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Abstract

It is well known that for increasingly rarefied flowfields, the predictions from continuum formula-
tion, such as the Navier-Stokes equations lose accuracy. For the high speed diatomic molecular flow
in the transitional regime, the inaccuracies are partially attributed to the single temperature ap-
proximations in the Navier-Stokes equations. Here, we propose a continuum multiple temperature
model based on the Bhatnagar-Gross-Krook (BGK) equation for the non-equilibrium flow compu-
tation. In the current model, the Landau-Teller-Jeans relaxation model for the rotational energy is
used to evaluate the energy exchange between the translational and rotational modes. Due to the
multiple temperature approximation, the second viscosity coefficient in the Navier-Stokes equations
is replaced by the temperature relaxation term. In order to solve the multiple temperature kinetic
model, a multiscale gas-kinetic finite volume scheme is proposed, where the gas-kinetic equation
is numerically solved for the fluxes to update the macroscopic flow variables inside each control
volume. Since the gas-kinetic scheme uses a continuous gas distribution function at a cell interface
for the fluxes evaluation, the moments of a gas distribution function can be explicitly obtained
for the multiple temperature model. Therefore, the kinetic scheme is much more efficient than
the DSMC method, especially in the near continuum flow regime. For the non-equilibrium flow
computations, i.e., the nozzle flow and hypersonic rarefied flow over flat plate, the computational
results are validated in comparison with experimental measurements and DSMC solutions.

1 Introduction

The development of aerospace technology has generated a strong demand on research associated
with rarefied gas dynamics. The classification of the various flow regimes based on the dimensionless
parameter, the Knudsen number, is a measure of the degree of rarefaction of the medium. The
Knudsen number Kn is defined as the ratio of the mean free path to a characteristic length scale
of the system. In the continuum flow regime where Kn < 0.001, the Navier-Stokes equations with
linear relations between stress and strain and the Fourier’s law for heat conduction are adequate
to model the fluid behavior. For flows in the continuum-transition regime (0.01 < Kn < 1), the
Navier-Stokes equations are known to be inadequate. This regime is important for many practical
engineering problems, such as the simulation of microscale flows and hypersonic flow around space
vehicles in low earth orbit [11, 13]. Hence, there is a strong desire and requirement for accurate
models which give reliable solutions with lower computational costs. The Boltzmann equation
describes the flow in all flow regimes; continuum, continuum-transition and free molecule motion.

The numerical techniques available for solving the Boltzmann equation can be classified into
particle methods and continuum methods. The direct simulation Monte Carlo (DSMC) [5] falls in
the category of particle methods. The DSMC method is a widely used technique in the numerical
prediction of low density flows. However, in the continuum-transition regime, where the density
is not low enough, the DSMC requires a large number of particles for accurate simulation, which
makes the technique expensive both in terms of the computation time and memory requirement.
At present, the accurate modeling of realistic configurations, such as aerospace vehicles in three
dimensions by the DSMC method for Kn << 1, is beyond the currently available computing power.
Alternative methods, which solve the Boltzmann or model equations directly with the discretization
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of the phase space [1], have attracted attentions in recent years. But, its efficiency may be even
inferior in comparison with DSMC method.

Among continuum solution methodologies, there are primarily two approaches: the Chapman-
Enskog method [8], and the method of moments [10]. In the Chapman-Enskog method, the phase
density is expanded in powers of the Knudsen number, where the zeroth-order expansion yields the
Euler equations, the first-order results in the equations of Naver-Stokes and Fourier, the second
order gives the Burnett equations, and the third order expansion presents the so-called super-
Burnett equations. It is well recognized that the equations of Navier-Stokes and Fourier cease to
be accurate for Knudsen number above 0.1, and one might theorize that the Burnett and Super-
Burnett equations are valid for larger Knudsen numbers. Unfortunately, the higher-order equations
are shown to be linearly unstable for processes involving small wavelengths, or high frequencies,
and thus cannot be used in numerical simulations [6]. In recent years, several authors presented
augmented forms of the Burnett equations containing additional terms of the super-Burnett order
as a way of stabilizing the Burnett equations [33], the BGK-Burnett equations [3], or the regularized
hyperbolic equations through relaxation, reproducing the Burnett equations when expanded in Kn
[12].

In the method of Grad, the Boltzmann equation is replaced by a set of moment equations which
are the first order partial differential equations for the moments of the distribution function. The
actual number of moments needed depends on the process being considered, but experience shows
that the number of moments had to be increased with increasing Knudsen number [17]. Since
the moment equations are hyperbolic, the Grad method leads to a shock structure with spurious
sub-shocks for Mach numbers greater than 1.65 for the 13 moment equations [27]. It is interesting
to note that a close connection between the Grad’s moments method and the Burnett and Super-
Burnett equations has been established. [24]. Further, Struchtrup and Torrilhon regularized Grad’s
13 moment equations with the help of the Burnett equations and successfully applied the method
to the shock structure computation up to Mach 3 of a monatomic gas [25]. However, at the current
stage of research, a systematic development of a continuum method for monatomic and diatomic
gas for the highly non-equilibrium flow is not in place. Among the Chapman-Enskog method
and the method of moments, for the diatomic gas a single temperature is usually assumed, which
can be inappropriate for the high speed flow in the near continuum regime. Both the experimental
measurements and DSMC solutions confirmed that the multiple temperatures exist, and their effect
on the thermal non-equilibrium may be significant. With the inclusion the multiple temperatures,
the macroscopic Navier-Stokes governing equations have to be reformulated. As shown in this
paper, the second viscosity term in NS is replaced by the translation and rotational temperature
relaxation term.

At the current stage, the DSMC technique may be the only method of which the numerical solu-
tions have good agreement with experimental measurements in the rarefied flow regime. However,
the DSMC method is computationally expensive in the transition regime where conventional con-
tinuum models break down. Thus, there is impetus to develop a continuum model for these flows.
Also, the continuum variables have macroscopic physical meaning and therefore, the governing
equations give better insight into the behavior of the flow. As realized by experiment and DSMC
calculations, the thermal non-equilibrium with different translational and rotational temperatures
appears in the near continuum flow. But, the current continuum formulations characterize the
translational and rotational energy for the gas with a single temperature, which cannot correctly
represent these flows.

The goal of this study is to extend the Bhatnagar-Gross-Krook (BGK) model to incorporate
multiple temperatures and develop a gas-kinetic scheme based on the continuous particle distribu-
tion function for low density rarefied gas simulations. The current approach is a multiscale method.
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On the one hand, the gas-kinetic equation is solved for the local solution around a cell interface.
On the other hand, the fluxes from the microscopic gas evolution feds back into the finite volume
method for the update of macroscopic variables. Due to the coupling of the micro-macro-scale
formulation, the flow physics can be easily implemented on the microscopic level. At the same
time, the scheme becomes efficient due to the update of macroscopic variables. For example, on
the kinetic level the interaction between the gas and solid surface can be formulated through the
particle incident and reflection from the boundary, and the velocity and temperature slips can be
automatically obtained. The kinetic model developed in the present study will be applied to solve
non-equilibrium nozzle flow and high speed flow over a flat plate, where both experimental mea-
surements and DSMC solutions are available. In the continuum flow regime, our kinetic scheme
goes back automatically to the BGK-NS method [28], which solves the Navier-Stokes equations
accurately [32]. In the near continuum and transition regime with small Knudsen number, the
multiple temperature non-equilibrium effect appears automatically due to the insufficient particle
collision to equalize the temperatures. Also, our kinetic method has the similar efficiency as the
standard Navier-Stokes flow solver. In what follows, Section 2 provides details on the construction
of the current kinetic model and Section 3 presents the numerical method for solving this model.
This is followed by the results and discussion of the non-equilibrium flow calculations presented in
section 4. This final section is the conclusion.

2 Gas-kinetic models and macroscopic governing equations for di-

atomic gas

In the current paper, we are going to present the kinetic model and its derived macroscopic equations
in two dimension for diatomic gases. The experiments and computations presented in section 4 are
either 3D antisymmetric or purely two dimensional flows.

2.1 Equilibrium translational and rotational temperature model

The Boltzmann equation expresses the behavior of a many-particle kinetic system in terms of
the evolution equation for a single particle gas distribution function. The simplification of the
Boltzmann equation given by the BGK model is formulated as [2],

∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
=

g − f

τ
,(1)

where f is the number density of molecules at position (x, y) and particle velocity (u, v) at time t.
The left hand side of the above equation represents the free streaming of molecules in space, and the
right side denotes the collision term. If the distribution function f is known, macroscopic variables,
such as mass, momentum, energy and stress, can be obtained by integration over the moments of
molecular velocity. In the BGK model, the collision operator involves simple relaxation from f to
a local equilibrium state g with a characteristic time scale τ . The equilibrium state is given by a
Maxwellian,

g = ρ(
λ

π
)

K+2

2 e−λ((u−U)2+(v−V )2+ξ2),

where ρ is the density, (U, V ) are the macroscopic fluid velocity, and λ is the inverse of gas tem-
perature, i.e.,λ = m/2kT . Here m is the molecular mass, k is the Boltzmann constant, and T
is the temperature. For an equilibrium flow, the internal variable ξ accounts for the z-direction
translational and rotational modes, such as ξ2 = ξ2

1 + ξ2
2 + ...+ ξ2

K , and the total number of degrees
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of freedom K is related to the specific heat ratio γ. In the current paper, we consider diatomic gas
which has K = 3 with one translational mode in z−direction and two rotational degree of freedom.
The relation between mass ρ, momentum (ρU, ρV ), and energy densities ρE with the distribution
function f is









ρ
ρU
ρV
ρE









=

∫

ψαfdudvdξ,(2)

where ψα is the component of the vector of moments

ψ = (1, u, v,
1

2
(u2 + v2 + ξ2))T ,

and the volume element in the phase space with dξ = dξ1dξ2...dξK . Since mass, momentum and
energy are conserved during particle collisions, f and g satisfy the conservation constraint,

∫

(g − f)ψαdudvdξ = 0,(3)

at any point in space and time.
The BGK model was originally proposed to describe the essential physics of molecular interac-

tions with τ chosen as the molecular collision time. Although the BGK model appears to describe
only weak departures from local equilibria, it has long been recognized that such an approximation
works well beyond its theoretical limits as long as the relaxation time is known for the physical
process. Based on the above BGK model, the Navier-Stokes equations can be derived with the
Chapman-Enskog expansion truncated to the 1st-order,

f = g + Knf1

= g − τ(∂g/∂t + u∂g/∂x + v∂g/∂y).(4)

For the Burnett and super-Burnett solutions, the above expansion can be naturally extended
[21], such as f = g + Knf1 + Kn2f2 + Kn3f3 + ....

Based on Eq.(4) and the BGK model for the continuum flow limit, the Navier-Stokes equations,
the stress and Fourier heat conduction terms can be derived. The derived Navier-Stokes equations
for the diatomic gas in the two-dimensional case can be written as,

∂W

∂t
+

∂F

∂x
+

∂G

∂y
=

∂Fv

∂x
+

∂Gv

∂y
,(5)

where

W =









ρ
ρU
ρV
ρE









, F =









ρU
ρU2 + p

ρUV
(ρE + p)U









, G =









ρV
ρUV

ρV 2 + p
(ρE + p)V









,

and

Fv =













0
τp

[

2∂U
∂x − 2

2+K (∂U
∂x + ∂V

∂y )
]

τp(∂U
∂y + ∂V

∂x )

τp
[(

U(2∂U
∂x − 2

2+K (∂U
∂x + ∂V

∂y )) + V (∂U
∂y + ∂V

∂x )
)

+ K+4
4

∂
∂x( 1

λ)
]













,
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and

Gv =













0
τp(∂U

∂y + ∂V
∂x )

τp
[

2∂V
∂y − 2

2+K (∂U
∂x + ∂V

∂y )
]

τp
[(

U(∂U
∂y + ∂V

∂x ) + V (2∂V
∂y − 2

2+K (∂U
∂x + ∂V

∂y ))
)

+ K+4
4

∂
∂y ( 1

λ)
]













,

where p = ρ/(2λ) is the pressure, ρE = (ρ/2)(U2 + V 2) + ((K + 2)/2)p is the total energy density,
and µ = τp is the dynamic viscosity coefficient. With the relation λ = m/2kT and Cp = 7k/2m
for a diatomic gas, the heat conduction coefficient in the above equations becomes κ = 7kµ/2m,
and the Prandtl number becomes a fixed value Pr = µCp/κ = 1. This is a well known result for
the BGK model for both monatomic and diatomic gases. If the above viscous term is written in
the standard NS formulation, the bulk viscosity term becomes

(2/3 − 2/(K + 2))τp(Ux + Vy) = (4/15)τp(Ux + Vy),(6)

with K = 3 [31]. For the above Navier-Stokes solutions, the gas-kinetic BGK-NS scheme based on
the kinetic BGK model has been well developed [28]. In this scheme, the Pr number is justified to
any realistic value through the modification of heat flux through the cell interface. The accuracy of
the scheme for the equilibrium NS equations are well demonstrated in the hypersonic viscous heat
conducting flows [32].

2.2 Non-equilibrium rotational and translational temperature model

In the above Navier-Stokes equations, a single temperature is assumed for translational and ro-
tational modes. Therefore, the bulk viscosity term appears. However, the simulation of non-
equilibrium flow based on the bulk viscosity term is not successful in the rarefied flow regime.
In the general case of non-equilibrium, temperature for the translational and rotational energy
modes will be different. In this section, we are going to construct a non-equilibrium rotational en-
ergy relaxation model into the BGK equation and derive the corresponding macroscopic governing
equations.

In general, the above-mentioned BGK model can be extended as the following,

∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
=

feq − f

τ
+

g − feq

Zrτ
=

feq − f

τ
+ Q,(7)

where for a diatomic gas an intermediate equilibrium state feq is introduced with two temperatures,
one for translational and the other for rotational,

feq = ρ(
λt

π
)

3

2 (
λr

π
)e−λt[(u−U)2+(v−V )2+w2]−λrξ2

r ,(8)

where ρ is the density, λt = m/2kTt is related to the translational temperature Tt, and λr = m/2kTr

to the rotational temperature Tr. Therefore, the relaxation process becomes f −→ feq −→ g, and
the process from feq to g takes a much longer time Zrτ than that of translational equilibrium by
τ . The nitrogen molecule has two rotational degrees of freedom Kr = 2, such that ξ2

r = ξ2
1 + ξ2

2 .
The additional term Q in the collision part is related to the relaxation between the translational
and rotational non-equilibrium, which contributes to the source term for the macroscopic equations
derived later. The above model is a special case of a generalized BGK model [30], which has the
similarity with the two relaxation time BGK models for gases with internal degree of freedom
[16, 23].
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The relation between mass ρ, momentum (ρU, ρV ), total energy ρE, and rotational energy ρEr

densities with the distribution function f is

W =















ρ
ρU
ρV
ρE
ρEr















=

∫

ψfdudvdwdξr,

where ψ has the components

ψ = (1, u, v,
1

2
(u2 + v2 + w2 + ξ2

r ),
1

2
ξ2
r )T .

In the above kinetic model, a new temperature λr is introduced. In order to self-consistently deter-
mine all unknowns, one more constraint has to be imposed on the kinetic model. This additional
condition is the rotational energy relaxation. Since only mass, momentum and total energy are
conserved during particle collisions, the compatibility condition for the collision term becomes,

∫

(
feq − f

τ
+ Q)ψαdudvdwdξr = S = (0, 0, 0, 0, s)T , α = 1, 2, 3, 4, 5.(9)

The source term for the rotational energy is due to the energy exchange between the translational
and rotational ones. The format of this source term is modeled through the Landau-Teller-Jeans-
type relaxation model, i.e.,

s = ρ(Eeq
r − Er)/(Zrτ).(10)

This source term cannot be derived from the BGK model itself. In other words, the above kinetic
model is an extension of the traditional BGK model. To account for the longer relaxation time
for the rotational energy to get equilibrium, the particle collision time τ is enlarged by a factor
Zr, the so-called rotational collision number. The equilibrium energy ρEeq

r in the source term s is
determined using the assumption Tr = Tt = T , such that

ρEeq
r = ρ/λeq

r and λeq
r =

5

4

ρ

ρE − 1
2ρ(U2 + V 2)

.

Using the BGK model with the thermodynamic state given in Eq.(8), and with the consideration
that the relaxation from f to feq takes a much shorter time than that needed for translational and
rotational equilibrium, with the frozen of rotational energy exchange the 1st-order Chapman-Enskog
expansion gives,

f = feq + Knf1

= feq − τ(∂feq/∂t + u∂feq/∂x + v∂feq/∂y),(11)

from which the corresponding macroscopic Navier-Stokes continuum equations in 2D case can be
derived,

∂W

∂t
+

∂F

∂x
+

∂G

∂y
=

∂Fv

∂x
+

∂Gv

∂y
+ S,(12)

where

W =















ρ
ρU
ρV
ρE
ρEr















, F =















ρU
ρU2 + p

ρUV
(ρE + p)U

ρErU















, G =















ρV
ρUV

ρV 2 + p
(ρE + p)V

ρErV















,
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and

Fv =















0
τxx

τxy

Uτxx + V τxy + qx

Uτtr + qrx















, Gv =















0
τyx

τyy

Uτyx + V τyy + qy

V τtr + qry















,

where ρE = (1/2)ρ(U2 + V 2 + 3RTt + 2RTr) is the total energy, ρEr = ρRTr is the rotational
energy. The pressure p is related to the translational temperature only through p = ρRTt. At the
same time, the viscous and heat conduction terms are

τxx = τp

[

2
∂U

∂x
− 2

3
(
∂U

∂x
+

∂V

∂y
)

]

− ρKr

2(Kr + 3)

1

Zr

(

1

λt
− 1

λr

)

τyy = τp

[

2
∂V

∂y
− 2

3
(
∂U

∂x
+

∂V

∂y
)

]

− ρKr

2(Kr + 3)

1

Zr

(

1

λt
− 1

λr

)

τxy = τyx = τp

(

∂U

∂y
+

∂V

∂x

)

qx = τp

[

Kr

4

∂

∂x
(

1

λr
) +

5

4

∂

∂x
(

1

λt
)

]

,

qy = τp

[

Kr

4

∂

∂y
(

1

λr
) +

5

4

∂

∂y
(

1

λt
)

]

τrt =
3ρKr

4(Kr + 3)

1

Zr

(

1

λt
− 1

λr

)

qrx = τp
Kr

4

∂

∂x
(

1

λr
),

and

qry = τp
Kr

4

∂

∂y
(

1

λr
).

The source term in Eq.(12) is given by

S =

(

0, 0, 0, 0,
ρEeq

r − ρEr

Zrτ

)

,(13)

and the value Zr may depend on the temperature [14].
Instead of the bulk viscosity term in the standard NS equations (6), a relaxation term between

translational and rotational energy is obtained in the above equations to model the non-equilibrium
process. For example, the bulk viscosity term in the NS equations (5),

4

15
τp(Ux + Vy)

is replaced by the temperature relaxation term in the above Eq.(12),

− ρ

2Zr

Kr

Kr + 3
(

1

λt
− 1

λr
) =

ρR

Zr

Kr

Kr + 3
(Tr − Tt),

where Tt and Tr are translational and rotational temperatures of the diatomic gas. In the limiting
case of small departures from equilibrium, the rotational energy equation becomes

1

Zrτ

3

5
ρR(Tt − Tr) =

∂

∂t
(ρEr) +

∂

∂x
(ρUEr) +

∂

∂y
(ρV Er),
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and with the Euler approximation for the right hand side of the above equation, we have

Tt − Tr = −2

3
ZrτT (Ux + Vy),

and the normal bulk viscosity term can be exactly recovered, given by

ρR

Zr

Kr

Kr + 3
(Tr − Tt) =

2

3

Kr

Kr + 3
τp(Ux + Vy),

where Kr is equal to 2 for two rotational degree of freedom. As shown in section 4, the assumption
of small temperature differences between translational and rotational modes is not valid in the
non-equilibrium flow region, such as inside the shock layer or the hypersonic flow near isothermal
boundary. Therefore, the above governing equations with a temperature relaxation term are more
physically meaningful than the bulk viscosity assumption. However, instead of solving the nonlinear
system (12), the kinetic equation with the distribution function truncated up to the Navier-Stokes
order (11) will be directly used in the numerical scheme for the solution of Eq.(12).

From the above relaxation model, we can realize that the bulk viscosity is not a physical property
of a gas, but rather, an approximation designed to simulate the effect of thermal relaxation when
the governing equations are cast in terms of a single temperature. This approximation is based on
the assumption that the time scale of the macroscopic gas motion is much larger than the relaxation
time for the rotational equilibrium. This is a good approximation only for low Knudsen number
flows in the continuum flow regime. When the time scale for rotational relaxation is compatible with
the characteristic time scale, the relaxation model needs to be used to account for the relaxation of
rotational energy [15]. For the translation temperature below 1400K in a nitrogen gas which is of
interest here, the use of a single rotational temperature and the above Landau-Teller-Jeans model
for rotational relaxation is adequate in the present study. The particle collision time multiplied by a
rotational collision number Zr models the relaxation process for the rotational energy to equilibrate
with the translational energy. Determining the value of Zr by theoretical and experimental means
is an active research area [18] and is beyond the scope of the present work. In the current paper,
the value Zr used is

Zr =
Z∞

r

1 + (π3/2/2)
√

T ∗/T + (π + π2/4)(T ∗/T )
,

where the quantity T ∗ is the characteristic temperature of intermolecular potential, and Z∞

r is
the limiting value. In a temperature range from 30K − 3000K for N2, the values Z∞

r = 23.0 and
T ∗ = 91.5K are used. The local temperature T in the above equation is equal to the translational
temperature.

2.3 Generalization of particle collision time in rarefied flow regime

The definition of particle collision time is given by τ = µ/p, where µ is the dynamical viscosity
coefficient. This definition of the particle collision time is coming from the connection between the
kinetic model and macroscopic governing equations through the Chapman-Enkskog expansion. In
other words, this definition is validated in the continuum flow regime only, where the Chapman-
Enskog expansion is appropriate. In the past two decades, the extended hydrodynamics approach
for the non-equilibrium flow consisted of the inclusion of higher-order terms resulting in the Burnett
or Super-Burnett equations, or regularizing the moment equations. But the success is limited.
Currently, however, the most successful method to accurately match the experimental data for
both monatomic and diatomic gases is the DSMC method. The DSMC method primarily consists
of two steps, i.e., free transport and collision within each computational cell. The determination
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of the transport coefficients in the DSMC method is based on the particle collision model, which
is actually constructed from the well-defined theories developed for continuum flow models. The
collision models of the particle cross section and the probability for each collision pair can be used
for recovering the dissipative coefficients in the Navier-Stokes limit. For example, the commonly
used DSMC’s variable hard sphere (VHS) molecular model can be used to recover the 1st order
Chapman-Enskog expansion with viscosity coefficient µ = µref (T/Tref )ω. This is of the Navier-
Stokes order. However, when the DSMC method is used in the non-equilibrium flow calculation,
the particle transport from one place to another place is controlled individually by each particle’s
velocity, which is not uniformly controlled by the macroscopically defined particle collision time,
i.e., τ = µ/p. Therefore, the particle transport from one place to another place in the DSMC may
be the core for the capturing of non-equilibrium properties. Hence, special attention has to be paid
to the particle collision time, or the constitutive relationship, when using continuum formulation
for rarefied flow computation. Traditionally, it is noted that the concepts and measurements of
the dissipative coefficients are limited to the continuum flow regime. A generalized mathematical
formulation of the stress and heat flux under rarefied flow conditions has not been developed so far.
When we extend the continuum models to the non-equilibrium flow in the transition and rarefied
regimes, we now face the need to figure out the effect of translational non-equilibrium, such as the
new formulation of the particle collision time, and subsequently to determine the viscosity and heat
conduction coefficients in these flows. This generalization must be based on the kinetic equation
that is valid for all flow regimes, and further, it is preferable to have a closed solution of the kinetic
equation instead of a truncated expansion.

Our generalization of particle collision time is based on the existence of the closed solution of
the BGK model [29], which is assumed to be

f = feq − τ∗(∂feq/∂t + u∂feq/∂x + v∂feq/∂y),(14)

where τ∗ is the parameter to be determined. The difference between the above solution and the 1st-
order Chapman-Enskog expansion (4) and (11) is that a generalized collision time τ∗ is introduced.
Substituting the above equation into the BGK model (1), we can obtain the relation between the
generalized particle collision time τ∗ and the collision time τ , which is well-defined in the continuum
flow regime,

τ∗ =
τ(1 − Dτ∗)

1 + τ(D2feq/Dfeq)
,(15)

where D = ∂/∂t + u∂/∂x + v∂/∂y. To the leading order, a simplified local collision time,

τ∗ =
τ

1 + τ(D2feq/Dfeq)
,(16)

is used in the computation in this paper. One of the main reason for the removal of Dτ∗ term is that
τ∗ is independent of particle velocity and any averaging of the random particle velocity trajectory
is assumed to be zero. In the continuum flow regime, τD2feq/Dfeq ∼ Kn, is expected to be small
and τ∗ reverts back to τ , determined from τ = µ/p. The dynamic viscosity coefficient µ can be
obtained experimentally or theoretically as in Sutherland’s law. In order to remove the dependence
of the collision time τ∗ on the individual molecular velocity, D2feq/Dfeq can be evaluated by taking
moment φ, as

∫

φD2feqdudvdw/
∫

φDfeqdudvdw, where φ1 = (u − U)2. The reason to chose the
above φ is that (1, u, u2) are the conservative moments for the translational motion, and the only
term left, which is not conservative one, is φ. Since both D2feq and Dfeq involve higher spatial
and temporal derivatives of an equilibrium gas distribution function, a nonlinear limiter is imposed
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on the evaluation of τ∗,

τ∗ =
τ

1 + max[−Kn, τ min((D2feq/Dfeq), Kn)]
,(17)

where Kn is the Knudsen number of the flow problem.

3 Finite volume gas-kinetic method and kinetic boundary condi-

tion

3.1 Multiscale kinetic scheme

The continuum model developed in the previous section is solved based on the gas-kinetic BGK
scheme [28]. It is a conservative finite volume method, and the numerical fluxes at cell interfaces
are evaluated based on the time-dependent gas distribution function,

f = feq − τ∗(∂feq/∂t + u∂feq/∂x + v∂feq/∂y) + t
∂feq

∂t
,(18)

The relation between τ∗ and τ is given in Eq.(17), where τ = µ/p and µ is given by the Sutherland’s
law.

In 2D case, for a diatomic gas the equilibrium state feq with translational and rotational
temperature is

feq = ρ(
λt

π
)3/2(

λr

π
)Kr/2 exp

(

−λt((u − U)2 + (v − V )2 + w2) − λrξ
2
r

)

,(19)

where Kr is the rotational degree of freedom, i.e., Kr = 2. The expansion ∂feq/∂x can be expressed
as

∂feq

∂x
=

1

ρ
(a1 + a2u + a3v + a4(u

2 + v2 + w2) + a5ξ
2
r )feq =

1

ρ
afeq.

Here, all the coefficients can be explicitly determined by relating the microscopic and macroscopic
variables at the cell interface, i.e., W =

∫

ψfeqdudvdwdξr and ∂W/∂x = (1/ρ)
∫

ψafeqdudvdwdξr,
where W = (ρ, ρU, ρV, ρE, ρEr)

T are the macroscopic flow variables.
With the defined variables,

B = 2
∂(ρE − ρEr)

∂x
− (U2 + V 2 +

3

2λt
)
∂ρ

∂x
,

A1 =
∂(ρU)

∂x
− U

∂ρ

∂x
,

A2 =
∂(ρV )

∂x
− V

∂ρ

∂x
,

we have

a5 = 2
λ2

r

Kr

(

2
∂(ρEr)

∂x
− 1

2

Kr

λr

∂ρ

∂x

)

,

a4 =
2λ2

t

3
(B − 2UA1 − 2V A2) ,

a3 = 2λtA2 − 2V a4,

a2 = 2λtA1 − 2Ua4,
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 a1 =
∂ρ

∂x
− a2U − a3V − a4(U

2 + V 2 +
3

2λt
) − a5

Kr

2λr
.

The temporal variation of ∂feq/∂t can be expanded similarly as a spatial expansion and the cor-
responding coefficients can be obtained from the compatibility condition for the Chapman-Enskog
expansion, i.e.,

∫

ψ(∂feq/∂t + u∂feq/∂x + v∂feq/∂y)dudvdwdξr = 0,

where the above five equations uniquely determine the five unknowns in A, i.e., A = A1 + A2u +
A3v + A4(u

2 + v2 + w2) + A5ξ
2
r .

The numerical method developed for Eq.(12) is a finite volume method,

Wn+1
i,j = Wn

i,j +
1

∆V

l=4
∑

l=1

∫ ∆t

0
Fl · nl∆Sldt + Sn

i,j∆t,(20)

where Wn
i,j is the cell averaged mass, momentum, total energy, and rotational energy, and Fl are

the corresponding fluxes through interface l with length scale ∆Sl of the control volume (i, j). The
volume of the numerical cell (i, j) is ∆V . The fluxes across the cell interface are evaluated using
the solution (18),

F =

∫

ũψfdudvdwdξ,

where the ũ is the particle velocity in the normal direction of the cell interface. Note that ∆t is the
time step ∆t = tn+1−tn, and Sn

i,j is the source term for the rotational energy, given in Eq.(13). The
main difference between the current non-equilibrium kinetic method and the equilibrium BGK-NS
method in [28] is that two temperatures Tt and Tr are used with a generalized particle collision
time τ∗. In order to simulate the flow with any realistic Prandtl number, a modification of the heat
flux in the energy transport, such as that used in [28], is also implemented in the present study.

3.2 Gas-kinetic boundary condition

The interaction between the gas flow and the solid boundary has been explicitly pointed out by many
authors, see [19] and [7]. This section is mainly about how to implement these ideas numerically
in the current gas-kinetic scheme for non-equilibrium flow.

For the flows in the near continuum regime, even for the Navier-Stokes equations the application
of slip boundary condition becomes necessary. Since the gas-kinetic BGK-type schemes are based
on the time evolution of gas distribution function to update the flow variables, the slip boundary
condition can be naturally obtained in the kinetic method.

In the slip flow regime, with the one-sided interpolation of the flow variables up to the wall, we
can use the same technique presented in the last section to evaluate the gas distribution function
f in there, see Eq.(18). Therefore, we can evaluate the total number of particles hitting on the
wall

∫ ∆t
0

∫

u<0 uf indudvdwdξrdt. All these particles will be reflected from the wall according to the
specular reflection coefficient β. With the assumption of wall temperature Tw, i.e., λw = m/(2kTw),
we can construct an equilibrium state there first, i.e.,

gw = ρw(
λw

π
)

3

2 e−λw(u2+v2+w2)(
λwr

π
)

Kr

2 e−λwrξ2

,

where the temperature of the rotational degree of freedom λwr may not be the same as the wall
temperature λr. A single particle collision with the wall may not change the particle rotational
temperature. Therefore, one choice of the wall rotational temperature is to keep the rotational
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temperature of incoming molecules. In the above equilibrium state, the solid wall is assumed to be
stationary. The requirement of no particles penetrating through the wall is equivalent to

∫ ∆t

0

∫

u>0
ugwdudvdwdξrdt = −

∫ ∆t

0

∫

u<0
uf indudvdwdξrdt,

from which the density ρw in gw can be obtained

ρw = −2
√

πλw

∆t

∫ ∆t

0

∫

u<0
uf indudvdwdξrdt.

Therefore, the total gas distribution function at the wall for the accommodation coefficient (σ =
1 − β) can be written as

f total = (1 − β)gw
u>0 + f in

u<0 + βf in
u<0(−u, v),

where the term βf in
u<0(−u, v) accounts for the component with specular reflection from the surface.

In the case of no specular reflection, such as the fully accommodation case σ = 1, β is equal to 0.
In all our calculations in this paper, σ = 1 is used. After obtaining the gas distribution function
f total at the wall, the flux across the solid boundary can be evaluated in the same way as Eq.(18).
The slip boundary condition forms automatically from f total in the gas-kinetic BGK scheme, such
as the slip velocity

Vslip =

∫

vf totaldudvdwdξr
∫

f totaldudvdwdξr
6= 0,

along the solid surface. Also, the averaged temperature of f total will be different from the wall
temperature and the temperature slip can be obtained automatically.

4 Non-equilibrium flow computations

In an early paper, the multiple temperature model in 1D case has been developed and tested for
both argon and nitrogen shock structures [31]. Besides the good match in density and temperature
distributions between the experimental data and the current multiple temperature results, the
stress and heat flux have also been compared with the Boltzmann and DSMC solutions [20, 4].
In this section, we are going to test the current 2D model and its kinetic scheme to two cases
of a 3D axis-symmetric nozzle flow and a 2D hypersonic flow over a flat plate [9, 26]. In both
cases, the extrapolation is used for the outlet boundary condition on the right. The experimental
measurements of the rotational temperature are available for both cases.

4.1 Low density nozzle flow

The mission performance of satellites and spacecrafts such as on-orbit lifetimes, and trip times
are significantly impacted by low thrust rocket engines that are used for the control of altitude
and trajectory of the vehicle. The understanding of the detailed flow structure inside low-thrust
rocket nozzles is very important for the accurate prediction of the thrust and mass flow levels, and
also for the precise analysis of the plume and backflow. For this type of rocket engine, due to
the small thrust level, nozzles scales are quite small and reservoir pressure are very low. Reynolds
number of the flow in the nozzle are very low and rarefaction effects can significantly alter the
internal flow structure in the vacuum of the space environment. Under these conditions, the gas
exhibits strong non-equilibrium effects, such as slip at the wall, due to rapid expansion into the
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low density environment. The fluid experiences continuum, transition, and free molecular flow
regime. Consequently, conventional continuum gas dynamics that are based on the concept of local
equilibrium may not be adequate. Currently, the approach based on the molecular gas dynamics,
such as DSMC method, is the only method for the analysis of the flow. The current gas-kinetic
method is much more efficient than the DSMC method for high and normal density flows. Thus,
the test of the validity of the current method in the rarefied flow regime is necessary.

Few experimental data are available for this type of low thrust nozzle. Rothe’s experiment was
probably the only one in which detailed low density flow properties of nitrogen have been measured
inside a nozzle using the electron beam fluorescence technique [22]. This is an axis-symmetric flow
problem. Both NS and DSMC simulations of the internal nozzle flow have been performed by
Chung et al. [9]. To evaluate the accuracy of the current method, we perform the simulation in the
region of both inside and beyond the nozzle throat, where both equilibrium and non-equilibrium
flows are simulated using the same method. Following the flow condition given by Chung et al. [9],
the geometry and Mach contours are shown in figure 1, where 261 × 71 non-uniform mesh points
are used inside the nozzle. The radius of curvature at the thrust is one half the throat radius of
2.55mm. The nozzle divergence angle is 20o, the exit to throat area ratio is 66. The flow condition
for the first test case is: stagnation temperature T0 = 300K, stagnation pressure P0 = 474Pa,
wall temperature Tw = 300K, and the Knudsen number Kn = 2.3 × 10−3. Figures 1-3 show the
results of computation and experimental data for Mach contour, density and temperature along
the nozzle centerline, and the temperature profiles along the nozzle cross section at two locations
x = 137mm and x = 187mm. With the same nozzle geometry, the second test has a different
stagnation pressure, which is equal to P0 = 209Pa. The Mach contour inside the nozzle is shown
in figure 4. The rotational, translational, and average temperatures, as well as experimental data
for the rotational temperature along nozzle centerline is shown in figure 5. Excellent match in
the rotational temperatures between the experiment and computation is obtained. However, in
comparison with the DSMC results [9], there is obvious differences. For example, it is observed
that the current model presents a cross point between the translational and rotational temperatures
around x = 14Rt. But, this phenomenon has never been observed in the DSMC computation [9],
where the rotational and translational temperatures move downward without crossing each other.
The discrepancies in the simulation results can be only resolved with the help of experiments.

4.2 Rarefied hypersonic flow over a flat plate

Space vehicles, space stations, and planetary exploration systems, which have been developed
recently, fly partly in a rarefied gas environment. Their velocity is hypersonic, and their flight
environment include shock shock interactions and shock boundary interactions that cause high heat
transfer and pressure on the body of the spacecraft. It is important that the physical phenomena
occurring around spacecraft in a hypersonic rarefied gas flow are studied in detail in order to
understand these phenomena and to design a real size vehicle.

Here following Tsuboi and Matsumoto’s experiment [26], we are going to simulate the hyper-
sonic rarefied gas flow over a flat plate, and compare our simulation results with the experimental
measurements and DSMC solutions in [26]. The case we will study is the run 34, where the nozzle
exit Mach number is 4.89, stagnation temperature T0 = 670K, stagnation pressure P0 = 983Pa,
nozzle exit temperature Te = 116K, and flat plate surface temperature is 290K. The geometric
configuration is shown in figure 6, where 241 × 101 mesh points above the flat plate and 151 × 61
mesh points below the flat plate are used. In this case, the shock wave and boundary layer in-
teraction near a sharp leading edge in a merged layer causes nonequilibrium between translational
and rotational temperatures in the rarefied gas regime. A merged layer is defined as the mutual
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interaction between the external flowfield and the boundary layer growth around a body of given
shape. In the experiment, the non-equilibrium rotational temperature distributions around sharp
edged flat plate in a hypersonic rarefied gas flow exhausted from a converging-diverging nozzle were
measured by an electron beam fluorescence technique. Figures 6 presents the translational and ro-
tational temperature contours around the sharp edged flat plate. The temperature distributions in
the vertical direction above the flat plate at the locations of x = 5mm and 20mm from the leading
edge are shown in figure 7. As a comparison, the DSMC results from Tsuboi and Matsumoto’s
computation is also included [26]. As shown in figure 7, especially at the downstream location
x = 20mm, our computation results above the flat plate have a closer match with the experimental
measurement than the DSMC solution. In the DSMC solution, the rotational temperature profile
above the flat plate is much curved.

5 Conclusion

In this paper, a continuum gas-kinetic formulation for the translational and rotational non-equilibrium
flow is constructed. Based on the extended relaxation BGK kinetic model, the macroscopic gov-
erning equations for diatomic gas are derived, where the bulk viscosity term in the traditional
Navier-Stokes equations are substituted by the temperature relaxation term. Also, in order to
capture the transport non-equilibrium effect, a generalized constitutive relationships through the
modification of particle collision time is used. Based on the newly developed multiple temperature
kinetic model, a corresponding gas-kinetic scheme is constructed and used in the near continuum
flow computations, where both nozzle flows and hypersonic rarefied flow over a flat plate are tested.
The comparisons among the numerical solutions from the current kinetic model, the DSMC solu-
tions, and experimental measurements provide confidence on the current kinetic model and its
numerical method. Besides the DSMC method, the current kinetic method provides another effec-
tive alternative method for the study of flow motion in the near continuum and transition regimes.
Since the current finite volume gas-kinetic scheme implements a continuous gas distribution func-
tion in the phase space, the fluxes for the macroscopic variables can be evaluated explicitly and
efficiently. Also, the current method goes back to the Navier-Stokes flow solver automatically in
the continuum flow regime when Knudsen number is very small. The temperature relaxation terms
will go back to the bulk viscosity terms in the standard Navier-Stokes equations. So, the current
method is a unified numerical method from continuum to near continuum flow regime. Along with
the shock structure calculations [31], and the test cases in the current paper, the validity of the
multiple temperature kinetic model and its numerical method is confirmed.
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Figure 1: Mach contours in the nozzle flow computations for the case with stagnation pressure
P0 = 474Pa. 265 × 71 mesh points are used in the whole domain.

Distance from throat, x/Rt

D
en

si
ty

,ρ
/ρ

0

0 5 10 15 20
10-2

10-1

100

Rothe
BGK

Distance from throat, x/Rt

T
em

p
er

at
u

re
T

/T
0

0 5 10 15 20
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Rothe
BGK,Trn
BGK,Rot
BGK,Equ

Figure 2: Density and temperature distributions along the central line of the nozzle, where Rt is
the throat radius. The measured rotational temperature is from Rothe’s experiment [22].
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figure) in the nozzle cross section direction, where Rt is the throat radius.
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incoming gas, i.e., P0 = 209Pa.
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Figure 5: Temperature distributions for the case with P0 = 209Pa. Rothe’s experiment data is the
measured rotational temperature.
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Figure 6: Translational (left) and rotational (right) temperature contours in the hypersonic flow
over a flat plate. 241 × 101 and 151 × 61 grid points are used above and below the flat plate.
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Figure 7: Translational and rotational temperature distributions in the vertical direction at x =
5mm (left) and x = 20mm (right). The measured rotational temperature, DSMC solution [26],
and the current BGK solutions are presented.
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