedure (i) specified in Section 1, the density
is allowed to move freely in and out of a horizontal derivative in a nonlinear
term; that is equivalent to ignoring v9;p in comparison with pd;v. The relative

error 1s therefore (o]
v{p1 /1) L, 1
i~ (9(2) @

When the rotational effect 13 important as discussed above, this ratio is on the
order of M. However, in such case, the ronlinear term itself is small compared
to the pressure term or the Coriolis term. Relative to the pressure term which
1s significant in all situations, the net relative error is

D) G ”

where we have used py/py ~ pi/po. Therefore, the relative error introduced
to Eq. (2) is always second-order in the Mach number, even when rotational
effects are significant. Note that this is facilitated by the avoidance of any
approximation in the pressure gradient and coriclis terms.

The generation of significant variations of the thermodynamic quantities
in the global scale, estimated by Eq. (5), is usually induced by the herizontal
variation of an external energy source. For example, solar heating of the Earth’s
atmosphere depends on latitude; the differential heating geperates pressure
variations between the equator and the poles. Such process is described by
the last two terms of Eq. (3) which, under such circumstance, are usually
the dominant terms. The energy eqguation is therefore mainly controlied by a
balance between the local heating (h) and cooling rates:

h~op /T (8)

The cocling is estimated here as py /7 where 7 is a time scale describing radiative
loss or heat conduction. In case that the time variation of the pressure is
significant, 7 can also be interpreted as the time scale of temporal change (for
example, 7 = lday for diurnal tides).

According to Procedure (i1) of the stratified approximation, the relative
errors introduced within the advection terms of Eq. (3) (first two terms on the
right hand side) i1s on the order of p1/ps. For small scales or when external
heating is insignificant, this fraction is second order in M, but as discussed
earlier, it may become first order in the global scale. In such case, however, the
errors should be compared with the magnitude of the dominant energy terms
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68 KWING L. CHAN

and the ratio becomes:

EE-0E)
/T Po a ¢/ N\ Po '
{Note that 'V, is on the order of 1.) Therefore, the relative error is formally
second order in M, even when a large-scale differential heating is present. Care,
however, has to be taken because of the presence of the (er/a) factor. In the
case of the Barth, 7 is on the order of 1-10 days so that this factor is on the
erder of 1-1C. To ensure good accuracy, it may be necessary to include higher
order nonlinearities of the density or pressure variations in the energy equation.
For the computation of the zonally averaged circulation in the Earth's lower
and middle atmosphere (up to 100 km in height), Procedure {ii) turns out to
be quite accurate 7! since the v that appears in Eq. (9) is only about 3% of
¢. {The magnitude of the meridional velocity is used as the horizontal pressure
differential is mainly between the equator and the poles.)

Arnother point of caution concerns the computation of the energy source/sink
term. This term usually depends on the temperature. While computing the
temperature from the pressure and density (prognostic variables), it is neces-
gary to make sure that the approximations made are sufficiently accurate, and
therefore second or higher order products of the variations of the thermody-
namic variables may need to be inciuded. For this reason, Procedure {ii) put
down in Section 1 specifies that second or higher order products of herizontal
variations of the thermodynamic variables are onfy ignored in the advection
terms, not necessarily in all the terms, The wording is a little different and
more accurate compared to that of Ref. [1}.

3. STRATIFIED EQUATIONS IN CARTESIAN COORDINATES

To present the application of the stratified approximation concretely, we
write down here the approximate equations in Cartesian coordinates, and in a
curl-divergence formulation for easy comparison with the spherical case of Ref.
[1]. Let U represent the column vector containing the five diagnostic variables
p, M., 8(= G M + 0y M), ((= 9. My — 8,M.), and p. The fuid equations can
be written as:

U =W +C+D+ N+, (10)

where W, C, D, N, and § represent the ‘wave’ {acoustic and gravity waves),
Coriolis, diffusive, nonlinear, and source/sink terms, respectively. The expres-
sions for them are:

-9, M, — 6§
—8.p+ pg
~Vip '
0
—8:{poM./po) — (T~ 1)po8. (M, /po} ~ Tped/po
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THE 'STRATIFIED’ APPROGXIMATION FOR COMPUTING - - 65

0
2000, M. — Q. M)
C=| 20.(4+2(0.90, - Q,0,)M.
=208 + 2(Q.90, + Q,8,)M,
0

H

0
20 (8. V.) + p[VEV. + 8.6y + 8, (MY - V)]
D= | 9, [n(VEV. + 8.6v)] + 2uVE sy + M. VLV, + Vi6y)
az(ﬂaz(:'/) + n“v%[(:v
Vaul [8:(5pdep + 1,0:p) + 5, VD + 5,V 5]

-

H

N =
0]
—82([1/[;1/;) - VH - (AJHVH)
8.V (ViMy) + Vi % (CVir) = Vi - (8Vey) — Vi{(M,Vy + M, V,)/2
0Ny X (VeMy) = Vu ((Vu) — Vi = (8Vy)
=V [(pr = pop1/po) V] — (' = 1)V - V =~ poV - (mV/po)]

k]

and S contains only the term ¥ 40z for &yp. The subscript H denotes the
horizoutal component of a certain quantity; therefore Vg is the horizontal
gradient operator; similarly V¥ is defined to be 8% + 85; bv = (0. Ve + 9, Vy);
Cv = (8.V, ~ 8,V2). In the derivation of D, we assume that the viscosity
and diffusivity coefficients &, A, x,, and &, are functions of z cnly; if necessary,
their horizontal variations can be included in N which is to be computed by
the transform method [2].

Fa. 10 is suitable for applying the spectral approach. Suppose that the
domain of calculation is a rectangular box with widths 27 and periodic hori-
zontal boundary conditions, an arbitrary variables ¢ can be represented by a
finite Fourier sum:

g=  qune "t (11)

The diagnostic variables M, and M, can be calculated from the prog‘no.stic
variables ¢ and { componentwise: '

(Me)nm = —i(néum — anm)/(n2 + m?) (12)
(M) = =i{mbam + nlum)/(n? + m?) (13)

for n? +m? # 0.

Notice that the only horizontal differential operator that appears in W is
VZ.. Functions of the form e*™<+™) are eigenfunctions of the operator. (For
different boundary conditions, other types of eigenfunctions of the Laplacian
operator can be chosen for the spectral expansions.) This property makes
the time-implicit treatment of W rather simple. Only a block-tri-diagonal
matrix generated by the operator &, needs to be solved for each time step.
The CFL conditions associated with the acoustic and gravity waves originated
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70 KWING L. CHAN

form W can be suppressed. This is of ¢reat advantage for computing subsonic
geophysical flows.

In the present case, e™¥+™) i3 also an eigenfunction of the horizontal
operators of W and ¢, and 5 contains no spatial derivatives. Therefore, W, C
and the linearized part of $ can all be included in the time-implicit treatment.

Eq. 10 and the expressions for the varicus terms are very similar to those of
the spherical case. There is, however, one significant difference. The Coriolis
terms here do not couple the different harmonic functions. This makes the
implicit handling of C much simpler, and is a result of  being independent
of position. [n a F-plane situation where §2 is a linear function of a horizontal
coordinate, say ¥, coupling between different eigenfunctions of Vjﬁ{ will occur.

Proving conservation of total horizontal momeatum and conservation of
total mass (when there is no boundary exchange) is straightforward. Conser-
vation of horizontal momentum results from the fact that the stratified approx-
imation does not need to puil p outside the divergence operator of the advection
term.
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