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Abstract

This paper presents a highly efficient implicit unified gas-kinetic particle (IUGKP) method
for obtaining steady-state solutions of multi-scale phonon transport. The method adapts and
reinterprets the integral solution of the BGK equation for time-independent solutions. The
distribution function at a given point is determined solely by the surrounding equilibrium
states, where the corresponding macroscopic quantities are computed through a weighted
sum of equilibrium distribution functions from neighboring spatial positions. From a particle
perspective, changes in macroscopic quantities within a cell result from particle transport
across cell interfaces. These particles are sampled according to the equilibrium state of their
original cells, accounting for their mean free path as the traveling distance. The IUGKP
method evolves the solution according to the physical relaxation time scale, achieving high
efficiency in large Knudsen number regimes. To accelerate convergence for small Knudsen
numbers, an inexact Newton iteration method is implemented, incorporating macroscopic
equations for convergence acceleration in the near-diffusive limit. The method also addresses
spatial-temporal inconsistency caused by relaxation time variations in physical space through
the null-collision concept. Numerical tests demonstrate the method’s excellent performance
in accelerating multi-scale phonon transport solutions, achieving speedups of one to two or-
ders of magnitude. The IUGKP method proves to be an efficient and accurate computational
tool for simulating multiscale non-equilibrium heat transfer, offering significant advantages
over traditional methods in both numerical performance and physical applicability.
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1. Introduction

For heat transfer phenomena at the micro- and nanoscales, Fourier’s law of heat conduc-
tion is not applicable. It fails to capture non-equilibrium thermal conduction phenomena
such as ballistic transport, nonlocal, nonlinear, size effects, and complex interfacial scat-
tering mechanisms [1, 2, 3]. Therefore, developing heat conduction models that capture
phonon drift, scattering, absorption, and emission is crucial. The phonon Boltzmann trans-
port equation (BTE) [4, 5, 6] offers a framework that overcomes the limitation of Fourier’s
law and accurately reflects the complex transport mechanisms in modern electronic devices.
However, analytical solutions of the BTE for realistic electronic devices are extremely chal-
lenging due to the multiscale nature of phonon transport and complex interactions with
materials. Consequently, numerical simulations become indispensable, necessitating the de-
velopment of advanced computational methods to accurately and efficiently model phonon
transport for improved thermal management in electronic devices. The BTE has two an-
gular dimensions, one frequency dimension, and three spatial dimensions [7, 8]. These six
dimensions result in enormous computational cost, posing significant challenges for numeri-
cal simulations [9, 10, 11].

Over the past few decades, two main categories of methods have been developed for solv-
ing the phonon BTE: deterministic methods, represented by the DOM [12, 13, 14, 15], and
stochastic particle methods, represented by the MC method [16, 17, 18, 11, 19, 20, 21, 10].
The DOM method decouples particle free transport and collision effects in numerical han-
dling, which requires the time step to be smaller than the particle relaxation time. It exhibits
significant numerical dissipation at low Knudsen numbers and requires a large number of
computational steps to reach a converged solution. Traditional explicit Monte Carlo meth-
ods significantly reduce the number of velocity space elements. However, they also decouple
particle transport from collisions. Similar to the DOM method, a large number of computa-
tional steps are required to achieve convergence at low Knudsen numbers [10, 11, 20, 22, 23].
To overcome the limitations of the aforementioned methods at low Knudsen numbers, de-
terministic methods with multiscale properties, exemplified by unified gas-kinetic scheme
(UGKS) and discrete UGKS (DUGKS) [24, 9, 25, 26, 27], have been developed in recent
years and successfully applied to phonon transport. At the same time, the general syn-
thetic iterative scheme (GSIS) [28, 29, 30] has also achieved significant success in solving
phonon transport problems. For the multiscale particle method, the unified gas-kinetic par-
ticle (UGKP) and unified gas-kinetic wave-particle (UGKWP) methods have been widely
applied to multiscale neutral gas transport [31], plasmas [32, 33], multiphase flows [34],
radiation [35], turbulence simulation [36] and phonon transport [37].

Deterministic multiscale methods have also developed corresponding steady-state accel-
eration techniques, such as implicit UGKS and implicit DUGKS [38, 29]. Compared to ex-
plicit schemes, implicit schemes significantly enhance the convergence rate; however, because
they still require discretization of a large velocity space, they ultimately consume a substan-
tial amount of computational time. Statistical multi-scale methods, such as UGKWP, are
bounded by numerical time steps, and it’s relatively hard to develop an implicit scheme for
further accelerating their convergence speed. Recently, implicit UGKWP [39, 40] has been
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gradually applied in the field of radiation, which may offer some insights for accelerating
other multiscale transport UGKWP methods.

This paper proposes a novel particle method to efficiently solve the phonon transport
equation. The method combines the integral solution of the steady-state phonon BGK equa-
tion with a null collision approach and macroscopic prediction equations. The fundamental
principle is that the distribution function at any point is determined solely by equilibrium
states at surrounding locations. At large Knudsen numbers, particles can travel distances
significantly larger than those in numerical time-step-based transport, resulting in much
faster convergence compared to conventional Monte Carlo (MC) methods. For low Knudsen
numbers, similar to the IUGKS method, macroscopic prediction equations determine the new
equilibrium state for particles sampling in the next iteration. This approach compensates
for tracking particles with short mean free paths under small Knudsen number condition.
Unlike existing steady-state Monte Carlo method for phonon transport, our approach re-
solves the spatio-temporal inconsistency caused by varying relaxation times in physical space
through the null-collision concept. The method maintains the high efficiency of steady-state
Monte Carlo methods at large Knudsen numbers while demonstrating superior multiscale
capability - a feature absent in current phonon Monte Carlo methods. Additionally, it en-
hances computational efficiency at low Knudsen numbers by using macroscopic equations to
predict collision equilibrium states, which guide particle resampling in subsequent steps.

This paper is organized as follows. Section 2 introduces the steady phonon BGK equation
and its integral solution. Section 3 presents the details of the IGKP method. Section 4 is
the numerical examples. The last section is the conclusion.

2. Steady phonon BGK Equation

In general, the phonon BTE can be simplified using the BGK type relaxation time
approximation model [41, 5, 28, 20]

Vg · ∇f =
1

τ
(f eq − f) , (1)

where f is the phonon distribution function, Vg = |Vg|s is the group velocity, s = (cos θ,
sin θ cosφ, sin θ sinφ) is the unit directional vector (θ is the polar angle and φ is the azimuthal
angle), τ is the relaxation time, f eq is the equilibrium distribution function, which satisfy
the Bose-Einstein distribution,

f eq(T ) =
1

exp (ℏω/kBT )− 1
, (2)

where ℏ is the reduced Planck constant, ω is the frequency, kB is the Boltzmann constant
and T is the temperature.

In this paper, we employ the gray model, which neglects phonon dispersions and po-
larization characteristics and introduces the assumption that the phonon group velocity
and relaxation time are constants. Although this simplification cannot accurately capture
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frequency-dependent or anisotropic phonon transport behaviors in solid materials, it pro-
vides insights into phonon transport phenomena, such as ballistic transport and boundary
scattering effects. The Knudsen number of the system is defined as Kn = λ/L0, where L0 is
the characteristic length of the system and λ = |Vg|τ is the phonon mean free path. Eq. (1)
can also be expressed in terms of the phonon energy density per unit solid angle

Vg · ∇e =
1

τ
(eeq − e) . (3)

where

e(x, s, ω, p) =
∑
p

ˆ
(ℏω (f − f eq (Tref))D(ω, p)/4π) dω, (4)

eeq(x, s, ω, p) =
∑
p

ˆ
(ℏω (f eq(T )− f eq (Tref))D(ω, p)/4π) dω, (5)

where D(ω, p) is the phonon density of state and Tref is the reference temperature. Taking
a first-order Taylor expansion of distribution function at T0, Eq. (5) can be expressed as

eeq ≈ C (T − Tref)

4π
, (6)

where C is the volumetric specific heat. The local energy E, temperature T and heat flux
q are obtained by taking the moments of the phonon distribution function of the energy
density over the whole solid angle space,

E =

¨
4π

e dΩ, (7)

T =
E

C
+ Tref , (8)

q =

¨
4π

Vge dΩ. (9)

Then, the integral solution can be obtained:

e(x, u) =

ˆ x

x0

eeq

uτ (x′)
e
−
´ x
x′

1
uτ(x′′)

dx′′

dx′ + e (x0, u) e
−
´ x
x0

1
uτ(x′)

dx′

, (10)

where x0 is the starting point and the relaxation time τ is related to space location x, u is
the magnitude of the group velocity.

The integral solution of the steady BGK equation demonstrates that the particles lo-
cated at the starting point have a cumulative density function (CDF) Pf to maintain their
distribution while free-streaming to the endpoint x; the formulation of Pf (x0, x) is:

Pf (x0, x) = e
−
´ x
x0

1
uτ(x′)

dx′

. (11)
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Conversely, during transport, the probability density function (PDF) of experiencing a col-
lision at point x′ and keeping the local equilibrium distribution to x is:

Pc (x
′, x) =

1

uτ (x′)
e
−
´ x
x′

1
uτ(x′′)

dx′′

. (12)

Considering the composition of the distribution function at a certain point x, the final
distribution function at a certain point x can be regarded as the mathematical expectation
of the distribution functions from the starting point x0 to that point x, weighted by their
respective probabilities.

In other words, the distribution function at that point x is a convex combination of
the equilibrium distribution functions from itself and other positions and the boundary
distribution function. Suppose the boundary distribution function is at equilibrium. In
that case, the distribution function at that point is a convex combination of the equilibrium
distribution functions from all the points in the computational region:

en+1
i,k =

N∑
j=0

ωj,ke
eq,n
j,k , (13)

where N is the total number of cells of the grid. Considering the case where τ is constant,
and based on previous results that yield Pc =

dPf

dx
, we can further rewrite the above equation

as:
en+1
i,k (x, u) =

∑
F (Pf (xj, x)) e

eq,n
j,k (xj, u) , (14)

where the summation takes over all particles with the specified velocity capable of trav-
eling from point xj to point x and F is the function related to the CDF. This indicates
that the distribution function at point x is obtained by probabilistically accumulating the
corresponding equilibrium distribution functions from other points using the CDF.

3. Steady-state acceleration in IUGKP

Based on the previous introduction, the remainder of this paper will explain, from a
Monte Carlo perspective, how particles can represent the transport and collision phenomena
inherent in the integral solution.

3.1. Constant τ case

For convenience, we will initially assume that τ is constant; a method to handle variable
τ will be presented later. From the emission perspective: particles emitted from a given
point in local equilibrium have free transport distances that follow the cumulative PDF Pf .
From the inverse sampling method, its free transport length is:

λ = −uτln (η) . (15)

After traveling this distance, the particle undergoes a collision at the local point and then
conforms to the local equilibrium distribution. Then, Eq. (14) can be reformulated into a
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particle-based representation as follows:

Wi =
∑

wp. (16)

The physical picture is shown in Fig. 1, illustrating the above process.

sampled free stream path

𝑊𝑝~𝑓𝑗
𝑒𝑞

𝑊𝑝~𝑓𝑗
𝑒𝑞

𝑊𝑝~𝑓𝑗
𝑒𝑞

𝑊𝑝~𝑓𝑗
𝑒𝑞

-𝑢𝜏ln(𝜂)

𝑊𝑝~𝑓𝑗
𝑒𝑞

𝑊𝑝~𝑓𝑗
𝑒𝑞

𝑊𝑝~𝑓𝑗
𝑒𝑞

𝑊𝑝~𝑓𝑗
𝑒𝑞

Figure 1: Illustrating the integral solution of the particle perspective.

Therefore, for a constant value of τ , the steps for one iteration of the steady-state algo-
rithm are:

(1) for each particle in the cell, resampling its distribution, which satisfies the local
equilibrium state.

(2) sampling all the particles’ free streaming path and moving them to the target cell
according to this length.

(3) Update the cell average macro variables by counting the masses, momentum, and
energy of the particles in the cell.

3.2. General cases

This section will discuss the adjustments and generalizations of the corresponding algo-
rithm when τ is variable. To sample the free path length of a particle when τ is a variable.
Here one may employ either analytical or numerical integration techniques to determine the
probability density function (PDF), which in turn allows the derivation of the particle’s free
transport length. However, the method above can cause issues of spatio-temporal incon-
sistency. Although the steady-state BGK equation does not incorporate an explicit time
dimension, the parameter τ nevertheless embodies a specific time scale.

This section will use a uniform thermal conduction problem to illustrate the origin and
cause of this issue. The computational domain, initial conditions, and boundary conditions
are shown in Fig. 2. The grid size is 0.1, and the entire temperature field is initialized to
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Kn = 0.1 Kn = 0.0001

0 1 2 3 4 5 6 7

𝑇𝐿 = 1 𝑇𝑅 = 1

Figure 2: Computational domain and boundary conditions for the uniform heat conduction case.

1, with both the left and right boundary temperatures set to 1. At the middle interface,
the Knudsen number (Kn) is 0.1 on the left side and 0.0001 on the right side. With this
grid scale and distribution of Kn, particles in the left region move approximately one grid
unit per time step, while particles in the right region hardly move. Under these initial
and boundary conditions, the entire temperature field should remain at 1. After sampling
N particles in each grid cell, each particle in the entire domain weights (1/N), and the
temperature throughout the domain remains at 1, as shown in Fig. 3. Next, let’s focus on
the particle distribution in cell three and cell four after one particle movement step. For
grid 3, the free path length of the particles is equal to one grid length, and it exchanges
an equal number of particles with grid 2; however, about half of the particles move toward
grid 4. In contrast, for grid 4, the free path length of the particles is almost zero, and it
exchanges an equal number of particles with grid 5, yet virtually no particles move toward
grid 3. Therefore, after one iteration, the temperature in grid three will decrease while the
temperature in grid four will correspondingly increase. Fig .4 helps illustrate this transport
property. Moreover, this transport behavior is determined by τ , which depends solely on
the spatial coordinate distribution, so this uneven transport does not capture the correct
solution in the subsequent iterations.

The fundamental reason for this phenomenon is that the transport times on the left and
right sides are not consistent. Particles on the left transport on a timescale corresponding
to Kn 0.1, while particles on the right transport on a timescale corresponding to Kn 0.0001,
and this discrepancy persists indefinitely as shown in Fig. 5.

The key to resolve this problem is to define a uniform time scale, so that all particle
movements adhere to its constraint. Moreover, this timescale should resolve the smallest
relaxation time in the entire domain, so we select the smallest τ in the field as the auxiliary
timescale denoted as τmin. After specifying the minimal scale, we can draw inspiration from
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Kn = 0.1 Kn = 0.00001

Initial Particle

x

T

Particle Distrubution

Temperature 

Distrubution

Constant distribution

0 1 2 3 4 5 6 7

Figure 3: Initial particle distribution for the uniform heat conduction case.

Kn = 0.1 Kn = 0.0001

After one step particle free streaming Particle

x

T

Particle Distrubution

Temperature 

Distribution

Can not hold Constant 

distribution

0 1 2 3 4 5 6 7

Particles which move form 3 to 4
Particles which move 

form 4 to 3, nearly 0.

Figure 4: Initial particle distribution for the uniform heat conduction case.
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Kn = 0.1 Kn = 0.0001

Particle𝜏𝐿 ≫ 𝜏𝑅

Figure 5: Spatial-time inconsistent transport property.

the null-collision method and the UGKWP method to develop a steady, large-time-step
particle method.

For particle sampling, the particle free-path distribution satisfies:

−uτmin ln(η), (17)

where u is the particle velocity, η is a random number in interval [0, 1]. Similarly to the
UGKWP method, the particle free-transport time tf is:

tf = −τminln (η) . (18)

This differs from the previous method with constant τ . In the previous method, the true
free paths for all particles were sampled, and each particle would undergo a collision after
transport, thereby reaching the local equilibrium state. In the current method, the particle
free path is first sampled based on τmin, and not all the particles will experience collisions.

To begin with, after free transport, all particles become candidates for particle collisions,
and there are two categories of particles: true collisions and null collisions. This strategy
is employed to recover the spatial distribution of τ (x). Here we provide the conditions for
null collisions, that is, the acceptance-rejection method. Based on τmin, the probability for
the particle’s free transport path is:

Pc(s) =
1

uτmin

e

(
− 1

uτmin
s
)
. (19)

When a candidate collision particle reaches the terminal position x, the ratio between the
local true collision frequency σ(x) = 1

uτ(x)
and the maximum collision frequency σmax = 1

uτmin
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is used to determine whether the candidate collision is a “real collision.” Specifically, the
acceptance probability is given by:

Preal (x) = σ(x)/σmax. (20)

If the randomly sampled value falls within the interval [0, σ(x)/σmax], then it is considered
that a true collision occurs at that position; otherwise, the candidate collision is regarded as
a null collision. In this approach, candidate collision events are generated at a uniform rate
of σmax, and the local true collision probability is recovered through the acceptance-rejection
mechanism. Next, we will introduce how this method reconstructs the probability density
of the free path length for true collisions.

Let’s denote the free-transport distance from the location of the last collision to the posi-
tion where the first candidate collision is accepted as a true collision after multiple candidate
collisions as s. Let f(s) represent the probability density that the particle experiences a true
collision in the interval from x to x+ s. One can think of building f(s) by summing over all
possible scenarios where the particle undergoes n candidate collisions that are all rejected
and then, at distance s, a candidate collision is accepted as a true collision. Here n can be
0, 1, 2, 3, ....

When n = 0, the first candidate collision is accepted; the candidate collision event at s is
a true collision. The candidate collision-free-path length s follows an exponential distribution
given by Pc(s) = σmaxe

(–σmaxs), and the probability that this candidate collision at position
x + s is accepted as a true collision is σ(x + s)/σmax. Thus, the corresponding probability
of n = 0 is:

f0(s) = Pc(s)

[
σ(x+ s)

σmax

]
= σmaxe

(−σmaxs)

[
σ(x+ s)

σmax

]
= σ(x+ s)e(−σmaxs). (21)

When n = 1, for the first candidate collision occurring at s1, where s1 ∈ [0, s], the
probability Pnc(s1) that it is a null collision is:

Pnc(s1) = Pc(s1) [1− σ (x+ s1) /σmax] . (22)

The second candidate collision, occurring a distance s2 = s–s1 after the first candidate
collision, has a probability given by:

Pc(s2) = σmaxe
[−σmax(s−s1)]. (23)

And at position x+ s it is accepted as a true collision with probability σ(x+ s)/σmax. After
integrating over s1, we obtain:

f1(s) =

ˆ s

0

Pc(s1) [1− σ (x+ s1) /σmax] · Pc(s2) [σ(x+ s)/σmax] ds1

=σ(x+ s)e−σmaxs

ˆ s

0

σmax − σ(x+ s1)ds1.

(24)
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Similarly fn(s) can be obtained:

fn(s) = σ(x+ s)e−σmaxsϕn(s), (25)

where ϕn(s) is the n-fold convolution integral contributed by n times null collisions:

ϕn(s) = (1/n!)

[ˆ s

0

[σmax − σ(x+ u)] du

]n
. (26)

Finally, summing over all n, we obtain the overall probability density for a true collision:

f(s) =
∞∑
n=0

fn(s)

=σ(s)e−σmaxs

∞∑
n=0

(1/n!)

[ˆ s

0

[σmax − σ(u)] du

]n
=σ(s)e−σmaxse[

´ s
0 (σmax−σ(u))du]

=σ(s)e−
´ s
0 σ(u)du.

(27)

The ”accept-reject” method has now recovered the PDF of the particle free stream path.
Based on the preceding discussion, we now distinguish two classes of particles: null-

collision particles and real collision particles. Both null-collision and real collision particles
are considered generalized collision particles; however, the distinction lies in their roles.
Null-collision particles contribute solely to the statistical evaluation of macroscopic quan-
tities without adhering to the local equilibrium state. In contrast, real collision particles
participate in the macroscopic statistical measures and conform to the local equilibrium
distribution.

It is important to emphasize that, unlike the previous method in which τ was treated as a
constant where the equilibrium state of the particles was determined by the total macroscopic
quantities of the cell because every particle contributing to the cell’s macroscopic quantities
underwent a true collision. The current method, similar to UGKP, determines the particle
equilibrium state by W h, which is the macroscopic quantity arising from the summation of
all real collision particles. Then, the cell total macroscopic variableW and wave macroscopic
variable W h is:

W =
∑

wnc +
∑

wrc,W h =
∑

wrc, (28)

where wnc is the null collision particle’s quantity and wrc is the real collision particle’s
quantity.

The reason for re-sampling the equilibrium state of real collision particles from W h

instead of W is that the macroscopic quantity contributed by real collision particles is W h,
not W . Furthermore, sampling from W would lead to a violation of the conservation of total
weight. Fig .6 helps illustrate the two types of particles. Thus far, this paper summarizes
the steps of the steady-state acceleration method for variable τ as follows:
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Null-collision Particle

Real-collision Particle

x

𝜏𝑚𝑖𝑛

𝜏(𝑥)

𝝉(𝒙) Distribution

1
𝜂 >

𝜏𝑚𝑖𝑛

𝜏(𝑥)

𝜂 <
𝜏𝑚𝑖𝑛

𝜏(𝑥)

Figure 6: Two types of particles in space.

(1) If it is the first calculation step, sample N particles in each cell, with each particle
following the local equilibrium distribution (wini = W

N
, wini is the initial energy for each

particle) and its free path being sampled; if it is not the first step, skip this process.
(2) If it is not the first calculation step, then in each cell, for real collision particles,

resample their equilibrium distribution, which is determined by the current cell value W h

(wrc = Wh

Nrc
, Nrc is the real collision particle number in this cell), and also resample their free

path.
(3) Based on the particle’s free path, transport the particle to its destination.
(4) Upon reaching its destination, the previously described acceptance–rejection method

is used to determine whether it corresponds to a real collision or a null collision.
(5) Accumulate the total energy W , contributed by the null collision and real collision

particles to each cell. Accumulate the energy of the wave component W h contributed by the
real collision particles to each cell. And count the number of real collision particles within
each cell, denoted as Nrc.

(6) For null collision particles, resample the free path for the next step.

3.3. Macro prediction acceleration for steady state kinetic particle method

At small Knudsen numbers, for instance, Kn = 0.001, the current method results in an
extremely small particle mean free path, which necessitates a substantial number of iterations
to reach the final steady-state solution. Meanwhile, in the small Knudsen number limit, the
macroscopic equations corresponding to the BGK model are in excellent agreement with
the exact solution. Inspired by this insight, we can leverage the macroscopic equations to
rapidly evolve the flow or temperature fields, thereby providing an estimation of the particles’
equilibrium state for the next step. This section will illustrate how to construct the macro
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prediction equation and introduce the iterative mechanism between the macroscopic and
microscopic equations.

Taking the zeroth moment of the steady-state BGK equation yields the energy conser-
vation equation:

∇ · q = 0, (29)

where q is the heat flux. This equation is universally valid for all Knudsen numbers at steady
state. Since the relationship between q and T is unknown, Eq .(29) cannot be solved directly.
Therefore, inexact Newton iteration can be employed. The residual formulation of Eq .(29)
can be written as:

∇ · q = Q (T ) = R, (30)

where R is the residual. As the residual vanishes, Eq .(29) is satisfied. Therefore, we
introduce a linear operator Q̃ to find an increment of T that might diminish the residual.
The specific expression of Q̃ adopted in this study is given as follows:

Q̃(∆T ) = ∇ · (−κ∇∆T ) . (31)

Then, combining Eq .(30) and Eq .(31) we can construct a delta form for temperature:

∇ · q = ∇ · [κ∇ (∆T )] . (32)

The heat flux divergence also represents the net heat inflow into the cell, which equates to
the cell’s energy increment. This energy increment can be obtained by subtracting the cell’s
total real collision particle energy from the previous and current steps:

∇ · q =
∑

wn+1 −
∑

wn. (33)

Then, macro energy can be updated by En+1 = En + Cv∆T . Thus, the new equilibrium
state for real collision particles at the next iteration can be sampled from this predicted
En+1.

4. Numerical Test

This section tests a series of benchmark heat transfer cases to validate the accuracy
and efficiency of the proposed multiscale method for solving the phonon BTE. The results
obtained by the present method will be compared with the data predicted by the DUGKS
[27] and UGKS. Moreover, Cv and |Vg| is 1 in 1D and 2D cases if not specified.

For all the cases, the speedup ratio is computed by:

Rs =
Nwp

Ncurrent

Re, (34)

where Rs is the final speedup ratio, Nwp is the number of steps required for the explicit
UGKWP to reach a steady state. Ncurrent is the number of steps required for the current
method to reach a steady state, Re is the CPU time speedup ratio for each step.
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4.1. One-dimensional heat conduction in a dielectric film

In this section, the one-dimensional heat conduction in a dielectric film with a thickness
of L = 1 is simulated, as illustrated in Fig .7.

T=TH T=TC

x

L=1

Figure 7: A schematic diagram of one-dimensional heat conduction in a dielectric film.

At the left boundary (x = 0), an isothermal high-temperature boundary is imposed with
a temperature of TH , while at the right boundary (x = L), an isothermal low-temperature
boundary is imposed with a temperature of TL. An analytical solution can be obtained in
[42, 43].

In this test case, the one-dimensional heat conduction problem is computed for Knudsen
numbers of 10.0, 1.0, 0.1, 0.01, and 0.001. The corresponding reference particle numbers
are 8000 to balance computational cost and statistical noise. The one-dimensional computa-
tional domain is discretized into 100 uniform cells, and the CFL number is set to 0.5 for the
UGKWP method to compare the CPU costs with the current method. The results indicate
that the computational outcomes of the current method are in excellent agreement with the
analytical solutions.

Fig .8 illustrates a comparison among the computed results of the current method and
the analytical solution under different Kn regimes,

Table .1 compares the iteration number and computational time between the UGKWP
method and the current method when approaching to the steady state.

Based on computational costs, the current method significantly reduces the number of
iterations required to reach the steady state compared to the explicit UGKWP method.
Moreover, the current approach does not physically add or remove particles from the grid.
Instead, the collision process is implemented in the subsequent iteration step by enforcing
that the particles conform to the local equilibrium distribution. So, the particle count
remains fixed. These two aspects enable using a simple contiguous array for particle storage,
eliminating the need for a complex doubly-linked list structure, which is used in the UGKWP
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Figure 8: Comparison of 1D heat conduction results across a film, from Kn = 0.001 to Kn = 10.0.
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Method Kn = 10.0 Kn = 1.0 Kn = 0.1 Kn = 0.01 Kn = 0.001

UGKWP 1200 800 800 3200 24000
Current 3 8 40 320 140
Speedup 1600 400 80 40 680

Table 1: Comparison of the computational costs of one-dimensional heat conduction in a dielectric film
between the UGKWP method and the current method. (Each step in the current method is about 4 times
faster than the original explicit UGKWP method, which indicates that Re = 4.)

method in this paper. Consequently, the CPU time per iteration in the current method is
greatly reduced compared to that of the UGKWP method.

As previously mentioned, the current method demonstrates the highest efficiency in large
Knudsen number regimes. In small Knudsen number cases, macroscopic equations can be
introduced to estimate the equilibrium state, thereby speeding up the acceleration. The
results indicate that this coupling strategy achieves a favorable acceleration ratio.

4.2. One-dimensional heat conduction with discontinuous τ

In the previous section, we demonstrated the current method’s computational accu-
racy and accelerated convergence under constant τ . This section will evaluate the current
method’s computational accuracy and accelerated convergence when τ varies with the spa-
tial coordinate to validate the effectiveness of the proposed space–time consistent treatment.
This section will examine a heat conduction problem with a piecewise discontinuous τ . For
x < 0.5L, τ is set to 10.0; for x > 0.5L, τ is set to 0.1. In other words, at the interface in
the middle, the values of τ differ by 100.

At the left boundary (x = 0), an isothermal high-temperature boundary is imposed with
a temperature of TH , while at the right boundary (x = L), an isothermal low-temperature
boundary is imposed with a temperature of TL. The reference particle number is 8000 to
balance computational efficiency with statistical noise. The one-dimensional computational
domain is discretized into 100 uniform cells, and the CFL number is set to 0.5 for the
UGKWP method to compare the CPU costs with the current method. In this section,
we also computed the case where τ on the left and right sides differ by a factor of 10.
Specifically, τ is ten on the left side and one on the right side. For convenience, we refer
to the configuration with a 100-fold difference in Knudsen numbers as Case A, and the one
with a 10-fold difference as Case B.

The computational results, as shown in Fig .9, indicate that when using the UGKS
method as the reference solution, the current method is in very good agreement with UGKS.

Table .2 compares the iteration count and computational time between the UGKWP
method and the current method when approaching to the steady state solution.

The efficiency comparison shows that when τ is discontinuously distributed in space,
the current method still achieves a two-order-of-magnitude improvement in convergence
efficiency compared to the UGKWP method. In this case, the convergence efficiency is not
as high as that with constant τ ; the reason is that we establish a globally uniform time
scale based on the smallest τ in the domain. Therefore, the free path of a particle in each
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Figure 9: Comparison of 1D heat conduction results across a film, discontinuous τ case. Left: KnL = 10.0,
KnR = 0.1. Right: KnL = 10.0, KnR = 1.0

Method Case A Case B

UGKWP 1500 800
Current 60 20
Speedup 100 160

Table 2: Comparison of the computational costs of one-dimensional heat conduction in a dielectric film
between the UGKWP method and the current method, discontinuous τ case. (Each step in the current
method is about 4 times faster than the original explicit UGKWP method, which indicates that Re = 4.)
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iteration step is shorter than the free path sampled with a constant τ , which consequently
necessitates more iterations to reach the steady state.

4.3. One-dimensional multi-scale cases

This section designs a one-dimensional multiscale heat conduction case to further demon-
strate the proposed method’s capability for capturing multiscale non-equilibrium phenom-
ena in phonon transport. The computational setup and boundary conditions are identical
to those in the first test case, except that the relaxation time is now a spatially varying
function, as detailed below.

τ(x) = 10|A1 sin(2πx/L)|−A2 . (35)

Here, A1 and A2 are adjustable constants. When A1 is 2.0 and A2 is -1.0, the value of τ
spans the range [10−1, 101]. This indicates that the Knudsen number varies by two orders
of magnitude over the entire spatial domain, posing a significant challenge for multiscale
methods. Consequently, this example is an excellent test case for evaluating the performance
of the present method. Initially, the temperature throughout the entire computational
domain is uniformly set to 0.5(TH + Tc), representing the arithmetic mean of the high
and low temperature values. The particle reference sampling number is 8000, and the grid
number is 100. The result is shown in Fig .10, illustrating that the UGKWP method can
automatically recover the heat transfer physics in different scales.
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Figure 10: multi-scale case.

For the convergence rate, the UGKWP method requires 3800 steps to reach steady state,
whereas the current method only needs 60 steps. Moreover, the current method’s per-step
speed is approximately four times faster than that of UGKWP. This translates to a 253-fold
acceleration in CPU speed compared to the UGKWP method.

4.4. Heat transfer in the 2D square domain

To validate the effectiveness and fast convergence rate of the current method for phonon
transport in multidimensional physical space, this section investigates the heat conduction

18



problem in a 2D square domain across a range of Knudsen numbers. Specifically, the top
boundary is maintained at a high temperature TH , while the remaining boundaries are held
at a lower temperature TC as illustrated in Fig .11.

L=1 T=TH

L=1 T=TC

T=TC

T=TC

Figure 11: Computational domain and boundary conditions of Heat transfer in the 2D square domain.

In this case, we employ a two-dimensional uniform grid, discretized into 40 equally spaced
points in each direction, resulting in a total of 1,600 grid points. In this case, Nref = 200
in each cell for Kn = 10.0, 1.0, and Nref = 100 for Kn = 0.1, Kn = 0.01, balancing
computational efficiency and statistical noise. Furthermore, an additional 100 steps were
incorporated for statistical averaging in the two-dimensional simulation to reduce statistical
noise. The computation results for different Knudsen numbers are shown in Fig .12. The
black solid lines in the figure represent the contour lines obtained using the current method,
while the white dashed lines represent those computed with the DUGKS method. As can
be seen, the current method exhibits very good agreement with the reference method in
both the diffusive region and the ballistic region. From Table 3 and Table 4, a two-order
speedup is achieved for all cases except the statistical average costs. Overall, it achieves one
order-of-magnitude acceleration.

Method Kn = 10.0 Kn = 1.0 Kn = 0.1 Kn = 0.01

UGKWP 1200 1500 3600 12000
Current 10 10 40 400
Speedup 480 600 360 120

Table 3: Comparison of the Computational costs of heat transfer in the 2D square domain between the
UGKWP method and the current method (without statistical averaging).
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Figure 12: Comparison of 2D square heat transfer results, respectively corresponding: Kn = 0.01, Kn =
0.1, Kn = 1.0, Kn = 10.0.

Method Kn = 10.0 Kn = 1.0 Kn = 0.1 Kn = 0.01

UGKWP 1200 + 200 1500 + 200 3600 + 200 12000 + 200
Current 10 + 200 10 + 200 40 + 200 400 + 200

Overall Speedup 27 32 63 81

Table 4: Comparison of the Computational costs of Heat transfer in the 2D square domain between the
UGKWP method and the current method (with 200 statistical averaging steps).
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4.5. Heat transfer in the 2D rectangular domain

This section investigates the heat transfer in a rectangular cavity with non-uniform tem-
perature boundary conditions in the ballistic region. Computational domain and boundary
conditions are shown in Fig .13 where Lx = 2Ly = 5L1. The heat source is positioned at the

L1 , T=TH

Ly T=TC

Lx, T=TC

T=TC

Figure 13: Computational domain and boundary conditions of Heat transfer in the 2D rectangle domain.

center of the upper boundary of the entire computational domain. It has a length of L1 = 1
and a temperature of TH . Other boundaries’ temperature is TC .

In this computational domain, the x-direction is discretized into 100 grid cells. In com-
parison, the y-direction is discretized into 50 grid cells which means the whole domain is
discretized into 5000 uniform grid cells. Meanwhile, the reference particle sampling number
for each cell is 200 to balance efficiency and statistical noise. Moreover, like heat transfer in
the 2D square domain, in this case, a 1500-statistic average step is also adopted to reduce
statistic noise.

The computation results for Kn = 10.0 and Kn = 1.0 are shown in Fig .12. The black
solid lines in the figure represent the contour lines obtained using the current method, while
the white dashed lines represent those computed with the DUGKS method. As can be seen,
the current method exhibits very good agreement with the reference method. From Table 6
and Table 5, a two-order speedup is achieved for all cases except the statistical averaging
costs. Overall, it achieves one order-of-magnitude acceleration.

5. Conclusion

This paper introduces a novel steady-state particle acceleration method for solving
multi-scale phonon transport. Unlike the previous explicit UGKWP method, our approach
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Figure 14: Comparison of 2D rectangular heat transfer results. Left: Kn = 10.0, Right: 1.0.

Method Kn = 10.0 Kn = 1.0

UGKWP 1500 1500
Current 10 10
Speedup 600 600

Table 5: Comparison of the Computational costs of heat transfer in the 2D rectangular domain between
the UGKWP method and the current method (without statistical averaging).

Method Kn = 10.0 Kn = 1.0

UGKWP 1500 + 200 1500 + 200
Current 10 + 200 10 + 200

Overall Speedup 32 32

Table 6: Comparison of the Computational costs of Heat transfer in the 2D rectangular domain between
the UGKWP method and the current method (with 200 statistical averaging steps).
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samples particles based on exact mean free paths at each step. At large Knudsen num-
bers, particles travel longer distances, enabling faster convergence compared to the explicit
UGKWP method. At small Knudsen numbers, the steady-state macroscopic prediction
equation becomes dominant. The particle sampling from the equilibrium state significantly
improves convergence speed in low Knudsen number regimes compared to the original ex-
plicit UGKWP method. The paper also addresses the spatial-time-inconsistency problem by
implementing a null collision method, which establishes a unified time scale when encoun-
tering large variations in particle mean free paths. Numerical tests demonstrate the IUGKP
method’s excellent performance in accelerating multi-scale phonon transport solutions. The
method achieves convergence speedups of one to two orders of magnitude, representing a
significant advancement in multi-scale approaches for phonon transport problems. Looking
ahead, this IUGKP method shows promise for extension to photon transport, rarefied gas
flow, and electron transport applications.
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