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1 PRINCIPLES OF UNIFIED SCHEME

The partial differential equation (PDE) of fluid dynamics is
constructed to model the physical laws in continuous space
and time (Landau and Lifshitz, 1959; Chapman and Cowling,
1990). Similarly, a numerical scheme is to construct the cor-
responding physical laws, but in a discretized space. To build
a valid numerical scheme is more difficult than obtaining the
PDEs. Besides the intrinsic scale of the physical phenomena
to be considered, such as the particle mean free path or the
hydrodynamic dissipative layer, there is a numerical scale to
be accounted for as well, that is, the cell size and time step. A
unified treatment should be able to capture both kinetic and

hydrodynamic scale flow behavior as the mesh size changes
in different flow regimes.

In a continuous space, the physical laws for the fluid
motion, such as mass, momentum, and energy conservations,
are represented as PDEs. Even though the space is continu-
ous, the PDEs are valid only in the description of the physical
reality in its modeled scale. With the changing of modeling
scales, for a gas flow the governing equations can be changed
from the Liouville’s equation, the Boltzmann equation, up
to the Navier–Stokes equations. Traditionally, a numerical
scheme is regarded as a direct numerical discretization of the
governing equation of the continuous space. For example, the
name of numerical partial differential equation is frequently
used. This kind of methodology may be problematic, because
the intrinsic physical scale of the PDEs may be different from
the numerical mesh size scale. In order to laid the numerical
computation on a solid foundation, the physical modeling has
to be done directly in a discretized space.

A numerical scheme should be a direct representation of
the physical laws in a discretized space. The physical laws are
the basic mass, momentum, and energy conservations for the
gas motion. Therefore, in a control volume of the discretized
space, the change of any flow variable, such as the density or
the particle distribution function, depends on the fluxes across
the cell interface and possible source term. The source term
can be the body force, such as gravity, for the macroscopic
momentum and energy evolution, or the particle collision
term for the redistribution of particles in different particle
velocity range. In a discretized space, the direct modeling is
a representation of physical reality, which is independent of
the size of the control volume. However, different scale of
the cell size will notify different transport phenomena. The

Encyclopedia of Aerospace Engineering, Online © 2010 John Wiley & Sons, Ltd.
This article is © 2012 John Wiley & Sons, Ltd.
This article was published in the Encyclopedia of Aerospace Engineering in 2012 by John Wiley & Sons, Ltd.
DOI: 10.1002/9780470686652.eae601
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direct modeling is basically to figure out the corresponding
physical phenomena which can be observed in a mesh size
scale, that is, the local flow motion across a cell interface. Cer-
tainly, the physical reality to be resolved depends on practical
engineering requirement and the mesh size resolution. If the
cell size is on the scale of molecule diameter, the individual
particle motion across the cell interface can be identified. If
the cell size comes to a scale of particle mean free path, then
the Boltzmann equation can be used to construct the local
gas evolution, and figure out the corresponding fluxes (Bird
1994; Aristov, 2001). Here, we need to clearly distinguish
between numerical discretization of the Boltzmann equation,
or other numerical PDEs, and the PDE-based modeling at
the cell interface. For example, in a conventional numerical
PDE approach, if f represents the particle distribution func-
tion and u is the particle velocity, a direct discretization will
approximate ufx as

ufx =
{

u(fj − fj−1)/�x, u > 0,

u(fj+1 − fj)/�x, u < 0.
(1)

This is the so-called upwinding approximation according to
particle velocity. In order to validate the above discretization,
there are two underlying assumptions imposed on it. First, the
cell size �x is on the same scale as the physical spatial vari-
ation of f . If �x is on the scale of hundreds particle mean
free path, the above approximate is meaningless. Second, the
above discretization means that particle takes free transport
across the cell interface. If the mesh size is much larger than
the particle mean free path, the use of upwinding here is fun-
damentally flawed, because the particles will not transport
freely across the cell interface in the numerical mesh size
scale. Instead, the particles will take intensive collision within
a time step. Therefore, the direct numerical discretization of
PDE may be problematic. On the contrary, we emphasize
the concept of PDE-based modeling. The PDE-based mod-
eling is only to use the solution of the PDE to model the gas
evolution around the cell interface. If the cell size is on the
scale of hundreds of the particle mean free path, the Boltz-
mann equation with the inclusion of both particle transport
and collision will present a time-dependent gas distribution
function, which describes the process of gas evolution to the
equilibrium state. If the cell size is on the scale less than
the particle mean free path, the Boltzmann equation-based
modeling will go to particle free transport solution at the cell
interface and the above upwinding discretization gets recov-
ered. If the cell size has a scale between the kinetic one (mean
free path) and the hydrodynamic one (due to drafting of equi-
librium states), the Boltzmann-based modeling should give
a nonequilibrium distribution function, which accounts for
the competition between the particle collision and transport.

This is the underlying principle for the development of unified
scheme. In a discretized space, the time evolution solution of
the PDE will be used for the modeling of the particle transport
at the cell interface.

2 HYBRID UNIFIED SCHEMES IN
AEROSPACE APPLICATIONS

There are many flow problems where both rarefied and con-
tinuum flow regimes can exist. An example is a hypersonic
flow around a blunt body, where the shock wave and boundary
layer with large spatial gradients settle to the nonequilibrium
flow regimes, and other smooth regions may be close to the
equilibrium one. The Boltzmann equation describes the flow
transport in a kinetic scale, that is, the particle mean free path
scale, but it can be used in the continuum flow simulation as
well if the accumulating effect of particle collision is taken
into account properly. Theoretically, a unified scheme which
is valid for both continuum and rarefied flows can be devel-
oped if the Boltzmann solution is constructed properly in its
modeling. Unfortunately, most numerical approaches for the
Boltzmann equation have fundamental weakness due to their
operator-splitting treatments of the equation.

The Boltzmann equation can be written as ft + u · ∇f =
Q(f ), where f is the distribution function, u is the particle
velocity, and Q(f ) is particle collision term. Many nonequi-
librium flow solvers, such as the DSMC and direct Boltzmann
solvers (Bird 1994; Aristov 2001; Mieussens, 2000), take the
following two steps to solve the Boltzmann equation:
(i) relaxation in accordance to the collisional operator of the
Boltzmann equation ∂f/∂t = Q(f ),
(ii) free-molecular transport ∂f/∂t = −u · ∇f .

Owing to the above operator-splitting treatment, a valid
physical process which is consistent with the above numerical
discretization is that the cell size and time step used have to be
less than the particle mean free path and collision time. This
requirement constraints the extension of the DSMC method
and direct Boltzmann solvers to the continuum flow regime,
where the cell size used may be many orders larger than
the local particle mean free path. Fortunately, for the contin-
uum flow, the Navier–Stokes equations are well-defined and
validated. In order to design a unified scheme for both con-
tinuum and rarefied flow computations, a combination of NS
and DSMC or NS and direction Boltzmann solver becomes
a natural choice. Since the Boltzmann solver is much more
expensive than NS solver, the NS one should be used as large
as possible in the computational domain. Two hybrid meth-
ods which are used in aerospace industry is the CFD/DSMC
and CFD/Boltzmann solver (Schwartzentruber et al., 2008;
Kolobov et al., 2007; Burt et al. 2011).
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For any hybrid scheme, a boundary between different flow
regimes has to be clearly defined, and a valid data exchange
between different domains needs to be established. The con-
tinuum breakdown parameters are usually defined based on
the CFD simulation data, where the flow variable gradients
or the NS stress can be directly used to set up a thresh-
old between different domains. For the DSMC/CFD hybrid
method, another difficulty is about how to overcome the sta-
tistical fluctuation in the DSMC simulations. A CFD solver
may be sensitive to the noise introduced through the bound-
ary. However, for the direct Boltzmann solver there is no noise
generated at the interface. A smooth transition between CFD
and Boltzmann solver can be obtained, especially when a gas-
kinetic solver is used for the CFD part (Kolobov et al., 2007;
Xu, 2001). The weakness of the CFD/Boltzmann approach
is that the direct Boltzmann solver is much more expensive
than the DSMC method.

3 UNIFIED SCHEME FOR BOTH
CONTINUUM AND RAREFIED FLOWS

The unified scheme is a Boltzmann-equation based model-
ing method for the particle transport across a cell interface
(Xu and Huang, 2010). In the particle evolution process
around a cell interface, both particle free transport and col-
lision are taken into account. As a result, the distribution
function obtained for the flux evaluation depends on the
flow regime and the cell resolution. The unified scheme is
a multiscale method with the update of both macroscopic
conservative flow variables and microscopic gas distribution
function. The novelty of the approach is the coupled treatment
of particle transport and collision. The gas distribution func-
tion constructed at the cell interface can not only recover the
hydrodynamic Chapman–Enskog distribution in the contin-
uum flow regime, but also capture the free molecular transport
in the highly nonequilibrium flow region. The distribution
function takes a time evolution from nonequilibrium to equi-
librium one and the rate for the transition depends on the ratio
between time step and particle collision time.

The unified scheme is a finite volume method. In the two-
dimensional case, the physical space is divided into control
volume, that is, �i,j = �x�y with the cell sizes (�x) =
xi+1/2,j − xi−1/2,j, �y = yi,j+1/2 − yi,j−1/2 in the rectangu-
lar case. The temporal discretization is denoted by tn for
the nth time step. The particle velocity space is discretized
by rectangular mesh points with velocity spacing �u and
�v, and the center of the (k, l)-velocity interval at (uk, vl) =
(k�u, l�v). The averaged gas distribution function in a phys-
ical control volume (i, j), at time step tn, and around particle

velocity (uk, vl), is given by

f (xi, yj, t
n, uk, vl) = fn

i,j,k,l

= 1

�x�y�u�v

∫
�i,j

∫
�u�v

∫ +∞

−∞
f (x, y, tn, u, v, w)

× dxdydudvdw, (2)

where w is the particle velocity in the z-direction.
The time evolution of an averaged gas distribution func-

tion inside a physical control volume is due to the particle
transport through cell interface and the particle collisions
inside each cell to redistribute particle in velocity space. The
fundamental governing equation in a discretized space is

fn+1
i,j = fn

i,j + 1

�i,j

∫ tn+1

tn

m=n∑
m=1

umf̂m(t)�Smdt

+ 1

�i,j

∫ tn+1

tn

∫
�i,j

Q(f )d�dt, (3)

where f̂m is the gas distribution function at a cell bound-
ary, n is the total number of piecewise linear interfaces of
a control volume �i,j , um is the particle velocity normal
to the cell interface, �Sm is the m-th interface length, and
Q(f ) is the particle collision term. The above scheme is a
direct physical modeling in a discretized space, which is the
fundamental numerical governing equation, which has the
equivalent importance as the PDE in the continuum space
and time.

If we take conservative moments ψα on Equation (3),
that is,

ψ = (ψ1, ψ2, ψ3, ψ4)� = (1, u, v,
1

2
(u2 + v2 + w2))�,

and d� = dudvdw is the volume element in the phase space,
due to the conservation of conservative variables during par-
ticle collision, the update of conservative variables becomes

Wn+1
i,j = Wn

i,j + 1

�i,j

∫ tn+1

tn

m=n∑
m=1

�Sm · Fm(t)dt, (4)

where W is the averaged conservative mass, momentum, and
energy densities inside each control volume, and F is the
corresponding flux for the macroscopic flow variables across
the cell interface. This flux will be modeled by constructing
the solution of the kinetic equation.

The modeling of gas evolution around a cell interface in the
unified scheme can be based on the gas-kinetic BGK model
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(Bhatnagar et al., 1954), the Shakhov model (Shakhov, 1968),
the ES model, or even the full Boltzmann equation (Chapman
et al., 1990). For simplification, only the flux evaluation in
the x-direction will be presented below. The BGK equation
in the x-direction is

ft + ufx = g − f

τ
, (5)

where f is the gas distribution function, g is the equilib-
rium state approached by f , and τ is the particle collision
time. Both f and g are functions of space x, time t, particle
velocities (u, v), and random velocity w in the z-direction.
The particle collision time τ is related to the viscosity
and heat conduction coefficients. The equilibrium state is a
Maxwellian distribution,

g = ρ

(
λ

�

) 3
2

e−λ((u−U)2+(v−V )2+w2),

where ρ is the density, U and V are the macroscopic veloci-
ties in the x and y directions, and λ = m/2kT , where m is the
molecular mass, k is the Boltzmann constant, andT is the tem-
perature. Since mass, momentum and energy are conserved
during particle collisions, f and g satisfy the conservation
constraint,∫

(g − f )ψαd� = 0, α = 1, 2, 3, 4, (6)

at any point in space and time, and d� = dudvdw.
The general solution f of the BGK model (Equation (5))

at a cell interface xj+1/2 and time t is,

f (xj+1/2, t, u, v, w) = 1

τ

∫ t

0
g(x′, t′, u, v, w)e−(t−t′)/τdt′

+ e−t/τf0(xj+1/2 − ut), (7)

where x′ = xj+1/2 − u(t − t′) is the particle trajectory and
f0 is the initial gas distribution function f at the beginning
of each time step (t = 0). Two unknowns g and f0 must
be specified in Equation (7) in order to obtain the solution
f . The above integral solution presents a gas evolution in
different physical scales. The f0 term takes into account
the particle free transport in a kinetic scale. The integra-
tion of the equilibrium state along the particle trajectory
shows the hydrodynamic scale physics, which converges to
the Chapman–Enskog expansion in the continuum flow limit.
The weights between the kinetic and hydrodynamic flow
transport in the determination of final distribution function
depend on the ratio of time step to particle collision time.
The integral solution plays a key role in the construction of
unified scheme for both continuum and rarefied flows.

3.1 Gas-Kinetic Scheme for Continuum Flows

The reason we introduce the gas-kinetic scheme (GKS) for
the continuum flow is that the unified gas-kinetic scheme
(UGKS) for all flow regimes is a natural extension of GKS.
To fully understand GKS will be helpful for easy acceptance
of the unified method. For the continuum flow computa-
tion, theoretically we only need to update macroscopic flow
variables. Therefore, instead of solving Equation (3) for the
update of gas distribution function, it is fully legitimate to
update the macroscopic flow variables (Equation (4)) only.
Even though there is no source term inside each control
volume, a time-dependent gas distribution function with the
inclusion of particle collision is still needed to evaluate the
interface fluxes. This distribution function should converge to
the Chapman–Enskog distribution if the flow structure is well
resolved in the continuum regime. For the GKS developed
progressively in the past years (Xu, 2001), the integral solu-
tion of the kinetic Equation (7) is used for the construction
of interface f . For the continuum flow simulation, the initial
gas distribution function f0 in Equation (7) is reconstructed
using the Chapman–Enskog expansion. The real numerical
challenge for the continuum flow computation is about how to
handle the discontinuous solution, such as shocks, because in
the continuum flow regime we cannot use a mesh size to fully
resolve the highly nonequilibrium dissipative shock layer.
Therefore, the corresponding kinetic scheme here should be
a shock capturing method.

The GKS is for the NS solutions. Based on the macro-
scopic flow variables around a cell interface, the initial gas
distribution function f0 is constructed from the Chapman–
Enskog expansion of the BGK model,

f0 =
{

gl
[
1 + alx − τ(alu + Al)

]
, x ≤ 0

gr [1 + arx − τ(aru + Ar)], x ≥ 0
, (8)

where the terms being proportional to τ are the nonequi-
librium NS states. The parameters of (al, Al, ar, Ar) are
related to the Taylor expansion of a Maxwellian, such as
al = (∂gl/∂x)/gl and Al = (∂gl/∂t)/gl. The nonequilibrium
parts have no direct contribution to the conservative variables,
that is, ∫

(alu + Al)ψgld� = 0,

∫
(aru + Ar)ψgrd� = 0, (9)

which are used to evaluate Al and Ar. The equilibrium state
g around (x = 0, t = 0) is modeled to have two slopes,

g = g0
[
1 + (1 − H[x])ālx + H[x]ārx + Āt

]
, (10)
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where H[x] is the Heaviside function defined as

H[x] =
{

0, x < 0,

1. x ≥ 0.

Here g0 is a local Maxwellian distribution function located
at x = 0. Even though, g is continuous at x = 0, but it has
different slopes at x < 0 and x > 0.

After determining all parameters in the initial gas distribu-
tion function f0 and the equilibrium state g, and substituting
Equations (8) and (10) into Equation (7), the gas distribution
function f at a cell interface can be expressed as

f (xj+1/2, t, u, v, w) = (1 − e−t/τ)g0

+ (
τ(−1 + e−t/τ) + te−t/τ

) (
ālH[u]

+ ār(1 − H[u])) ug0

+τ(t/τ − 1 + e−t/τ)Āg0 (11)

+e−t/τ
(
(1 − u(t + τ)al)H[u]gl

+ (1 − u(t + τ)ar)(1 − H[u])gr)

+e−t/τ
(−τAlH[u]gl − τAr(1 − H[u])gr

)
.

Then, the time-dependent numerical fluxes in the x-direction
across the cell interface can be computed using the above
distribution function

Fj+1/2,α =
∫

uψαf (xj+1/2, t, u, v, w)d�.

By integrating the above equation to the whole time step,
we can get the total mass, momentum, and energy trans-
port. Starting from a discontinuity, instead of solving the
Riemann problem, the gas evolution in the GKS depends
on the ratio of time step to the particle collision time. Equa-
tion (11) describes such a relaxation process from the free
molecule transport to the equilibrium state development. In
terms of the CFD methodology, the above gas distribution
function is actually a unification of central difference and
upwinding schemes. The gas evolution process is a passage
from the initial upwinding (free molecule transport or flux
vector splitting) to the central differencing (the integration
over a continuous equilibrium state). The GKS is a kinetic
equation-based modeling method. The nonsmoothness of the
initial data f0, and the equilibrium state construction, are
models for the evaluation of a local solution. The kinetic
equation is used only for modeling a local solution. So, it
should not be surprising that the Prandtl number in the GKS
can be fixed easily to a correct value (Xu, 2001). The GKS

has been tested and validated extensively in the past years
(Xu et al., 2005; Li et al., 2011).

3.2 Unified Gas-Kinetic Scheme for All Flow
Regimes

For rarefied flow computation, besides the updating of macro-
scopic flow variables, we have to update the gas distribution
function as well. The main distinguishable feature of the uni-
fied gas-kinetic scheme (UGKS) from the above GKS is that
the initial gas distribution function f0 is known, which can
be directly used in the integral solution (Equation (7)). The
unified scheme will update both macroscopic flow variables
(Equation (4)) and microscopic gas distribution function
(Equation (3)).

Same as the GKS, at the cell interface the solution f̂j+1/2,k,l

in UGKS is constructed from the integral solution (Equa-
tion (7)). Since the gas distribution function is known in the
unified scheme, the initial gas distribution function can be
constructed directly,

f0(x, tn, uk, vl, w) = f0,k,l(x, 0)

=
{

fL
j+1/2,k,l + σj,k,lx, x ≤ 0,

fR
j+1/2,k,l + σj+1,k,lx, x > 0,

(12)

where nonlinear limiter is used to reconstruct fL
j+1/2,k,l,

fR
j+1/2,k,l and the corresponding slopes σj,k,l, σj+1,k,l. For the

integral part of the equilibrium state in Equation (7), the
same distribution as the GKS, that is, Equation (10), is used.
The gas distribution function f̂ (xj+1/2, t, uk, vl, w) at the dis-
cretized particle velocity (uk, vl) can be expressed as

f̂j+1/2,k,l(xj+1/2, t, uk, vl, w)

= (1 − e−t/τ)g0

+ (
τ(−1 + e−t/τ) + te−t/τ

)
(
ālH[uk] + ār(1 − H[uk])

)
ukg0

+τ(t/τ − 1 + e−t/τ)Āg0 (13)

+e−t/τ
(

(fL
j+1/2,k,l − uktσj,k,l)H[uk]

+ (fR
j+1/2,k,l − uktσj+1,k,l)(1 − H[uk])

)
� g̃j+1/2,k,l + f̃j+1/2,k,l,

where g̃j+1/2,k,l is all terms related to the integration of the
equilibrium state g, and f̃j+1/2,k,l is the terms from initial
condition f0.
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In the continuum flow region, due to the sufficient number
of particle collisions and with the condition of time step being
much larger than the local particle collision time, the contri-
bution from the integration of the equilibrium state g̃j+1/2,k,l

will be dominant in the final solution of the distribution func-
tion f̂j+1/2,k,l. The g̃j+1/2,k,l itself gives a corresponding NS
distribution function, and the contribution from initial term
f̃j+1/2,k,l vanishes. In the highly nonequilibrium region, such
as inside the dissipative shock layer, where the cell size is
less than the particle mean free path, the nonequilibrium part
f̃j+1/2,k,l will make a dominant contribution.

In order to discretize the collision term in Equation (3)
efficiently, the UGKS will update the macroscopic variables
first, see Equation (4), using the the gas distribution function
(Equation (13)) for the flux evaluation. Then, the updated
macroscopic flow variables will be used to treat the colli-
sion term in Equation (3) implicitly. In general, based on the
updated conservative variables (Equation (4)), we can imme-
diately obtain the equilibrium state gn+1

i,j,k,l inside each cell,
therefore based on Equation (3) and kinetic BGK collision
model, the UGKS updates the gas distribution function as

fn+1
i,j,k,l =

(
1 + �t

2τn+1

)−1
[
fn

i,j,k,l +
1

�i,j

∫ tn+1

tn∑
m

�Smumf̂m,k,ldt

+�t

2

(
g(n+1)

i,j,k,l

τn+1
i,j

+ g(n)
i,j,k,l − fn

i,j,k,l

τn
i,j

)]
, (14)

where no iteration is needed for fn+1. The particle colli-
sion times τn

i,j and τn+1
i,j are defined based on the temperature

and pressure of local macroscopic flow variables, that is,
τn
i,j = μ(T n

i,j)/pn
i,j and τn+1

i,j = μ(T n+1
i,j )/pn+1

i,j . For the UGKS,
due to its implicit treatment of the particle collision term,
the time step is not limited by the particle collision time. In
the continuum flow regime, we do not intend to resolve the
physics in the particle mean free path scale, therefore the uni-
fied scheme can take a large time step determined by the CFL
condition. Also, the Shakhov model can be used in the above
unified framework for modifying the Prandtl number of the
scheme (Xu and Huang, 2011).

4 EXAMPLES IN RAREFIED AND
CONTINUUM FLOW REGIMES

For nonequilibrium flows, there are limited analytic solutions
or experimental measurements. For the circular cylinder case,
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Figure 1. Total drag forces on a circular cylinder at M = 1.96 and
different Knudsen numbers from 0.001 to 100. Square: experimental
data (Maslach and Schaaf, 1963) and solid circles: UGKS solution.

the experimental measurements for the drag coefficients at
different Mach and Knudsen numbers are available (Maslach
and Schaaf, 1963). To illustrate the capability of the UGKS
for the whole flow regime simulation, we calculate the circu-
lar cylinder case at Mach number 1.96 and different Knudsen
numbers from 0.001 to 100. Figure 1 presents the comparison
between the calculated cylinder drag coefficients and exper-
imental data at different Knudsen numbers. It is shown that
the computed results agree with the experimental data very
well.

The second case is the cavity flow presented by John
et al., (2011), which is about the study of nonequilibrium heat
transfer using parallel DSMC method at different Knudsen
numbers. The DSMC solution is obtained with 1024 proces-
sors on a Blue Gene/P (BGP) supercomputer. For all flow
calculations, the gaseous medium is assumed to consist of
monatomic molecules corresponding to that of argon with
mass, m = 6.63 × 10−26 kg. In the DSMC solution, the vari-
able hard sphere (VHS) collision model has been used, with
a reference particle diameter of d = 4.17 × 10−10 m. The
wall temperature is kept the same as the reference tempera-
ture, that is, Tw = T0 = 273 K. In the current study, the wall
velocity is fixed, that is, Uw = 50 m/s. The Knudsen number
variation is achieved by varying the density. Maxwell model
is used to represent surface accommodation, where in the
current study only the case with full wall accommodation is
presented. Figure 2a and b shows the comparison between
DSMC and the UGKS solution at Kn = 1.0 (Huang, et al.,
2011), where the heat flux is going from cold to hot region.
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(c) Temperature and heat flux at Re = 1000
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Figure 2. Cavity simulation using unified scheme at Kn = 1.0 (a,b), and Re = 1000 (c,d). (a) Black line: DSMC, white line: UGKS, (b)
black line: DSMC, red-dash line: UGKS, (c) temperature contours and heat flux by UGKS, (d) V-velocity along central horizontal line,
circles: NS solution, line: UGKS.

Since the UGKS can be used for continuum flow computa-
tion as well, the simulation at Reynolds number Re = 1000
for the cavity case is presented in Figures 2c and d, where the
solution is compared with the benchmark NS solution in con-
tinuum flow regime. For the continuum flow at Re = 1000,
the heat flux does satisfy the Fourier’s law, which is from
hot to cold region. The UGKS basically recovers the GKS
solution in the continuum regime for the NS solution.

In the low speed transition flow regime, there are many
interesting phenomena related to heat transfer. Thermal creep
flow is induced in a channel or a pipe because the temperature
gradient along the wall boundary (Karniadakis et al., 2005).
The induced flow will be in the direction of the temperature
gradient. This phenomenon is usually explained according
to “slip” gas/solid boundary condition in the presence of
appreciable temperature gradients along the interface. The
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(a) (b)

(c) (d)

Figure 3. Thermal creep instability for a closed tube with length to width ratio L/D = 5, and 10 k temperature differences from the left to
right ends along the tube surfaces. The particle mean free path for the argon gas inside the tube is 64 nm. (a) D = 50 nm. (b) D = 100 nm.
(c) D = 200 nm. (d) D = 400 nm.

commonly accepted theory claims that the flow close to the
boundary will move from the cold to hot region, then return
in the middle for a closed tube. The UGKS simulation shows
that the flow patterns depend on the temperature gradients
and Knudsen numbers, which are much more complicated
than people originally think of. Figure 3 shows the simula-
tion results for a closed tube with aspect length/width ratio 5,
10 k temperature difference from left to right ends, and dif-
ferent tube widths of 50, 100, 200 and 400 nm. The argon
gas inside tube has a mean free path of 64 nm. Surpris-
ingly, with the change of Knudsen numbers or tube width,
the flow can move along the tube surface from the hot to
cold regions. This observation contradicts with the current

theoretical prediction. Also, between the simple clockwise
and anticlockwise vortex rotations, such as the cases with 50
nm and 400 nm tube widths, there are complicated transition
flow patterns between them with a variation of tube width.
The analysis of the above flow pattern is more difficult than
the analysis for the Rayleigh Bernard instability, because here
there are no well-defined macroscopic governing equations.
We would like to call the above anomalous phenomena in the
transition flow regime as thermal creep instability, where the
flow patterns will depend on Knudsen numbers, temperature
gradients, and aspect ratios of the tube.

The direct simulation Monte Carlo (DSMC) method
has been validated extensively through the shock structure
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Figure 4. DSMC and UGKS solutions for the argon shock structures at M = 1.4 and 4. (a) Density and temperatures at M = 1.4.
(b) Density and temperatures at M = 4.
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Figure 5. (a) Scaled inverse sound speed vs scaled inverse frequency. The solid lines represent the 8 and 11 moment solutions, the dashed
line represents the Navier–Stokes prediction, the dash-dotted lines represent the Burnett and super-Burnett solutions, the crosses represent
experimental data, and the closed stars and plain stars are the DSMC simulation results (Hadjiconstantinou and Garcia, 2001), and the
solid blue circles are UGKS solutions. (b) Scaled absorption coefficient vs scaled inverse frequency. The solid lines represent the 8 and 11
moment solutions, the dashed line represents the Navier–Stokes prediction, the dash-dotted lines represent the Burnett and super-Burnett
solutions, the crosses represent experimental data, the stars closed star and plain stars are the DSMC simulation results, and the solid blue
circles are UGKS solutions.

calculations in the past decades (Bird, 1994). For the argon
gas, we compare the shock structure calculations at Mach
number 1.4 and 4 using both DSMC and unified scheme in
Figure 4, where the density and directional temperatures are
plotted.

The simulations of sound waves propagating in a dilute
hard sphere gas have been performed using the unified
scheme (Wang et al., 2012). A wide range of frequencies is
investigated, including very high frequencies for which the
period is much shorter than the mean collision time. In Figure
5, the simulation results are compared to experimental data
and approximate solutions of the Boltzmann equation, and the
DSMC solution (Hadjiconstantinou and Garcia, 2001). The
unified results cover a wide range of wave frequency and give
the best results in comparison with experiment measurements
among all numerical and analytical solutions.

5 CONCLUDING REMARKS

The UGKS provides a general framework for the construction
of unified scheme for all Knudsen number flow computa-
tions. The use of the BGK-type particle collision model is
only one of the choices. Any realistic kinetic model, even
the Boltzmann equation itself, with both particle transport
and collision can be used for the flux modeling at the cell
interface. The important ingredient in the UGKS is that the
physical phenomena observed in a discretized space depend

on the cell resolution. The integral solution used in the con-
struction of local distribution function provides a passage
from the kinetic to hydrodynamic scale gas evolution. Which
flow physics the numerical scheme can represent depends on
the ratios of cell size over the particle mean free path, or the
time step over the particle collision time. Since the UGKS
updates both macroscopic and microscopic flow variables
with a time accurate evolution, the UGKS can be regarded
as a multiscale and multiresolution method. The UGKS has
been validated in the transition flow regime through enor-
mous amount of test cases. It is optimistic that the UGKS
will play an important role in the study of nonequilibrium
flows.
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