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ABSTRACT

We present in this paper an anisotropic nonlocal theory of stellar convection. Following the idea of Rotta,
we propose that the correlation of turbulent pressure and velocity gradient tends to make the turbulent velocity
isotropic, and we further introduce a convection parameter c3 to measure the strength of such isotropization. By
using such a theory, the structure of the solar convection zone is calculated. Our calculation shows that the radial
component dominates in the convectively unstable zone, in which the ratio between the radial component and the
horizontal component is w2

r /w
2
h ¼ (3þ c3)/2c3. In the upper overshooting zone, turbulent velocity is almost iso-

tropic (w2
r /w

2
h � 0:5) and is independent of c3, while in the lower overshooting zone, w

2
r /w

2
h � 0:5, and it tends to

decrease as c3 decreases. We also studied the effects of anisotropic convection on the structure and evolution of
stars. It is shown that the anisotropy hardly affects the temperature and pressure structure of stars. However, the
anisotropy increases with the decrease of c3; therefore, the effect of overshooting decreases. Thus, the effects of
anisotropy of turbulent convection on stellar evolution cannot be neglected.

Subject headinggs: convection — stars: evolution

1. INTRODUCTION

Convection is an internal instability of gravitationally strat-
ified matter. When the local temperature gradient exceeds the
adiabatic value, a perturbed fluid element will be accelerated by
buoyant force along the direction of gravity, and convection sets
in at such a condition. The original direction of convective mo-
tion is aligned with gravity, i.e., the radial direction in the stellar
internal convective zone. Due to the continuity and nonlinearity
of fluid kinetics, a part of the kinetic energy of a convective ele-
ment originated from buoyant force will be converted into that
of horizontal motion. In the local mixing-length theory of con-
vection (Böhm-Vitense 1958), the kinetic energy in the horizon-
tal motion of an element is supposed to be the same as that in
the radial direction. Similar assumptions have been adopted in
all other theories of stellar convection. A direct hydrodynamical
simulation should be able to provide a more reliable diagnosis
for such a problem. However, a three-dimensional hydrodynam-
ical simulation will not be ready for the calculation of stellar
evolution models in the foreseeable future due to the enormous
demand of computational power. We believe that a simple aniso-
tropic nonlocal theory of convection will be more feasible and
realistic to deal with stellar evolutionary modeling, while hydro-
dynamical simulations can be used to constrain the parameters
adopted by the theory and the results coming out of such models.

Following such a consideration, we have presented a method
dealing with the anisotropy of stellar turbulent convection (Xiong
et al. 1997), which is applied here to model the structure of the
solar convective zone. In order to find out how such a simple treat-
ment behaves in describing the general properties of the anisot-
ropy of the turbulent convection, we have compared our results
with the observations of the velocity field of solar granules and the
results of dynamical simulations. In x 2 the treatment of anisotropy
of turbulent convection is presented together with the working

equations of our numerical calculations. The results on the struc-
ture of the solar convection zone are given in x 3, with which the
effects of anisotropy on the structure of the solar (stellar) convec-
tion zone and lithium depletion are studied. The comparisons be-
tween our model and the observed velocity field of solar granule
and hydrodynamical simulations are presented in xx 3.4 and 3.5.
Conclusions of the present work and discussions are given in x 4.

2. A TREATMENT OF THE ANISOTROPY
OF TURBULENCE AND THE WORKING
EQUATIONS OF STELLAR STRUCTURE

The stellar convection theory we presented so far (Xiong 1977,
1978, 1979, 1980, 1989a) is a dynamic theory of auto- and cross-
correlation functions of turbulent velocity and temperature fluc-
tuations; the most complicated part is the pressure fluctuations. In
the papersmentioned above, it is assumed that the only function of
pressure fluctuations p0 is to impel the turbulence toward isotropic;
all of their other effects can be neglected.We are going to concen-
trate on the treatment of pressure fluctuations and the anisotropy
of turbulent convection in this paper; a full scope of our convec-
tion theory can be found in Xiong et al. (1997). Starting from the
hydrodynamic equations offluid and by some elaborating manip-
ulations, the dynamic equations of the second-order correlation of
turbulent velocity can be given as follows:
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j þ w0jw0k9k ū
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Dū j

Dt
þ g jk9k �̄

� �

� B̄w0j T
0

T̄

Dū i
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where D/Dt ¼ @/@t þ ūk9k is the comoving differential opera-
tor, P is the pressure, T is the temperature, � is the density, ui

is the i component of velocity, � is the gravitational potential,
� ik(u) is the viscosity tensor, and B ¼ (@ ln �/@ ln T )P is the ex-
pansion coefficient. The physical quantities with an overhead
bar are the average values of the corresponding ones, while the
ones with a prime are their fluctuations, for instance,

P ¼ P̄ þ p0; � ¼ �̄þ �0; T ¼ T̄ þ T 0; ui ¼ ū i þ u0i:

As for the definition of average value, for normal physical quan-
tities such as pressure and density, the average values of their
turbulent fluctuations vanish,

p̄0 ¼ �̄0 ¼ 0;

but for temperature T and velocity ui, the averages are weighted
by density, so that

�T ¼ �̄T̄ ; �ui ¼ �̄ū i; w0i ¼ �u0i=�̄;

however,

�T 0 ¼ 0; T 0 ¼ � 1

�̄
�0T 0 6¼ 0;

�u0i ¼ �̄w̄0i ¼ 0; ū0i ¼ 1

�̄
�0u0i 6¼ 0:

Such a method of density-weighted averaging is physically
sound: �u0i ¼ 0, for instance, means that there is no bulk motion
of matter in convection. Besides, it brings about great conve-
nience in the whole treatment; the continuity equation of fluid
keeps its regular form in this case. Otherwise, very bothersome
terms such as �0u0i would show up. Similarly for the mean en-
ergy equation, the original form is retained except for the con-
vective energy transport term. In the convection theory of Canuto
(1993), the so-called non-Boussinesq terms were used. When
using the density-weightedmean of velocity defined above,many
non-Boussinesq terms of Canuto (1993) disappear automatically.
This issue has been carefully addressed by several previous stud-
ies (Xiong 1978, 1989a; Xiong & Deng 1997; Canuto 1997). In
this work, instead of applying the so-called Boussinesq approx-
imation normally used in convection theories, we would like to
use a softer anelastic approximation, i.e.,

D

Dt

�0

�̄

� �
� 1

�̄
9k �u0k
� �

¼ 0:

As shown in an early study by Gough (1969) and Latour et al.
(1976), the physics underlying the anelastic approximation is
to filter out the high-frequency acoustic waves in convective
motions. Assuming that the relative fluctuations in density and tem-
perature are small, acoustic waves become negligible and there-
fore can be excluded. It should made clear that our treatment is
strictly limited to the case of the subsonic regime of convection.

In order to solve the problem in spherical coordinates, equa-
tion (1) has been written using tensors, where g ik is the metric
tensor, and the implicit notation of summation is adopted, i.e., a
pair of subscripts and superscripts means summation with re-
spect to that script from 1 to 3. In the derivation of equation (1),
we have used the subsonic hypothesis, i.e., �0/�̄j jT1. Trun-
cated at the first order of �0/�̄j j, equation (1) is accurate, and no
other simplification or assumptions have been applied. Here

�̄w0iw0j is the Reynolds stress of turbulence, which can be de-
composed into an isotropic component (turbulent press) �̄x2 and
an anisotropic one �A ij; therefore,

w 0iw0j ¼ g ijx2 þA ij; ð2Þ

where

x2 ¼ g��w
0�w0�=3; ð3Þ

g��A�� ¼ 0: ð4Þ

Inserting equation (2) into equation (1) and contracting with
respect to indices i and j, the dynamic equation for the isotropic
component of Reynolds stress can be derived as
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Subtracting the production of g ij and equation (5) from equa-
tion (1), one has the dynamic equation of the anisotropic com-
ponent of Reynolds stress A ij

,
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ð6Þ

Multiplying equation (5) with 3�̄/2, we have

3

3
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Dt
¼� �̄ x29k ū
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ð7Þ
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Equations (5) and (7) are in fact the conservation equations of
turbulent kinetic energy. The left-hand side of equation (7) is the
rate of variation in time of turbulent kinetic energy per unit
volume, which is the sum of all of the right-hand side terms: the
first term on the right-hand side is the energy transformation rate
from the orderedmeanmotion into that of turbulence through the
deformation of fluid (or otherwise named turbulent viscosity);
the second term (the divergence term) is the total gaining rate of
turbulent kinetic energy from the turbulent kinetic energy flux
(�̄u0kwiw 0i/2), the turbulent stress flux ( p0w0k), and viscous stress
flux [wi� ik(u0)] crossing the boundary of the fluid element; the
third term is the gaining rate of turbulent kinetic energy through
the work done by buoyant force; while the fourth term is the rate
of transformation from acoustic wave energy into turbulent
kinetic energy through the work done by pressure fluctuations.
The main contributions to all of these terms are from low wave-
numbers (or large turbulent eddies). The last term on the right-
hand side of equation (7) is the transformation rate from kinetic
energy into thermal energy due to molecular viscosity, which
takes place in high wavenumbers (small turbulent eddies). As
such, what equations (5) and (7) describe is a picture of energy
balance of turbulent convection: large-scale eddies extract en-
ergy from the mean fluid field through buoyant force and the
deformation and sharing of fluid. Due to the nonlinear nature
of fluid motion, turbulent kinetic energy is cascaded gradually
from low to high wavenumbers and is eventually transformed by
molecular viscosity into thermal energy of media at the high-
wavenumber end. Following the theory of isotropic turbulence,
the viscous dissipation term could be expressed as (Hinze 1975;
Xiong 1978)

1

�̄
� ik(u0)9kwi ¼ 2�ekex

3 ¼ 2
ffiffiffi
3

p
�eke1x

3 ¼ 1:56

le1x3
; ð8Þ

where �e is the Heisenberg eddy coupling constant, adopted as
�e ¼ 0:45 in this work, and ke is the wavenumber of energy-
containing eddies whose radial linear dimension is le1 ¼ 1/ke1.
Normally such linear dimension is assumed to be proportional
to pressure (or density) scale height,

le1 ¼ c1HP ¼ c1
r 2p

GMr�
: ð9Þ

Equation (9) is of course a working assumption. In our sta-
tistical theory of turbulent convection, the convection param-
eter c1 corresponds to the mixing-length parameter � ¼ l/HP in
the mixing-length theory of convection, which determines the
efficiency of convective energy transport. The calibration of c1
is normally done through a comparison of modeling and ob-
servations of the internal structure of the Sun and evolution of
stars. However, the parameter c1 is very unlikely to be a universal
constant. It depends on the mass, luminosity, and effective tem-
perature of stars under consideration. Indeed, this is still a very
important source of uncertainty in the current theory of stellar
convection. Apart from the usual constraints such as the stan-
dard solar model calibration and lithium abundance constraint,
a three-dimensional hydrodynamic simulation should provide a
supplementary reference to the use of such an adjustable pa-
rameter c1 (Ludwig et al. 1999). Furthermore, the parameter c1,
instead of being a constant for a given star, should be very likely
a function of stellar radius. Fortunately, convection is extremely
efficient in energy transport at the deep interior of stars, where
the temperature gradient is almost adiabatic regardless of the

choice of the parameter c1. The depth of the surface convection
region, however, depends primarily on the structure of the su-
peradiabatic zone at the top of the region. Therefore, the struc-
ture of the surface convective region is mainly fixed by the choice
of c1 in the top superadiabatic zone, which has nothing to do
with the c1 adopted for the deep interior. For the internal thermal
structure of stars, c1 and its variation in the deep interior are not
important.
The term �̄u0kwiw0i/2 in equation (7) is turbulent kinetic en-

ergy flux, whose ratio with respect to convective thermal (en-
thalpy) flux is about the same order of magnitude asM 2, where
M ¼ x /Cs is the Mach number of turbulent convective motion.
In the deep interior of stars,MT1. Hence, compared with con-
vective thermal flux, turbulent kinetic energy flux can hardly
affect the structure of stars in terms of energy transport and is
therefore negligible (Xiong 1986). Although being very small,
one cannot generally ignore turbulent kinetic energy flux be-
cause it represents the nonlocal effect of convection. Once it is
ignored, the statistical theory of turbulent convection goes back
to the local expression (Xiong 1980, 1989a). In our theory, a
gradient type of diffusion approximation is adopted, in which
the third-order correlations are expressed in terms of the second-
order ones,

u0kwiw0i ¼ �g k�x�9�wiw 0i

¼ �3g k�x�9�x
2; ð10Þ

where � is the diffusion length of turbulence, and following the
theory of turbulence (Hinze 1975), it is

� ¼ 3=4ke ¼
ffiffiffi
3

p
=4ke1 ¼

ffiffiffi
3

p
�1=4:

In a similar way as to express turbulent dissipation, we as-
sume that �1 is proportional to the local pressure scale height
HP, so that

� ¼
ffiffiffi
3

p
�1

4
¼

ffiffiffi
3

p

4
c2HP ¼

ffiffiffi
3

p
c2r

2P

4GMr�
:

Parameter c2 introduced here is a convection parameter linked
with the nonlocal turbulent diffusion in our statistical theory of
convection, where the distance of convective overshooting is
in general proportional to (c1c2)

1=2 but can be different for dif-
ferent physical quantities by a factor of order unity (Xiong 1986;
Xiong & Deng 2002).
Equation (10) represents isotropic turbulent diffusion. For

anisotropic turbulence, the coefficient of turbulent diffusion
changes with the direction. Our approach in this case is the
following:

u0kwiw0i ¼ �3 g k�x2 þAk�
� �1=2

�9�x
2: ð11Þ

Based on order-of-magnitude analysis, we have9k ½wi� ik(u0)�/
� ik9kwi � ld/lT1 and 9k( p0w0k)/p09kw0k � le/l � 1, where
l is the characteristic length of the mean field of fluid and ld
is that of turbulent dissipation eddies. The term �p09kw0k �
p0(d/dr)( �0/�̄) represents the transformation rate from turbulent
kinetic energy into that of sound waves at high frequencies. For
subsonic convective flow, this term can be neglected, and this is
actually what the inelastic approximation is all about. Based on
the order-of-magnitude analysis of the terms in equation (7) and
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using equations (8)–(11), we can give the conservation equa-
tion for turbulent kinetic energy in the case of quasi-static con-
vection (ū i ¼ 0),

@x2

@t
� @

@Mr

Q
@x2

@Mr

� �
þ 2

3

GMr

r 2
1:56

�x3

c1P
� BV

� �
¼ 0;

ð12Þ

where

Q ¼
4
ffiffiffi
3

p
�2c2r

6�P x2 þA11
� �1=2

GMr

;

V ¼ w01T 0=T̄ : ð13Þ

For quasi-static convection, the first term on the left-hand
side of equation (12) should not show up according to the above
discussion; the only argument to keep it is for the stability of
numerical calculations. After a large enough number of time steps,
the structure of the convective zone approaches its static state,
and that term vanishes naturally at this condition.

Parameter A ij
is the anisotropic component of turbulent

Reynolds stress; therefore, equation (6) can also be regarded as
the energy conservation equation for the anisotropic component
of turbulence. Following the original definitions (eqs. [2]–[4]),
the sum of all anisotropic components vanishes. As such, equa-
tion (6) in fact describes the transformation among the aniso-
tropic components. In the case of quasi-static convection, the
only drive is buoyant force from which a turbulent eddy gains
its radial kinetic energy. Due to continuation of fluid and the
nonlinear interactions among turbulent eddies, a part of radial
turbulent kinetic energy is converted into that of horizontal mo-
tion. As pointed out by Rotta (1951), the correlation of pressure
and velocity gradient tends to make turbulence isotropic, so that
we assume

1

�̄
p0 g ik9kw0j þ g jk9kw0i � 2

3
g i j9kw

0k
� �

¼ �c3
4
ffiffiffi
3

p
�eGMr�x

3c1r 2P
A i j: ð14Þ

Parameter c3 introduced here is a convection parameter used to
describe the anisotropy of turbulence. A more complex approxi-
mation incorporating the Rotta terms was also used in Canuto
(1993). For increasing c3, the correlation term of the pressure and
velocity gradient is more and more capable of making turbulence
isotropic, and the turbulence becomes more and more isotropic
in this case (we further discuss this point below).

The right-hand side of equation (6) is the viscous dissipation
term, which can be expressed as, in a similar way as for equa-
tion (8),

1

�̄
� ik(u0)9kw0j þ � jk (u0)9kw0i � 2

3
g i j���(u0)9�w0�

� �

¼ 4
ffiffiffi
3

p
�eGMr�x

3c1r 2P
A ij; ð15Þ

where u0kA ij
is the nonlocal convective flux of the anisotropic

component of Reynolds stress, which can be expressed, in a

similar way as for equation (11) under the condition of aniso-
tropic diffusion approximation, as follows:

u0kA i j ¼ � g k�x2 þAk�
� �1=2

�9�A i j: ð16Þ

In a quasi-static situation,A ij
possesses only three (diagonal)

components different from zero; all other elements will vanish.
In a spherical coordinate frame, (x1; x2; x3) ¼ (r; �; �); then it
follows from equation (4) that

r 2A22 ¼ r 2 sin2�A33 ¼ �A11=2:

In fact,A i j
has only one (A11

) independent component different
from zero. Following the same argument of order-of-magnitude
analysis, it can also be proved that the pressure stress flux and
viscous stress flux terms in equation (6) are small in comparison
with other terms and therefore can be neglected. Inserting equa-
tions (14), (15), and (16) into equation (6), we can derive the
conservation equation for the componentA11

with some simple
manipulations,
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; ð18Þ

which turns up because of the term9k(�u0kA11
) in equation (6)

when considering the spherical coordinate.
Equations (12) and (17) are, respectively, the nonlocal con-

vection equations for the isotropic component x2 and the in-
dependent anisotropic component A11

of the autocorrelations
of turbulent velocity, under quasi-static condition. In a similar
way, the nonlocal convection equations for the autocorrelation
of turbulent temperature Z ¼ T 0/T̄

� �
and the cross-correlation

of the radial component of turbulent velocity and temperature
fluctuation V ¼ w01T 0/T̄ ¼ w0

rT
0/T̄ can be derived, which are the

following:
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where xc ¼ 3acGMrT
3/c1�CP	r

2P and x/xc ¼ Pe is the effec-
tive Peclet number of turbulent convection. The conservation
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equations of mass, energy, and momentum (hydrostatic equi-
librium) and the equation of radiative energy transfer for stellar
structure can be written as

@r3

@Mr

¼ 3

4��
; ð21Þ
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P þ �x2
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þ 1

r

@
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@
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Lr þ Lc þ Ltð Þ ¼ "N ; ð23Þ

@T 4

@Mr

¼ � 3	Lr
16�2acr 4

; ð24Þ

where "N is the nuclear energy generation rate (energy carried
by neutrino is subtracted), 	 is the opacity, c is the speed of
light, and a is the radiation constant. Lr, Lc, and Lt are, re-
spectively, the luminosities corresponding to radiative flux,
convective thermal (enthalpy) flux, and turbulent kinetic energy
flux,

Lr ¼ 4�r2Fr ¼ � 16�2acr 4

3	

@T 4

@Mr

; ð25Þ

Lc ¼ 4�r 2�CPTV ; ð26Þ

Lt ¼ � 3

2
Q

@x2

@Mr

: ð27Þ

When modeling the envelope structure of stars, "N ¼ 0,
equation (23) may be simplified as

Lr þ Lc þ Lt ¼ L0; ð28Þ

where L0 is the total stellar luminosity. Equations (12), (17),
(19), (20), (21), (22), (24), and (28) form a closed system of
equations of envelope structure of stars in the framework of
anisotropic nonlocal convection. Setting both upper and lower
boundaries in the corresponding overshooting zones, the bound-
ary conditions are

r ¼ R0; ð29Þ

P ¼ P0; ð30Þ

T ¼ T0; ð31Þ
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and
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at the surface (Mr ¼ M0) and
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at the bottom (Mr ¼ Mb), where
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s
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ð40Þ

At the surface boundary, the convective variables decrease
toward the surface, and the positive solution �+ is adopted.While
at the bottom boundary of the convective zone, those variables
decrease toward the center too, and the negative solution �� is
used. The boundary conditions given by equations (32)–(39) are
derived by the asymptotic analytic solutions of the power-law
decreasing convective variables x, Z, V, and A11

with respect to
pressure P in the overshooting zone (Xiong 1989b).
Inside the convective zone (far away from the boundary of the

zone), the terms including the third-order correlation representing
the effect of nonlocal convection (i.e., terms containing Q and S)
in equations (12) and (17) are negligible comparedwith the second-
order terms. For static convection, we have

A11 � c1PV

0:78 1þ c3ð Þ�x � 2x2

1þ c3
: ð41Þ

Therefore, it follows for the interior of the convective zone that
the ratio between the mean squared radial component turbulent
velocity (w2

r ) and that of the horizontal one (w
2
h ) is approximately

w2
r

w2
h

¼ x2 þA1
1

2x2 þA2
2 þA3

3

� 1þ 2= 1þ c3ð Þ½ �
2� 2= 1þ c3ð Þ½ � ¼

3þ c3

2c3
: ð42Þ

The radial and horizontal components of turbulent velocities
are defined as the square roots of the corresponding quantities
[wr ¼ (w2

r )
1=2; wh ¼ (w2

h )
1=2], whose ratio as a function of the

convective parameter c3 is given in Table 1. The first column gives
the value of c3, the second column presents a ratio predicted by the
analytic formula given by equation (42), while the third column
presents the numerical results calculated for the solar convective
zone; the two sets of values are very close. This verifies again that
inside the convective zone far away from the boundary, the third-
order correlations are truly negligible compared with the second-
order ones, in that their nonlocal convection is close to the local
one. It is worth being pointed out again that, generally speaking,
local convection and nonlocal convection are different, and this
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is especially the case near the boundary of the convective zone
and within the overshooting regions, where overshooting effects
dominate.

3. THE RESULTS OF NUMERICAL CALCULATIONS

The goal of this work is to study the effects of the anisotropy
of turbulent convection on the structure and evolution of stars.
Being the nearest star, the Sun is an ideal target of our purpose.
As demonstrated in the previous section, there are three con-
vective parameters in our theory, c1, c2, and c3, explicitly de-
scribed as follows:

1. Parameter c1 is the one that is linked with the turbulent
dissipation process, whose primary function is to determine the
efficiency of convective energy transport. For growing c1, tur-
bulent dissipation decreases. With given c2 and c3, the surface
convective zone gets deeper for larger c1. Under a local con-
vection approximation, our theory gives about the same effi-
ciency of energy transport as the original Vitense theory when
c1 ¼ 2:9�, where � is the normal mixing-length parameter.

2. Parameter c2 is linked with nonlocal turbulent diffusion,
which defines the distance of overshooting. Our study shows that
overshooting distance is different for different physical quantities,
and that can change several times. For example, the e-folding
length of turbulent velocity and temperature fluctuation isH /� �
1:4(c1c2)

1=2HP, where HP is the local pressure scale height and �
is defined by equation (24) (Xiong & Deng 2002).

3. Parameter c3 is a measure of the capability to restore the
isotropy of turbulence through the correlation between pressure
and velocity gradient. The larger c3 is, the stronger such capability,
and the turbulent convection is more isotropic (see Table 1).

A series of models of the solar convection zone with different
c1, c2, and c3 have been calculated.

3.1. The Anisotropy of Turbulent Velocity in Convection
and Overshooting Zones

Figure 1 shows the ratio of the radial component and the hor-
izontal one of turbulent velocity,w2

r /w
2
h , as a function of depth (in

log P) in solar convection zone models with c3 ¼ 1, 2, 3, 7, and
255 when c1 ¼ 0:66 and c2 ¼ c1/4. The central part of the figure
(5 P log P P 14) is the convection zone (Lc /L > 0), and the two
ends (log P P 5 and log P k 14) are the overshooting zones
(Lc /L < 0). As shown in Figure 1, radial motion of turbulence
dominates within the convective zone, and turbulent velocity
tends to become isotropic as c3 increases. Table 1 gives numeri-
cal results (corresponding to the ‘‘flat’’ part of the lines in Fig. 1)
of w2

r /w
2
h for the solar convection zone in the last row, from

where one can see that the numerical results closely match those
of the theoretical asymptotic analysis using the local convection
treatment (the second row in Table 1).

In the upper overshooting zone, w2
r /w

2
h is slightly less than 0.5

(i.e., very close to isotropic turbulence), and that is almost inde-
pendent of c3. While in the lower overshooting zone, w2

r /w
2
h < 1

2
,

which means that convective motion is primarily horizontal, and
for decreasing c3, w

2
r /w

2
h tends to decrease. The difference be-

tween these two overshooting zones is very likely due to the dis-
tinct effective Peclet numbers: for the upper zone, PeT1, so that
convection is highly inefficient there, and the superadiabatic
temperature gradient 9�9ad � �0:4. In that case, a convec-
tive eddy will face a strong elastic wall when entering the upper
overshooting zone, temperature drops off abruptly, and the mo-
tion of the eddy decreases and eventually bounces back. Passing
through the boundary of the convective zone, the correlation of
velocity and temperature jumps from +1 to�1. In the convective
zone and the lower overshooting zone, however, Pe 31, con-
vection is very efficient for energy transport and 9�9adj jT1;
convection is subadiabatic (9�9ad < 0) far before reaching the
lower overshooting zone. While in the lower overshooting zone,
convection is subadiabatic but superradiative (9ad > 9 > 9rad);
this is due to the fact that convective energy flux becomes negative
(Lc < 0) in this region. The structure of the lower overshooting
zone sketched by our theory is completely different from that
predicted by classical nonlocal mixing-length theories (Shaviv
& Salpeter 1973; Maeder 1975; Bressan et al. 1981; Zahn 1991;
Monteiro et al. 2000). As commented by Petrovay & Marik
(1995), such a misunderstanding in the mixing-length theories
was due to the fact that nonlocal mixing-length theories as-
sumed implicitly that turbulent velocity is fully correlated with
temperature fluctuations. However, such a correlation decreases
very quickly toward the lower boundary of the convective zone.
Figure 2 depicts the model of the solar convective zone in terms
of fractional convective flux Lc /L, the correlation of turbulent
velocity and temperature Re, and superadiabatic temperature
gradient (9�9ad) as functions of depth (log P). Within the

TABLE 1

The Ratio of the Radial Component of Turbulent Velocity

to the Horizontal One versus the Convective Parameter c
3

c3

w2
r /w

2
h

Equation (42)

w2
r /w

2
h

Numerical

1........................................ 2.00 2.00

2........................................ 1.25 1.25

3........................................ 1.00 1.00

7........................................ 0.714 0.715

15...................................... 0.600 0.600

31...................................... 0.548 0.549

63...................................... 0.523 0.524

127.................................... 0.509 0.512

255.................................... 0.502 0.506

Fig. 1.—Ratio of the radial turbulent velocities to the horizontal one wr /wh

vs. the depth for solar convective models with c1 ¼ 0:66 and c2 ¼ 0:165, but
different c3 ¼ 1, 2, 3, 7, and 255.
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convective zone and upper part of the lower overshooting zone,
9�9ad is virtually zero (Fig. 2, dashed line). We have mul-
tiplied 9�9ad by 104 in order to make it visible in the plot
(dotted line). It follows directly from Figure 2 that, going to-
ward the lower overshooting zone, 9�9ad has been negative
far away from the boundary. The difference between the models
made of nonlocal and local convection theories can be used to
perfectly explain the abrupt temperature rise at the lower over-
shooting zone of the solar convective zone (Xiong&Deng 2001),
which is an observational fact provided by helioseismic inver-
sion of the solar convective zone.

It is worth stressing here again that equation (42) is derived
from the dynamic equations of turbulent velocity correlations
(eqs. [12] and [17]) under the condition of neglecting the third-
order correlations; therefore, the local treatment is retained. Within
a convective zone, the third-order correlations can be neglected
because they are relatively small compared with other terms. As
such, convective motions are similar to what can be expected
from a local theory. However, the third-order correlations tend
to become significant near the boundary of a convective zone
and within the overshooting zones and can no longer be ignored.
Hence, equation (42) is not valid in such a context, as clearly
demonstrated in Figure 1.

3.2. The Effects of Anisotropy of Turbulence on the Structure
of the Stellar Convective Zone

Figure 3 shows the variations of the depth of the convection
zone rc /R� with respect to convective parameter c3 in three sets
of convective parameters (c1; c2) ¼ (0:66; 0:66), (0.66, 0.33),
(0.66, 0.165), where rc is the radius at the bottom of the solar
convective zone and R� is the radius of the Sun. It follows from
Figure 3 that convection gets deeper for smaller c3 with given c1
and c2. This is because the radial turbulent velocity increases
with smaller c3 in the convective zone (see also Fig. 1), while
turbulent velocity is mostly positively correlated with temper-
ature (see Fig. 2). Therefore, V ¼ w0

hT
0/T̄ (and convective flux

Fc ¼ �CPTV ) grows for smaller c3 within the convective zone.

As a result, the temperature gradient of the outermost super-
adiabatic region of the stellar convective zone will decrease for
smaller c3. The depth of the outer convective zone of stars is
mainly fixed by the structure of the superadiabatic zone: the
larger the temperature gradient in the superadiabatic zone, the
shallower the convective zone. Hence, it is straightforward to
conclude that the depth of the convective zone gets deeper for
smaller c3 with given c1 and c2. Figure 4a gives the fractional
convective flux Lc /L as a function of depth in the superadiabatic
zone of the model of the solar convective zone with c1 ¼ 0:66,
c2 ¼ c1/4 ¼ 0:165, and c3 ¼ 1, 3, 255.
As shown in Figure 3, given c1 and c3, convection becomes

shallower for larger c2; this is due to the fact that the nonlocal
convective diffusion is proportional to c2. Therefore, more tur-
bulent kinetic energy will be leaked to the overshooting zone on
top of the convective zone for greater c2. As a result, convective
flux at the upper part of the convective zone will decrease for
greater c2, and the temperature gradient over there will increase;
the convective zone becomes shallower then. Figure 4b shows
the fractional convective flux Lc /L as a function of depth in
three models of the solar convective zone with c1 ¼ 0:66,
c3 ¼ 3, and c2 ¼ 0:66, 0.33, and 0.165, respectively.
Also from Figure 3, we can see that the anisotropy of turbulent

convection has an apparent influence on the depth of stellar
outer convective zones. For example, for the solar convective
zone model with c1 ¼ 0:66, c2 ¼ c1/4 ¼ 0:165, and c3 ¼ 255,
the depth of the convective zone is rc/R� ¼ 0:7163, and the tem-
perature at the bottom of the convective zone is Tc ¼ 2:23 ; 106 K;
in contrast to that, for another model with the same c1 and c2 but
c3 ¼ 3, the depth of the convective zone is now rc /R� ¼ 0:6685
and Tc ¼ 2:76 ; 106 K; the two models are quite different in-
deed. The divergence of the results shows the dependence of
model properties on the selection of parameters; the true value
of the parameters linked with a correct model can be fixed by
observations. Once we have c3 and c2/c1 determined observation-
ally or somehow theoretically, it is always possible to adjust the
convective parameter c1 so that the predicted depth of the solar
convective zone matches that derived from helioseismology.

Fig. 2.—Fractional convective flux Lc /L, superadiabatic temperature gradi-
ent 9�9ad, and the coherence between turbulent velocity and temperature Re ¼
V /xZ1/2 as functions of depth for model 3.

Fig. 3.—Depth of the convective zone as a function of c3 for three sets of
the solar convective zone model with c1 ¼ 0:66 and c2 ¼ 0:66, 0.33, and 0.165,
respectively.
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Four models of the solar convective zone with the depth re-
quired by helioseismology (Basu 1997) are presented in Table 2;
they have different combinations of convective parameters c1,
c2 ¼ c1/4, and c3. The relative difference of model 1 and model
3 in terms of adiabatic sound speed 
c2s /c

2
s and density 
�/� as

functions of depth is shown in Figure 5. As shown in the plot,
the two models are very similar: the relative difference between
them is less than 1/1000. It is not possible to detect such a tiny
difference for stars, except our Sun. Although being very small,
the two models still show small deviations at the bottom of the
convective zone as one can see from Figure 5. Such deviations
neither are due to the numerical errors in the calculations nor
result from inaccurate tuning of the parameter c1. In fact, these
two models show true fine deviations at the lower overshooting
zones. For the Sun, it can be well detected through helioseismic
inversion. Figures 6a and 6b show, respectively, the variations
with depth of the auto- and cross-correlations of turbulent ve-
locity and temperature fluctuations x, Z, and V in the upper and
lower part of the convective zone for the two models, where the
dip on the log Vj j– log P curve (whereV changes its sign) is exactly
the boundary of the convective zone. As shown in Figures 6a
and 6b, the turbulent velocities and temperature fields of the
four models are very similar within the convective zones. In the
overshooting zones, however, smaller c3 makes x, Z, and Vj j
decrease faster. This is due to the proportionality of the e-folding
lengths of both x and V to (c1c2)1

=2 ¼ c1/2 (for c2 ¼ c1/4). If
one wanted to make the models with different c3 have the same

depth of convective zones, one should also make c1 smaller for
smaller c3.

3.3. The Effects of Anisotropy of Turbulent Convection
on the Evolution of Stars

Except the surface layers, Pe 31 holds for all cases of con-
vection inside stars; convection is very efficient, so that the tem-
perature gradient is almost adiabatic, i.e.,9�9adT1, regardless
of the choice of convection parameters c1, c2, and c3. It seems
that convection parameters have little to do with the internal
temperature-pressure structure of stars. However, this does lead
to the conclusion that they have no influence on the evolution of

TABLE 2

Models of Solar Convective Zone

Model c1 c2 c3 rc /R�

Tc
(106 K)

1................................. 0.6600 0.1650 255 0.7163 2.23

2................................. 0.5800 0.1450 7 0.7158 2.23

3................................. 0.5200 0.1300 3 0.7163 2.23

4................................. 0.4325 0.1083 1 0.7163 2.23

Fig. 4.—Fractional convective flux Lc /L as a function of depth of the solar convective zone model with (a) c1 ¼ 0:66, c2 ¼ 0:165, and c3 ¼ 1, 3, and 255 and
(b) c1 ¼ 0:66, c3 ¼ 3, and c2 ¼ 0:66, 0.33, and 0.165.

Fig. 5.—Relative differences in the squared sound speed and densities be-
tween model 1 and model 3 vs. r/R�.
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stars. On the contrary, c1, c2, and c3 affect critically the exten-
sion of convective overshooting zone and therefore the non-
local mixing of chemical elements inside stars and further the
evolutionary properties of stars. As shown in Figures 6a and 6b,
with the decrease of anisotropy parameter c3, the convective over-
shooting zone retreats. To make such a prediction more con-
vincing, we have calculated the depletion of the atmospheric
lithium abundance in four models of the solar convection zone.
The results are presented in Figure 7, in which the evolution
curve of lithium abundance A½Li� ¼ log NLi/NHð Þ þ 12 is plotted,
where NLi and NH are solar atmospheric atomic number den-
sities of lithium and hydrogen, respectively; the initial lithium

abundance (defined above) is taken to be 3.3. The asterisk shows
the current location of the Sun. It follows from Figure 7 that the
depletion of solar atmospheric lithium abundance increases very
quickly with growing c3, although all four models of the con-
vective zone have the same depth of the convection zone. This
is apparently due to the fact that the lithium abundance depends
sensitively on the extension of the overshooting zone, which, in
turn, is a function of c3. As one can also see from Figure 6b, the
downward attenuation of turbulent velocity x increases quickly
with smaller c3 at the bottom overshooting zone, and this is why
the depletion of lithium slows down for smaller c3.
It is seen also from Figure 7 that the location of the current

Sun sits very closely on the lithium abundance depletion curve
of model 3. This implies that it is promising to explain the
lithium depletion problem of the Sun and solar-type stars using
the mechanism of convective overshooting. More theoretical com-
putational efforts should be put forward to verify such an idea,
including considering the evolutionary effects of the Sun and
stars. This has exceeded the purpose of the current work and is
not dealt with here.

3.4. A Comparison with Observations
of the Solar Convective Zone

Being distinctly different from the nonlocal mixing-length theo-
ries (e.g., Spiegel 1963; Ulrich 1970a, 1970b), our nonlocal con-
vection models have the following characteristics:

1. Within the convective overshooting zone, turbulent ve-
locity and temperature fluctuations drop off exponentially with
respect to pressure. Crossing the boundary of the convective zone,
the turbulent velocity–temperature correlation changes its sign;
i.e., convective flux becomes negative in the overshooting zone.
2. Within the convective zone, turbulent velocity is mainly

radial, while in the overshooting zone, it becomes nearly isotropic;
the horizontal component is about

ffiffiffi
2

p
times the radial component.

The study of the granular structure of the Sun has a long
history. Table 3 lists three groups of studies on the variation of

Fig. 6.—Turbulent velocity, temperature, and velocity-temperature correlation vs. depth. (a) In the solar atmosphere, the abscissa is the height above � ¼ 1. (b) In the
lower layer of the convective zone.

Fig. 7.—Depletion of lithium abundance with time for solar convection
models 1–4.
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the velocity field of solar granules with respect to height. Sim-
ilar methods have been adopted in those studies, assuming that
the variations of the velocity field with height can be fitted using
the following analytical formula (Nesis & Mattig 1989):

v hð Þ ¼ V1 exp �h=H1ð Þ þ V2 exp Z=H2ð Þ:

The observed velocity field of granules can be expressed in
terms of the velocity weighting function wv(h) (Canfield 1976),

Vgran ¼
Z 1

�1
wv(h)v(h) dh:

By measuring the granular velocity field with spectral lines
formed at different heights (Keil & Canfield 1978; Komm et al.
1991), or with the same spectral line having different residual
intensities (Nesis & Mattig 1989), one can determine the pa-
rameters H1, H2, V1, and V2. By observing velocity fields from
the limb to the center of the Sun, one can measure the distri-
bution of radial and horizontal components of the velocity field
with respect to height. Table 3 gives the parameters H1, H2, V1,
and V2 of each member of the research group, while Figures 8a

and 8b show the distributions of radial and horizontal compo-
nents of the solar granular velocity field with respect to height
as derived from their parameters, respectively.

The distributions of the radial and horizontal components of
turbulent velocity of our theoretical models are plotted in Fig-
ures 9a and 9b, respectively. The fitted parameters V1andH1 are
also presented in Table 3. Comparing our model with obser-
vations, we found out that the turbulent velocity decreases
quickly with height at the lower and intermediate layers of the
photosphere (h � 200 km). The trends are the same for both
cases; however, the theoretical prediction favors a much faster
decrease than observed. In the upper layers (h � 200 km), the ob-
servations of Nesis &Mattig (1989) and Komm et al. (1991) show
that the velocity field changes slowlywith height and seems slightly
increasing toward the outside. This is possible by not representing
convective overshooting and ought to be attributed to some other
physical processes not yet known to us (Komm et al. 1991).

Comparing the theoretical ratio of radial and horizontal com-
ponents of turbulent velocity wr /wh with that of observations,
no similarity is found. According to our theoretical predictions,
wr /wh � 0:71 in the convective zone (h � �10 km), while in
the overshooting zone it gradually approaches isotropic (wr /wh �
0:71). This is not at all shown by observations. As shown in

TABLE 3

Observational and Theoretical Model of the Solar Atmosphere Velocity Field

Radial Horizontal

Source V1 H1 V2 H2 V1 H1 V2 H2

Keil & Canfield ................................. 1.45 140 . . . . . . 2.70 230 . . . . . .

Nesis & Mattig .................................. 1.05 95 0.115 270 1.1 75 0.2 290

Komm, Mattig, & Nesis .................... 1.35 70 0.247 600 2.10 85 0.210 400

Model 1.............................................. 1.64 67 . . . . . . 1.68 67 . . . . . .

Model 2.............................................. 1.50 58 . . . . . . 1.50 58 . . . . . .

Model 3.............................................. 1.34 52 . . . . . . 1.34 52 . . . . . .

Model 4.............................................. 1.02 40 . . . . . . 1.03 40 . . . . . .

Fig. 8.—(a) Vertical and (b) horizontal components of granular rms velocity calculated from spectrographic observations of the Sun vs. height about �5000 ¼ 1. The
ratios of the vertical component to the horizontal one of turbulent velocity are also plotted. The solid lines are taken from Komm et al. (1991), the dotted line from Nesis
& Mattig (1989), and the dashed lines from Keil & Canfield (1978).
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Figure 8, wr /wh in the three sets of observational data are very
different, which implies that such observations are still not con-
vincing enough to make a conclusive judgment on our model. It
is known that there are still large uncertainties in the observa-
tion of the velocity field of solar granules:

1. The observed velocity field contains at least two compo-
nents: the velocity field of granules and that of solar 5 minute
oscillations. Time series photometry is needed in order to com-
pletely decompose the two components (Keil 1980; Bässgen &
Deubner 1982), in that the solar 5 minute oscillation can be
cleared out on the k-w diagram of the solar oscillation analysis.
However, there are no such long time series observations for the
granular velocity field. A regular practice is to set a minimum
wavenumber k0 of the granular velocity field, assuming that all
velocity components with k < k0 are due to solar oscillations and
that the remaining modes with k � k0 are the real granular velocity
field. Such discrimination is obviously not clean, which removes
velocity fields of large-scale granules on the one hand and on the
other hand keeps the components of solar oscillation in the velocity
field with k � k0 and of course that of observational noise.

2. The observations of the solar velocity field are distorted
due to instrumental noise and the atmospheric seeing. Even at a
perfect seeing condition, the uncorrected value differs from the
corrected one by at least a factor of 2, as concluded by Komm
et al. (1991).

Before any reliable observations come in, direct hydrody-
namic simulations should be regarded as a more realistic con-
straint on our theory and the selection of the parameter of
anisotropic convection c3.

3.5. A Comparison with Hydrodynamical Simulation Results

The results of a hydrodynamic simulation are presented here
as a comparison. The vertical profiles of wr /wh (solid line), wr

(dashed line), and wh (dot-dashed line) from a three-dimensional
simulation of convection with upward overshooting are shown
in Figure 10. The abscissa is the depth in ln p (decreases with
height); the radiation-convection transition boundary is at 0. In
the convective region, the radiative gradient 9r is much larger

than the adiabatic gradient 9ad (=0.4). In the radiative region,
9r has the value 0.2. Both the stable and the unstable regions
contain about 4 pressure scale heights. Toward the top and bottom
boundaries, wr and thus wr /wh drop off quickly due to the
nonpenetrative boundary conditions assumed in the model and
therefore are not real. The region 3 > ln p > 0 corresponds
approximately to the upper layer of the solar convection zone.
In Figure 1,wr /wh reaches a maximum value of about 0.9. From
Table 1, it can be seen that this is compatible with a value of c3
between 3 and 7. In the overshoot region, however, wr /wh is
around 0.2, which is far smaller than the predicted value of the
theory. How should we interpret such distinct properties of the
convective and overshooting zones? The anisotropy depends on
the nature and the strength of the stratification force on the fluid
elements, namely, the factor9�9ad. Deep inside the convective
zone, 9�9ad is positive and very small (T1); therefore, the
anisotropy of the velocity field favors the radial direction due to

Fig. 9.—(a) Vertical and (b) horizontal components of turbulent velocity vs. height above � ¼ 1 for solar convection models 1–4.

Fig. 10.—Vertical profiles ofwr /wh (solid line),wr (dashed line), andwh (dot-
dashed line) from a three-dimensional simulation of convection with upward
overshooting. The abscissa is the depth in ln p (decreases with height); the
radiation-convection transition boundary (vertical dotted line) is at 0.
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buoyancy acceleration, but the stratification force is mild and
amodest enhancement ofwr /wh is created. However, in an over-
shooting zone with 9�9ad � �0:2, the antibuoyance effect
dominates over the isotropizing effect of the turbulent pressure–
velocity gradient correlation, and a low value of wr /wh appears.
This is particularly significant in the overshoot region right next
to the convection-radiation transition layer (wr /wh is minimized).

It follows from equations (12) and (14) that in our nonlocal
convection theory, the radial turbulent diffusion coefficient is pro-
portional to wr� (� being the diffusion length). We have assumed
that the diffusion length is proportional to the local pressure scale
height, i.e.,� ¼

ffiffiffi
3

p
/4�1 ¼

ffiffiffi
3

p
/4c2HP ¼

ffiffiffi
3

p
c2r

2P/4GMr�; the
parameter c2 can be fixed using the observational solar lithium
abundance. In order to secure our nonlocal convection model
in terms of both the observational solar lithium abundance and
the helioseismic depth of the solar convective zone, we need to
take c2 � c1/5 (Xiong & Deng 2002). According to the theory
of turbulence, the turbulent diffusion length� should have a similar
magnitude as the linear size of the energy-containing eddies, so
that c1 and c2 ought to be similar. A small value of c2/c1 derived
by the observational constraints cannot be understood easily. If
one accepts the picture offered by the hydrodynamical simu-
lation, in the overshooting zone, the radial component of tur-
bulence wr is much smaller than the horizontal one wh, and then
the turbulent diffusion coefficient�wr can bemade smaller without
a large reduction of the diffusion length� (or the convection pa-
rameter c2). This may reconcile or even remove the problem of
requiring c2/c1 to be small.

4. CONCLUSIONS

We have presented in this paper a simple anisotropic nonlocal
theory of convection, which we have used to analyze the anisot-
ropy of the convective turbulence and its possible consequences
on the internal structure and evolution of stars. The results are
concluded as follows:

1. The anisotropy of turbulence has hardly any important
effects on the internal structure of stars.

2. The anisotropy of turbulent convection seriously affects
the nonlocal convective mixing process and therefore the evolu-
tion of stars.

3. Inside the convection zone, both the simulationmodel and
our simple nonlocal theory produce an anisotropy that favors
the radial direction (i.e., wr/wh > 0:71). By considering lithium
abundance, the convection parameter c3 ¼ 3 is preferred. This
is also corresponding to themost unstable convectivemode froma
linear stability analysis of the convective zone (Unno 1961).
That seems to be incompatible (being too small) with the value
indicated by the three-dimensional model (between 3 and 7).
However, the results of the simulation presented here are based
on a relatively shallow convection zone (about 4 pressure scale
heights in depth). In the simulation of a deeper convection zone
(Chan & Sofia 1996), which contains about 7 pressure scale
heights, wr /wh reached 1.16. The ratio is close to what can be
expected with c3 ¼ 3. The older simulation, however, did not
include a substantial overshoot layer, and the small aspect ratio
of the computed domain (1.5 vs. the current 6) might have an
effect on the velocity ratio. Further simulations are needed to
obtain a more reliable estimate for the asymptotic value of this
quantity. The current comparison with simulations can only be
viewed as preliminary and qualitative.

4. In the overshoot zone, our theory generally predicts a ve-
locity ratio below 0.71, showing that the horizontal velocity com-
ponent becomes dominant. This is an important feature due to
the nonlocal nature of the theory, as equation (42), based on ne-
glecting the nonlocal effects, limitswr /wh to above 0.71. In com-
parison with the simulation model (wr /wh � 0:2), the theoretical
predictions seem to be too large. The differences call for further
investigation.

5. Within an overshooting zone, wr/whT1 would greatly
reduce the turbulent diffusion coefficient there. This may help to
avoid the need to make c2/c1 (diffusion length vs. dissipation
length) small in our anisotropic turbulent diffusion theory.
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