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Abstract
This paper aims at the simulation of multiple scale physics for the system of radiation hydro-
dynamics. The system couples the fluid dynamic equations with the radiative heat transfer.
The coupled system is solved by the gas-kinetic scheme (GKS) for the compressible invis-
cid Euler flow and the unified gas-kinetic scheme (UGKS) for the non-equilibrium radiative
transfer, together with the momentum and energy exchange between these two phases. For
the radiative transfer, due to the possible large variation of fluid opacity in different regions,
the transport of photons through the flow system is simulated by the multiscale UGKS, which
is capable of naturally capturing the transport process from the photon’s free streaming to
the diffusive wave propagation. Since both GKS and UGKS are finite volume methods, all
unknowns are defined inside each control volume and are discretized consistently in the
updates of hydrodynamic and radiative variables. For the coupled system, the scheme has
the asymptotic preserving property, such as recovering the equilibrium diffusion limit for
the radiation hydrodynamic system in the optically thick region, where the cell size is not
limited by photon’s mean free path. A few test cases, such as radiative shock wave problems,
are used to validate the current approach.
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1 Introduction

This paper is about the construction of an asymptotic preserving numerical scheme for radi-
ation hydrodynamics. Radiation hydrodynamics describes radiative transport through a fluid
with coupled momentum and energy exchange. The system is routinely used in high energy
density physics, astrophysics, the inertial confinement fusion (ICF), and other flows with
very high temperature. For radiation hydrodynamics, radiation propagates through a moving
hydrodynamic material. Due to the moving velocity of the material, the thermal radiative
transfer equation includes relativistic material-motion correction whenever the radiation
momentum deposition has a measurable impact on the material dynamics. The correction is
applicable for flow with moving velocity being much smaller than the speed of light. Follow-
ing the works of [1–3], we adopt Morel’s radiation hydrodynamic model in this paper, which
is denoted as MM(θ) model in Eq. (2.1) with θ as a free parameter. Morel’s system can be
viewed as a simplified laboratory-frame formulation. The parameter θ can be chosen based
on the numerical method, such as MM(θ = 1) for a Lagrangian approach and MM(θ = 0)
for the Eulerian one. Based onMorel’s model and the consideration of multiple time scales in
the radiation hydrodynamic system, the Eq. (2.1) are usually split into time-scale dependent
equations of radiation and fluid movement due to the large discrepancy of the fluid velocity
and the speed of the light.

Though excellent work has been done separately for the study of radiative transfer [4–
13] and fluid dynamics [14,15], the research for the coupled system has only been carried
out recently [3,16–20]. The equations of radiation hydrodynamics include explicitly the
motion of the background material. For low opacity material, such as the case with small
absorption/emission coefficients and small scattering coefficient, the interaction between the
radiation and material is weak and the radiation propagates in a transparent way with a
particle-type behavior, i.e., the so-called optically thin regime. In this regime, the numerical
method for radiation should be able to capture the free streaming transport of photons, such
as the upwind approach with a ray tracking technique in SNmethod. For a high opacity mate-
rial with large absorption/emission coefficients or large scattering coefficient, the intensive
momentum and energy exchange between the radiation and material diminishes photon’s
mean free path. As a result, the diffusive asymptotic limit in the optically thick regime will
appear. In the case with large absorption/emission coefficients, an equilibrium diffusive pro-
cess for radiation will emerge and the material temperature and the radiation temperature
will approach to the same value. In this paper, the unified gas-kinetic scheme (UGKS) will be
used to solve the radiative transfer equation for capturing both ballistic and diffusive limits
of the photon transport [11–13,21].

For hydrodynamics, the gas-kinetic scheme (GKS) has been developed systematically for
compressible flow computations [15,22,23]. The numerical flux in the finite volume GKS is
based on a gas evolution process from a kinetic scale particle free transport to a hydrodynamic
scale Navier–Stokes flux formulation, where both inviscid and viscous fluxes are recovered
from moments of a single time-dependent gas distribution function. In the discontinuous
shock region, if the cell resolution is not fine enough to resolve the shock structure, the
GKS becomes a shock capturing scheme and the kinetic scale based particle free transport
provides numerical dissipation to build a numerical shock transition. In the smooth flow
region, the GKS becomes a Lax–Wendroff type central difference scheme for recovering the
NS solutions.

For the 1D radiation hydrodynamic system in [17], an implicit–explicit (IMEX) method
is constructed to solve the Euler equations coupled with gray radiative transfer. In such an
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algorithm, the fluid advection component is treated explicitly, whereas the radiation transport
and energy exchange components are treated implicitly. Based on the second-order Godunov
method [24], an entirely explicit scheme for RH was developed and the time step in the
scheme is limited by the time scale of radiative transport.

In this paperwewill construct a scheme for the radiation hydrodynamic systembycoupling
UGKS with GKS uniformly in all regimes. Since both GKS and UGKS are finite volume
method, all flow and radiation variables are defined as cell averages. The discretization
for both hydrodynamics and radiative evolution can be done consistently. The constructed
schemehas the asymptotic preserving (AP) property for the radiation part, and the equilibrium
diffusion limit can be obtained automatically by UGKS in the optically thick region.

In this paper, Sect. 2 is the introduction of radiation hydrodynamic system. In Sect. 3, the
details of the numerical scheme for the coupled system are presented. In Sect. 4, the asymp-
totic preserving property of the scheme is proved mathematically. The numerical examples
are presented in Sect. 5 to validate the scheme. Section 6 is the conclusion.

2 Radiation Hydrodynamics

For radiation hydrodynamics, when the radiationmomentumdeposit has ameasurable impact
on the material dynamics, the thermal radiative transfer equation requires the correction due
to the material velocity. The modification is needed even for the case where the speed of
flow is much smaller than the speed of light. Under such a condition, the MM(θ) model
[3] for the coupled radiation and hydrodynamics is adopted in the current study. The equa-
tions include non-relativistic, inviscid, single-material compressible hydrodynamics and the
thermal radiation transport,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + ∇ · (ρ�v) = 0,

∂t (ρ�v) + ∇ · (ρ�v ⊗ �v) + ∇ p = − 1
c

∫

��Sd ��,

∂t (ρE) + ∇ · [�v(ρE + p)] = − 1
ε

∫

Sd ��,

ε

c

∂ I

∂t
+ �� · ∇ I + ε∇ · (θ �β I ) = −σt

ε
I + (

σt

ε
− εσs)

1

4π
acT 4 + εσs

4π
cEr

− 1
4π σt �β ·

[ �Fr − ( 4
3 − θ

)
εEr �v

]
+ 3

4π

( 4
3 − θ

)
σt Er �� · �v � S.

(2.1)

Here ρ is the mass density, T the material temperature, �v the fluid velocity, and ρE =
1
2ρ|�v|2 +ρe is the total material energy. In order to close the equations, the equation-of-state
(EOS) p = p(ρ, T ) and the material internal energy e(ρ, T ) have to be provided. And I is
the radiation intensity, which is a function of space, time, angle direction ��, and radiation
frequency. For simplicity, in this paper we only consider the gray case, where the intensity
is averaged over the radiation frequency. In the above equations, c is the speed of light and
�β ≡ �v

c . The S term represents the interaction between the radiation and material in the
radiation hydrodynamic system, a is the radiation constant, σs is the coefficient of scattering,
σt is the total coefficient of absorption, and ε is the factor of scaling. The free parameter θ is
related to the correction due to the material motion. The value of θ varies according to the
numerical scheme. For the Lagrangian formulation with moving mesh following the fluid
velocity, θ = 1 is used. In the Eulerian formulation, θ = 0 is adopted for the lab-frame,
while the case θ = 4/3 can be viewed as an approximate comoving-frame treatment. The
functions Er and �Fr are the radiation energy and radiation flux respectively, which are given
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by

Er = 1

c

∫

I d ��, �Fr =
∫

��I d ��.

The momentum and energy deposition from radiation on hydrodynamics are computed
by angle integrations on the right hand sides of the second and third equations in (2.1). It
is straightforward to derive the corresponding total momentum and energy equations, which
are given by

{
∂t (ρ�v + ε

c2
�Fr ) + ∇ · (ρ�v ⊗ �v + εθ

c2
�v ⊗ �Fr + ¯̄P) + ∇ p = 0,

∂t (ρE + Er ) + ∇ · [�v(ρE + θEr + p) + 1
ε

�Fr ] = 0,
(2.2)

and ¯̄P is the radiation pressure tensor calculated by

¯̄P = 1

c

∫

�� ⊗ ��I d ��.

The system (2.1) has the property that it will approach to the equilibrium diffusion limit
equations for any choice of θ as the parameter ε approaching to 0 in the optically thick region.
This can be seen by expanding the dependent variables as a power series of ε,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ =
∞∑

i=0

ρ(i)εi , �v =
∞∑

i=0

�v(i)εi ,

T =
∞∑

i=0

T (i)εi , I =
∞∑

i=0

I (i)εi ,

(2.3)

and comparing the terms of equal powers. Substituting the expansions in (2.3) into the
governing equations (2.1), the O(ε−1)−terms of the fourth equation in (2.1) give

I (0) = 1

4π
ac(T (0))4, (2.4)

followed by

E (0)
r = a(T (0))4, �F (0)

r = 0, ¯̄P(0) = 1

3
a(T (0))4 ¯̄D, (2.5)

where ¯̄D is the identity matrix. There are no O(ε−1)−terms in the first two equations of
(2.1). And the O(ε−2) and O(ε−1)−terms in the third equation of (2.1) are consistent with
the above Eqs (2.4) and (2.5).

Using Eqs (2.4) and (2.5) again, the O(ε0)−terms in the fourth equation of (2.1) reduce
to

I (1) = 1

4π
ac(T (1))4 − c

σ
(0)
t

�� · ∇ I (0) + 3

4π

(
4

3
− θ

)

E (0)
r

�� · �v(0), (2.6)

therefore,

E (1)
r = a(T (1))4, �F (1)

r = − c

3σ (0)
t

∇E (0)
r +

(
4

3
− θ

)

E (0)
r �v(0), ¯̄P(1) = 1

3
a(T (1))4 ¯̄D.

(2.7)
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Finally, the O(ε0)−terms in the first equation of (2.1) and the Eq. (2.2) result in

⎧
⎪⎨

⎪⎩

∂tρ
(0) + ∇ · (ρ(0)�v(0)) = 0,

∂t (ρ
(0)�v(0)) + ∇ · (ρ(0)�v(0) ⊗ �v(0) + ¯̄P(0)) + ∇ p(0) = 0,

∂t (ρ
(0)E (0) + E (0)

r ) + ∇ · [�v(0)(ρ(0)E (0) + θE (0)
r + p(0)) + �F (1)

r ] = 0.

(2.8)

By substituting �F (1)
r in (2.7) into (2.8), the equilibrium diffusion system for radiation

hydrodynamics can be obtained as follows.

⎧
⎪⎨

⎪⎩

∂tρ
(0) + ∇ · (ρ(0)�v(0)) = 0,

∂t (ρ
(0)�v(0)) + ∇ · (ρ(0)�v(0) ⊗ �v(0) + ¯̄P(0)) + ∇ p(0) = 0,

∂t (ρ
(0)E (0) + E (0)

r ) + ∇ · [�v(0)(ρ(0)E (0) + 4
3 E

(0)
r + p(0))] = ∇ · ( c

3σR
∇E (0)

r ),

(2.9)

where σR is the Rosseland mean that is equal to σ
(0)
t here.

This paper will present a scheme with the asymptotic preserving property for the radiation
hydrodynamic equations (2.1), such that the numerical scheme for (2.1) will converge to a
proper numerical method for (2.9) automatically as the parameter ε tends to zero. The details
of the method will be presented in the next section.

3 Unified Scheme for the Radiation Hydrodynamic System

In this subsection we introduce the detailed construction of an asymptotic preserving scheme
for (2.1). The radiation and fluid parts in Eq. (2.1) will be solved separately. For the fluid
dynamics, the gas kinetic scheme (GKS) as a Navier–Stokes (NS) flow solver is used, while
the multiscale unified gas-kinetic scheme (UGKS) [11] is employed for the radiative transfer,
where two solvers are coupled in the momentum and energy exchanges. Since GKS and
UGKS are all finite volume methods, all unknowns are defined inside each control volume,
and the discretizations for the hydrodynamics and radiative transfer can be done consistently.

The hydrodynamic and radiative transfer solvers are based on the operator-splitting
approach. The purely hydrodynamic part of our scheme targets on the following Euler equa-
tions, even though the GKS is intrinsically a NS solver,

⎧
⎨

⎩

∂tρ + ∇ · (ρ�v) = 0,
∂t (ρ�v) + ∇ · (ρ�v⊗ �v) + ∇ p = 0,
∂t (ρE) + ∇ · (�v(ρE + p)) = 0.

(3.1)

The above equations are closed by an ideal gas equation of state (EOS) and internal energy
equation:

{
p = (γ − 1)ρe,
e = CvT ,

(3.2)

where γ is the specific heat ratio and Cv is the heat capacity.
For the radiative transfer, the momentum deposition and energy exchange between radia-

tion and material are included in the coupled equations. The algorithm for radiative transfer
solves the following equations:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t (ρ�v) = − 1
c

∫

��Sd �� = σt

εc

[

�Fr −
(
4

3
− θ

)

εEr �v
]

,

∂t (ρE) = − 1
ε

∫

Sd �� = 1

ε
(
σt

ε
− εσs)(cEr − acT 4) + σt

ε
�β ·
[

�Fr −
(
4

3
− θ

)

εEr �v
]

,

ε

c

∂ I

∂t
+ �� · ∇ I + ε∇ · (θ �β I ) = −σt

ε
I + (

σt

ε
− εσs)

1

4π
acT 4 + εσs

4π
cEr

− 1
4π σt �β ·

[ �Fr − ( 4
3 − θ

)
εEr �v

]
+ 3

4π ( 43 − θ)σt Er �� · �v � S.

(3.3)

The solver for the radiative hydrodynamic system is constructed by solving the Eqs (3.1) and
(3.3) by GKS and UGKS separately.

3.1 Gas-Kinetic Scheme for Fluid Flow

The compressible Euler equation (3.1) is solved by the GKS [15]. In the finite volume GKS,
the interface flux between neighboring cells plays a dominant role for the quality of the
scheme. The gas evolution at a cell interface is constructed based on the following kinetic
model equation [25]:

ft + �u · ∇ f = g − f

τ
, (3.4)

where f (�x, t, �u) is the gas distribution function and �u is the particle velocity. The function
g is the equilibrium state approached by f through a particle collision time τ . The collision
term satisfies the compatibility condition

∫
g − f

τ
ψd
 = 0, (3.5)

where ψ = (1, �u, 1
2 (|�u|2 + |�ξ |2))T is the collision invariants, d
 = d �ud�ξ , and �ξ =

(ξ1, . . . , ξK ) is the internal variable.
The connections between the macro quantities (ρ, ρ�v, ρE) and their fluxes with the gas

distribution function f are given by
⎛

⎝
ρ

ρ�v
ρE

⎞

⎠ = ∫
ψ f d
,

⎛

⎝
∇ · (ρ�v)

∇ · (ρ�v⊗ �v) + ∇ p
∇ · [(ρE + p)�v]

⎞

⎠ = ∫
ψ �u · ∇ f d
. (3.6)

Once the gas distribution f at a cell interface is fully determined, the numerical fluxes can
be obtained. In GKS, the boundary distribution function f is evaluated from the integral
solution of kinetic model equation (3.4):

f (�x, t, �u, �ξ) = 1

τ

∫ t

0
g(�x − �u(t − t ′), t ′, �u, �ξ)e−(t−t ′)/τdt ′ + e−t/τ f0(�x − �ut, �u, �ξ).

(3.7)

The initial condition f0 in the above solution is modeled by

f0 = f l0(�x, �u, �ξ)H((�x − �xs) · �n) + f r0 (�x, �u, �ξ)(1 − H((�x − �xs) · �n)),

where H is the Heaviside function, f l0 and f r0 are the initial gas distribution functions at the
left and right sides of a cell interface with a normal direction �n, and �xs is the center of the
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cell interface. To keep a second-order accuracy, the initial distribution f0 in space around �xs
is approximated by piecewise polynomials

f l,r0 (�x, �u, �ξ) = f l,r0 (�xs, �u, �ξ) + (�x − �xx ) · ∇ f l,r0 (�xs, �u, �ξ).

Without loss of generality, with the assumption of �xs = 0, for the Euler solution (3.1) the
initial distribution functions f l,r0 (0) can be expressed as the Maxwellians,

f l,r0 (0) = gl,r0 .

The equilibrium distribution functions gl,r0 are

gl,r0 = ρl,r
(

λl,r

π

) K+2
2

eλl,r (|�u−�vl,r |2+|�ξ |2),

which are determined from the distributions of initial macroscopic flow variables Wl =
(ρl , (ρ�v)l , (ρE)l) and Wr = (ρr , (ρ�v)r , (ρE)r ). The derivatives ∇ f l,r0 , such as in the xk-
direction, are obtained from

⎛

⎜
⎝

∂ρ
∂xk

|l,r
∂(ρ�v)
∂xk

|l,r
∂(ρE)
∂xk

|l,r

⎞

⎟
⎠ = ∫

ψ
∂ f l,r0
∂xk

d
, (k = 1, . . . , 3), (3.8)

where the derivatives of the macroscopic variables (
∂ρ
∂xk

|l,r , ∂(ρ�v)
∂xk

|l,r , ∂(ρE)
∂xk

|l,r ) are recon-
structed with the MUSCL slope limiter [26].

After determining the initial distribution function f0, the equilibrium state g in the integral
solution (3.7) can be expanded in space and time as

g = ḡ + ∇ ḡ · �x + ∂ ḡ

∂t
t, (3.9)

where ḡ is the equilibrium distribution function at a cell interface and is determined by the
compatibility condition

∫

ψ ḡd
 = W̄ � (ρ̄, ρ̄ �̄v, ρ̄ Ē)T =
∫

�u·�n>0
ψgl0d
 +

∫

�u·�n<0
ψgr0d
.

With the following notations

al,rk = ḡl,rxk /ḡ, Al,r = ḡl,rt /ḡ,

the spatial derivatives ḡl,rxk = (∂ ḡ/∂xk)|l,r (k = 1, . . . , 3) and time derivative ḡl,rt =
(∂ ḡ/∂t)|l,r are obtained from the relations

∫

ψal,rk d
 = ∂W̄

∂xk
|l,r ,

∫

ψ

(
k=3∑

k=1

uka
l,r
k + Al,r

)

d
 = 0.

The derivatives for the macroscopic variables for the equilibrium states ∂W̄
∂xi

|l,r are given by
∂W̄

∂xk
|l = W̄ − Wl

xlk
,

∂W̄

∂xk
|r = Wr − W̄

xrk
, (k = 1, . . . , 3),

where the xl,rk denote the left and right cell centers around the cell interface and the cell
interface is located at x = 0.
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Up to now, we have presented the gas kinetic scheme (GKS) for the Eq. (3.1). Then, after
updating the flow variables inside each cell, the radiation equation (3.3) will be solved next.

3.2 Unified Gas-Kinetic Scheme for Radiative Transfer

3.2.1 General Formulation

After advancing the fluid variables (ρ, ρ�v, ρE) by GKS from time step tn to tn+1, the fluid
density is updated fromρn toρn+1, but thefluid velocity is updated from �vn to the intermediate
state �vh , the same as the total specific energy from En to Eh . Therefore, the intermediate
specific internal energy and kinetic energy get to eh and 1

2 |�vh |2, respectively. Based on the
updated flow values (ρn+1, �vh, Eh), the radiative transfer equation (3.3) become,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t (ρ�v) = − 1
c

∫

��Sd ��,

∂t (ρE) = − 1
ε

∫

Sd ��,

ε

c

∂ I

∂t
+ �� · ∇ I + ε∇ · (θ �β I ) = S.

(3.10)

For the radiation intensity in the above equations, the discrete ordinate method (DOM) [27]
is used to discretize the angular variable ��. The vector �� in unit sphere is divided into M
discrete directions ��m with corresponding integration weight ωm . Then, the above system
(3.10) can be rewritten (in discrete directions) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t (ρ�v) = − 1
c

M∑

m=1

��mSmωm,

∂t (ρE) = − 1
ε

M∑

m=1

Smωm,

ε

c

∂ Im
∂t

+ ��m · ∇ Im + ε∇ · (θ �β Im) = Sm, m = 1, . . . , M,

(3.11)

where Sm is the value of S at the discrete angle calculated from the intensity Im .
The above equations will be solved by UGKS [11]. In the 2D case, the computational cells

are denoted by {(x, y) : [xi− 1
2
, xi+ 1

2
] × [y j− 1

2
, y j− 1

2
]}. The discrete conservation laws for

the control volume [xi− 1
2
, xi+ 1

2
] × [y j− 1

2
, y j− 1

2
] over the time interval [tn, tn+1] for every

��m = (μm, ξm) (m = 1, . . . , M) are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρn+1
i, j (�vn+1

i, j − �vhi, j ) = −�t
c

M∑

m=1

��mS
n+1
i, j,mωm,

ρn+1
i, j (Ên+1

i, j − Eh
i, j ) = −�t

ε

M∑

m=1

Sn+1
i, j,mωm,

ε

c

I n+1
i, j,m − I ni, j,m

�t
+

Fi+ 1
2 , j,m − Fi− 1

2 , j,m

�xi�y j
+

Gi, j+ 1
2 ,m − Gi, j− 1

2 ,m

�xi�y j
= Sn+1

i, j,m .

(3.12)
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Here �t = tn+1 − tn,�xi = xi+ 1
2

− xi− 1
2
and �y j = y j+ 1

2
− y j− 1

2
. The boundary fluxes

are given by

Fi+ 1
2 , j,m = ∫ tn+1

tn
∫ y

j+ 1
2

y
j− 1

2
μm Ii+ 1

2 , j,mdydt + ∫ tn+1

tn
∫ y

j+ 1
2

y
j− 1

2
εθβ̃x Ĩi+ 1

2 , j,mdydt

� F1
i+ 1

2 , j,m
+ F2

i+ 1
2 , j,m

,

Fi− 1
2 , j,m = ∫ tn+1

tn
∫ y

j+ 1
2

y
j− 1

2
μm Ii− 1

2 , j,mdydt + ∫ tn+1

tn
∫ y

j+ 1
2

y
j− 1

2
εθβ̃x Ĩi− 1

2 , j,mdydt

� F1
i− 1

2 , j,m
+ F2

i− 1
2 , j,m

,

Gi, j+ 1
2 ,m = ∫ tn+1

tn
∫ x

i+ 1
2

x
i− 1

2
ξm Ii, j+ 1

2 ,mdxdt + ∫ tn+1

tn
∫ x

i+ 1
2

x
i− 1

2
εθβ̃y Ĩi, j+ 1

2 ,mdxdt

� G1
i, j+ 1

2 ,m
+ G2

i, j+ 1
2 ,m

,

Gi, j− 1
2 ,m = ∫ tn+1

tn
∫ x

i+ 1
2

x
i− 1

2
ξm Ii, j− 1

2 ,mdxdt + ∫ tn+1

tn
∫ x

i+ 1
2

x
i− 1

2
εθβ̃y Ĩi, j− 1

2 ,mdxdt

� G1
i, j− 1

2 ,m
+ G2

i, j− 1
2 ,m

,

Sn+1
i, j,m = − (

σt
ε

)n+1
i, j I n+1

i, j,m + ( σt
ε

− εσs)
n+1
i, j

1
2π ac(T

n+1
i, j )4 + (

εσs
2π

)n+1
i, j c(Er )

n+1
i, j

− 1
2π (σt )

n+1
i, j

�βa
i, j ·

[
( �Fr )n+1

i, j − ( 4
3 − θ

)
ε(Er )

n+1
i, j

�̃vi, j
]

+ 3
2π

( 4
3 − θ

)
(σt )

n+1
i, j (Er )

n+1
i, j

�� · �̃vi, j .

(3.13)

With �β = (βx , βy) and �βa
i, j = ( �βn+1

i, j + �βh
i, j )/2,

�̃vi, j = �vhi, j , the conservation of total

momentum and total energy in (2.2) can be kept. The boundary values of Ĩ in F2
i± 1

2 , j,m
and

G2
i, j± 1

2 ,m
are obtained explicitly through the upwinding according to the fluid velocity �̃v on

the boundary. In order to solve Eq. (3.12) completely, two key points have to be clarified. One
is the determination of the boundary intensity I in (3.13) in order to evaluate the numerical
boundary fluxes F1

i± 1
2 , j,m

and G1
i, j± 1

2 ,m
. Another one is to get the macroscopic variables

T , Er and �Fr at time step tn+1 in order to discretize the source term Sn+1
i, j,m implicitly.

For the cell interface radiation intensity, we now give the solution in the integral form of
the radiative transfer equations at the boundary. Denote φ = acT 4, around the center of a
cell interface �xs = (xi− 1

2
, y j ), the radiative transfer equation becomes

⎧
⎪⎨

⎪⎩

ε
c ∂t Im + μm∂x Im + ε∂x (θβ̃x Ĩm) = (

σt
ε

− εσs
) φ̃
2π + εσs

cẼr
2π − σt

ε
Im + S̄m,

S̄m = − 1
2π σt �βa · [ �Fr − ( 4

3 − θ
)
ε Ēr �̃v] + 3

2π

( 4
3 − θ

)
σt Ēr �� · �̃v,

Im(x, y j , t)|t=tn = Im,0(x, y j ).

(3.14)

Here we should remark that the initial intensity Im,0 and the functions φ̃, Ẽr , �Fr will be
determined later.

Solving the above equations, the integral solution of (3.14) can be represented by

Im(t, xi−1/2, y j , μm, ξm) =
∫ t

tn

c

ε
e
−σ

i− 1
2 , j

(t−s)
(S̄m − ε∂x (θβ̃x Ĩm))ds

+ e−σi−1/2, j (t−tn) Im,0

(
xi−1/2 − cμm

ε
(t − tn)

)

+
∫ t

tn

c

ε
e
−σ

i− 1
2 , j

(t−s)( (σt

ε
− εσs

) φ̃

2π
+ εσs

cẼr

2π

)(
s, xi−1/2 − cμm

ε
(t − s)

)
ds,

(3.15)
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where σ = cσt
ε2

and σi−1/2, j is the value of σ at the corresponding cell interface. Moreover,

in order to keep the asymptotic preserving property of the scheme, the values Ēr , �̃v, �βa in
S̄m should be consistently determined from those in the boundary flux F2

i− 1
2 , j,m

, such as

Ēr =
∫

Ĩ d �� =
M∑

i=1

Ĩmωm, �̃v = �vh and �βa = 1

2
(�vh + �vn+1).

The derivative term ε∂x (θβ̃x Ĩm) is given by

ε∂x (θβ̃x Ĩm) = εθ((β̃x Ĩm)|(i, j) − (β̃x Ĩm)|(i−1, j))

(�xi + �xi−1)/2
.

For the determination of the boundary intensity I in (3.15) completely, the initial data
Im,0 is reconstructed by a piecewise polynomial

Im,0(x, y j ) =
{
I ni−1, j,m + δx I ni−1, j,m(x − xi−1, j ), if x < xi−1/2, j ,

I ni, j,m + δx I ni, j (x − xi, j ), if x > xi−1/2, j .
(3.16)

The two spatial derivatives δx I ni, j and δx I ni−1, j,m are the reconstructed slopes at cell centers
of (i, j) and (i −1, j) in the x-direction, respectively. In order to remove possible numerical
oscillations, the MUSCL limiter [26] is used in (3.16).

The quantities φ̃ and Ẽr are reconstructed implicitly in time by piecewise polynomials.
For the variable φ̃, the reconstruction reads as

φ̃(x, y j , t) = φn+1
i−1/2, j + δtφ

n+1
i−1/2, j (t − tn+1)

+
⎧
⎨

⎩

δxφ
n+1,L
i−1/2, j (x − xi−1/2, j ), if x < xi−1/2, j ,

δxφ
n+1,R
i−1/2, j (x − xi−1/2, j ), if x > xi−1/2, j ,

(3.17)

where δtφ
n+1
i−1/2, j = (φn+1

i−1/2, j−φn
i−1/2, j )/�t is the time derivative, and the spatial derivatives

are

δxφ
n+1,L
i−1/2, j = φn+1

i−1/2, j − φn+1
i−1, j

�xi−1/2
, δxφ

n+1,R
i−1/2, j = φn+1

i, j − φn+1
i−1/2, j

�xi/2
.

The reconstruction for Ẽr can be done similarly.
Finally, we need to evaluate the term S̄m in the Eq. (3.15). In order to keep the asymptotic

preserving property of the scheme, this term should be given consistently with the terms
F2
i± 1

2 , j,m
and G2

i, j± 1
2 ,m

in (3.13), where the upwind side cell center value is used by the sign

of the fluid velocity �̃v at the boundary, such as

F2
i−1/2, j,m =

{
θvhx,i−1, j I

n
m,i−1, j , if 0.5(vx,i−1, j + vx,i, j ) ≤ 0,

θvhx,i, j I
n
m,i, j , if 0.5(vx,i−1, j + vx,i, j ) > 0,

(3.18)

and

S̄m,i−1/2, j = − 1

2π
�βa · σ n+1

t [ �Fn+1
r −

(
4

3
− θ

)

εEn
r
�̃v]|i−1/2, j

+
{

3
2π

( 4
3 − θ

)
σ n+1
t En

r
�� · �̃v|i−1, j , if 0.5(vx,i−1, j + vx,i, j ) ≤ 0,

3
2π

( 4
3 − θ

)
σ n+1
t En

r
�� · �̃v|i, j , if 0.5(vx,i−1, j + vx,i, j ) > 0.

(3.19)
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Here the upper script n and n + 1 are corresponding to the time steps, and the values of
the first term in S̄m,i−1/2, j is given by the average of the corresponding values in the cell
(i − 1, j) and (i, j). Up to now, the formulation of the cell interface radiation intensity I for
flux evaluation has been presented, but their final determination depends on the solution of
the macroscopic variables φn+1

i−1/2, j , φ
n+1
i−1, j , φ

n+1
i, j and (Er )

n+1
i−1/2, j , (Er )

n+1
i−1, j , (Er )

n+1
i, j . These

unknowns in I and the other unknowns in the source term Sn+1
i, j,m of (3.13) will be determined

as shown in the next subsection.

3.2.2 Evaluation of the Macroscopic Variables

In this subsection we shall determine the macroscopic variables in the boundary fluxes and
source term. Instead of solving the radiative transfer equations, we first get the radiation
energy transport equation by taking moments of the last equation in (2.1), and solve them
together with the fluid dynamic equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t (ρ�v) = − 1
c {− σt

ε
�Fr + ( 4

3 − θ
)
σt Er �v},

∂t (ρE) = − 1
ε
{( σt

ε
− εσs)(acT 4 − cEr ) − σt �β · [ �Fr − ( 4

3 − θ
)
εEr �v]},

ε
∂Er

∂t
+ 〈 �� · ∇ I 〉 + ε∇ · 〈θ �β I 〉 = (

σt

ε
− εσs)(acT

4 − cEr )

−σt �β · [ �Fr − ( 4
3 − θ

)
εEr �v],

ε

c2
∂ �Fr
∂t

+ 1

c
〈 �� ⊗ �� · ∇ I 〉 + ε

c
∇ · 〈θ �β ⊗ ��I 〉 = − σt

cε
�Fr

+ 1
c

( 4
3 − θ

)
σt Er �v,

(3.20)

where the angular integrations are

〈 �� · ∇ I 〉 := ∫ ��∇ I d ��, 〈 �� ⊗ �� · ∇ I 〉 := ∫ �� ⊗ ��∇ I d ��;
〈θ �β I 〉 := ∫

θ �β I d ��, 〈θ �β ⊗ ��I 〉 := ∫
θ �β ⊗ ��I d ��.

The finite volume method for system (3.20) reads as follows.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρn+1
i, j �vn+1

i, j = ρn+1
i, j �vhi, j − �t

c {− σ n+1
t,i, j
ε

( �Fr )n+1
i, j + ( 4

3 − θ
)
σ n+1
t,i, j (Er )

n+1
i, j �vhi, j },

ρn+1
i, j En+1

i, j = ρn+1
i, j Eh

i, j − �t
ε

{( σ n+1
t,i, j
ε

− εσ n+1
s,i, j )(ac(T

n+1
i, j )4 − c(Er )

n+1
i, j )

− σ n+1
t,i, j

�βa
i, j · [( �Fr )n+1

i, j − ( 4
3 − θ

)
ε(Er )

n+1
i, j �vhi, j ]},

ε(Er )
n+1
i, j + �t

�xi�y j
(�n+1

i+ 1
2 , j

− �n+1
i− 1

2 , j
) + �t

�xi�y j
(�n+1

i, j+ 1
2

− �n+1
i, j− 1

2
)

= ε(Er )
n
i, j + �t{( σ n+1

t,i, j
ε

− εσ n+1
s,i, j )(ac(T

n+1
i, j )4 − c(Er )

n+1
i, j )

− σ n+1
t,i, j

�βa
i, j · [( �Fr )n+1

i, j − ( 4
3 − θ

)
ε(Er )

n+1
i, j �vhi, j ]},

ε

c2
( �Fr )n+1

i, j + �t

�xi�y j
( �̄�n+1

i+ 1
2 , j − �̄�n+1

i− 1
2 , j ) + �t

�xi�y j
( �̄�n+1

i, j+ 1
2

− �̄�n+1

i, j− 1
2
)

= ε

c2
( �Fr )ni, j + �t

{

−σ n+1
t,i, j

cε
( �Fr )n+1

i, j + 1

c

(
4

3
− θ

)

σ n+1
t,i, j (Er )

n+1
i, j �vhi, j

}

,

(3.21)

where �βa
i, j = ( �βn+1

i, j + �βh
i, j )/2.
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It should be emphasized that the central ingredient in UGKS is about the use of the same
time evolution distribution function for the microscopic and macroscopic fluxes at a cell
interface [28]. Based on this methodology, the boundary fluxes in (3.21) are obtained by
angular integration of F and G in (3.13),

�n+1
i+ 1

2 , j
=

M∑

m=1

Fi+ 1
2 , j,mωm =

M∑

m=1

(
F1
i+ 1

2 , j,m
+ F2

i+ 1
2 , j,m

)
ωm,

�n+1
i− 1

2 , j
=

M∑

m=1

Fi− 1
2 , j,mωm =

M∑

m=1

(
F1
i− 1

2 , j,m
+ F2

i− 1
2 , j,m

)
ωm,

�n+1
i, j+ 1

2
=

M∑

m=1

Gi, j+ 1
2 ,mωm =

M∑

m=1

(
G1

i, j+ 1
2 ,m

+ G2
i, j+ 1

2 ,m

)
ωm,

�n+1
i, j− 1

2
=

M∑

m=1

Gi, j− 1
2 ,mωm =

M∑

m=1

(
G1

i, j− 1
2 ,m

+ G2
i, j− 1

2 ,m

)
ωm,

�̄�n+1

i+ 1
2 , j = 1

c

M∑

m=1

��mFi+ 1
2 , j,mωm = 1

c

M∑

m=1

��m

(
F1
i+ 1

2 , j,m
+ F2

i+ 1
2 , j,m

)
ωm,

�̄�n+1

i− 1
2 , j = 1

c

M∑

m=1

��mFi− 1
2 , j,mωm = 1

c

M∑

m=1

��m

(
F1
i− 1

2 , j,m
+ F2

i− 1
2 , j,m

)
ωm,

�̄�n+1

i, j+ 1
2

= 1

c

M∑

m=1

��mGi, j+ 1
2 ,mωm = 1

c

M∑

m=1

��m

(
G1

i, j+ 1
2 ,m

+ G2
i, j+ 1

2 ,m

)
ωm,

�̄�n+1

i, j− 1
2

= 1

c

M∑

m=1

��mGi, j− 1
2 ,mωm = 1

c

M∑

m=1

��m

(
G1

i, j− 1
2 ,m

+ G2
i, j− 1

2 ,m

)
ωm .

(3.22)

Thus, based on the macroscopic interface fluxes in (3.22), the system (3.21) reduces to a
coupled nonlinear system of the macroscopic quantities �vn+1

i, j , T n+1
i, j , (Er )

n+1
i, j and ( �Fr )n+1

i, j

only, where the parameters σ n+1
t,i, j and σ n+1

s,i, j depend implicitly on the material temperature

T n+1
i, j . This nonlinear system can be solved by iterative method, such as the Gauss-Seidel

iteration method as shown in [11,12].

3.2.3 Update of the Solution

After obtaining the macroscopic variables T n+1
i, j , (Er )

n+1
i, j and ( �Fr )n+1

i, j by solving the Eq.
(3.21) iteratively, we can fully determine the radiation intensity at the cell interface for the
microscopic flux evaluation. For example, the boundary value φn+1

i− 1
2 , j

in (3.17) is given by

φn+1
i, j−1/2 = (φn+1

i, j + φn+1
i, j−1)/2.

The left and right derivatives in (3.17) are given by

δxφ
n+1,L
i−1/2, j = φn+1

i−1/2, j − φn+1
i−1, j

�xi−1/2
, δxφ

n+1,R
i, j−1/2 = φn+1

i, j − φn+1
i−1/2, j

�xi/2
.

For the time derivative δtφ
n+1
i−1/2, j in (3.17), we can take

δtφ
n+1
i−1/2, j = φn+1

i−1/2, j − φn
i−1/2, j

�t
.
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In the same way, the reconstruction of Ẽr in (3.15) can be obtained.
With the determinedmacroscopic variables in (3.21), the source term Sn+1

i, j,m and the numer-
ical boundary fluxes Fi± 1

2 , j,m,Gi, j± 1
2 ,m in (3.13) can be evaluated explicitly. Afterwards,

the radiative intensity in (3.12) can be updated as follows.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ŝn+1
i, j,m �

(
σt
ε

− εσs
)n+1
i, j

1
2π ac(T

n+1
i, j )4 + (

εσs
2π

)n+1
i, j c(Er )

n+1
i, j

− 1
2π (σt )

n+1
i, j

�βa
i, j ·

[
( �Fr )n+1

i, j − ( 4
3 − θ

)
ε(Er )

n+1
i, j

�̃vi, j
]

+ 3
2π

( 4
3 − θ

)
(σt )

n+1
i, j (Er )

n+1
i, j

�� · �̃vi, j ,

I n+1
i, j =

ε
c�t I

n
i, j +

F
i− 1

2 , j,m
−F

i+ 1
2 , j,m

�xi�y j
+

G
i, j− 1

2 ,m
−G

i, j+ 1
2
,m

�xi�y j
+ Ŝn+1

i, j,m

ε
c�t + (

σt
c

)n+1
i, j

.

(3.23)

This completes the main numerical procedures in our unified gas kinetic scheme.
The final step is to update the solutions in the first and second equations in (3.12) for

the fluid velocity �vn+1
i, j and material temperature T̂ n+1

i, j with the newly obtained value I n+1
i, j,m .

The solutions for the momentum equation (3.12) and the energy equation (3.12) are given
respectively by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�vn+1
i, j = ρn+1

i, j �vhi, j − �t
c

∑M
m=1

��m(Ŝn+1
i, j,m + ( σt

c )n+1
i, j I n+1

i, j,m)ωm

ρn+1
i, j

,

Ên+1
i, j = ρn+1

i, j Eh
i, j − �t

ε

∑M
m=1(Ŝ

n+1
i, j,m + ( σt

c )n+1
i, j I n+1

i, j,m)ωm

ρn+1
i, j

,

T̂ n+1
i, j = Ên+1

i, j − |�vn+1
i, j |2/2

Cv

.

(3.24)

Based on (3.23) and (3.24), we get the solution of the system (3.10), and complete the
construction of the GKS and UGKS algorithm for the radiation hydrodynamic system.

Here we summarize the whole solving procedure of the GKS-UGKS algorithm for the
radiation hydrodynamic system:
Loop of the GKS-UGKS for the radiation hydrodynamics (2.1) Given ρn

i, j , �vni, j , I ni, j,m
and T n

i, j , one has (Er )
n
i, j , (

�Fr )ni, j and φn
i, j . Find ρn+1

i, j , �vn+1
i, j , I n+1

i, j,m and T̂ n+1
i, j .

(1) Solve the hydrodynamics equation (3.1) by GKS method to to get ρn+1
i, j , �vhi, j and the

intermediate total material energy Eh
i, j ;

(2) Solve the nonlinear system (3.21) to get �vn+1
i, j , En+1

i, j , (Er )
n+1
i, j , ( �Fr )n+1

i, j ;
(3) With the auxiliary macro quantities in step 2, construct the numerical boundary fluxes in
(3.13) with the boundary intensity given by (3.15). Then solve the Eq. (3.23) to obtain I n+1

i, j,m .

(4) Using the newly updated I n+1
i, j,m obtained in step 3, solve the Eq. (3.24) to get the final

�vn+1
i, j , T̂ n+1

i, j .

(5) Setting ρn
i, j = ρn+1

i, j , �vni, j = �vn+1
i, j , I ni, j,m = I n+1

i, j,m, T n
i, j = T̂ n+1

i, j , and goto step 1 for the
next computational time step.
End

In the following section, the asymptotic preserving property of the proposed scheme will
be analyzed.

123



   25 Page 14 of 24 Journal of Scientific Computing            (2020) 85:25 

4 Asymptotic Analysis of the Scheme

The scheme presented in the last section possesses the asymptotic preserving (AP) property.
In fact, following the analysis in [11,12], we are able to show such a property for the scheme
in capturing the diffusion solution in the optically thick region for the radiative transfer. The
numerical fluxes F and G in (3.13) play a dominant role in the proof of the AP property.
Firstly, the left boundary numerical flux in the x-direction is given by

c

ε
F1
i, j−1/2,m = cμm�y j

ε�t

∫ tn+1

tn
Im(t, xi−1/2, y j , μm, ξm)dt,

which can be exactly evaluated as follows. For simplicity, with the notation ϕ = cEr ,, based
on (3.15), the above integral can be obtained

c
ε
F1
i−1/2, j,m = �y j {Ai−1/2, jμm(I n,−

i−1/2, j,m1μm>0 + I n,+
i−1/2, j,m1μm<0)

+ D1
i−1/2, j (μ

2
mδxφ

n+1,L
i−1/2, j1μm>0 + μ2

mδxφ
n+1,R
i−1/2, j1μm<0)

+ D2
i−1/2, j (μ

2
mδxϕ

n+1,L
i−1/2, j1μm>0 + μ2

mδxϕ
n+1,R
i−1/2, j1μm<0)

+ Bi−1/2, j (μ
2
mδx I ni−1, j,m1μm>0 + μ2

mδx I ni, j,m1μm<0)

+ E1
i−1/2, jμmδtφ

n+1
i−1/2, j + C1

i−1/2, jμmφn+1
i−1/2, j

+ E2
i−1/2, jμmδtϕ

n+1
i−1/2, j + C2

i−1/2, jμmϕn+1
i−1/2, j

+Pi−1/2, jμm(S̄m − ε∂x (θβ̃x Ĩm))|i− 1
2 , j }.

(4.1)

Here I n,−
i−1/2, j,m, I n,+

i−1/2, j,m are the interface values given by

I n,−
i−1/2, j,m = I ni−1, j,m + δx I ni−1, j,m(xi−1/2 − xi−1, j ),

I n,+
i−1/2, j,m = I ni, j,m + δx I ni, j,m(xi−1/2 − xi, j ),

and δx I ni−1, j,m and δx I ni, j,m are slopes in the x-direction which are reconstructed in (3.16).
The coefficients in (4.1) are given by

A = c
ε�tν (1 − e−ν�t ),

C1 = c2( σt
ε

−εσs )

2π�tε2ν
(�t − 1

ν
(1 − e−ν�t )),

C2 = c2εσs
2π�tε2ν

(�t − 1
ν
(1 − e−ν�t )),

D1 = − c3( σt
ε

−εσs )

2π�tε3ν2
(�t(1 + e−ν�t ) − 2

ν
(1 − e−ν�t )),

D2 = − c3εσs
2π�tε3ν2

(�t(1 + e−ν�t ) − 2
ν
(1 − e−ν�t )),

B = − c2

ε2ν2�t
(1 − e−ν�t − ν�te−ν�t ),

E1 = c2( σt
ε

−εσs )

2πε2ν3�t
(1 − e−ν�t − ν�te−ν�t − 1

2 (ν�t)2),

E2 = c2εσs
2πε2ν3�t

(1 − e−ν�t − ν�te−ν�t − 1
2 (ν�t)2),

P = c2

�tε2ν
(�t − 1

ν
(1 − e−ν�t ))

(4.2)

with ν = cσt
ε2

.
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The behavior of the scheme in the small-ε limit is completely controlled by the limits of
these coefficients, as shown in the following proposition.

Proposition 1 Let σt and σs be positive. Then, as ε tends to zero, we have

• A(�t, ε, σ, ν) → 0;
• B(�t, ε, σ, ν) → 0;
• D1(�t, ε, σ, ν) → −c/(2πσt );
• D2(�t, ε, σ, ν) → 0;
• P(�t, ε, σ, ν) → c/σt ;
• ε

c2
E1(�t, ε, σ, ν) → −�t/(4πc);

• ε
c2
E2(�t, ε, σ, ν) → 0;

• ε
c2
C1(�t, ε, σ, ν) → 1/(2πc);

• ε
c2
C2(�t, ε, σ, ν) → 0.

Taking moment of the left boundary flux Fi− 1
2 , j,m over the propagation angle ��, we

obtain

c

ε
�n+1

i− 1
2 , j

= c

ε

M∑

m=1

Fi− 1
2 , j,mωm = c

ε

M∑

m=1

(F1
i− 1

2 , j,m
+ F2

i− 1
2 , j,m

)ωm

= �y j

{

Ai−1/2, j

M∑

m=1

ωmμm

(
I ni−1, j,m1μm>0 + I ni, j,m1μm<0

)

+ 2πD1
i−1/2, j

3
(

φn+1
i, j − φn+1

i−1, j

0.5(�xi + �xi−1)
) + 2πD2

i−1/2, j

3
(

ϕn+1
i, j − ϕn+1

i−1, j

0.5(�xi + �xi−1)
)

+ (
4

3
− θ)cĒr ṽx |i− 1

2 , j − c

σt

M∑

m=1

ωmμm(ε∂x (θβ̃x Ĩm))|i− 1
2 , j

+ Bi−1/2, j

M∑

m=1

ωmμ2
m(δx I

n
i−1, j,m1μm>0 + δx I

n
i, j,m1μm<0) + θcĒr ṽx |i− 1

2 , j

}

= �y j

{

Ai−1/2, j

M∑

m=1

ωmμm

(
I ni−1, j,m1μm>0 + I ni, j,m1μm<0

)

+ 2πD1
i−1/2, j

3
(

φn+1
i, j − φn+1

i−1, j

0.5(�xi + �xi−1)
) + 2πD2

i−1/2, j

3
(

ϕn+1
i, j − ϕn+1

i−1, j

0.5(�xi + �xi−1)
)

+ 4

3
cĒr ṽx |i− 1

2 , j − cε

σt

M∑

m=1

ωmμm(∂x (θβ̃x Ĩm))|i− 1
2 , j

+ Bi−1/2, j

M∑

m=1

ωmμ2
m(δx I

n
i−1, j,m1μm>0 + δx I

n
i, j,m1μm<0)

}

−−→
ε→0

�y j

{

− c

3σt

φn+1
i, j − φn+1

i−1, j

0.5(�xi + �xi−1)
+ 4

3
c(Ēr ṽx )|i− 1

2 , j

}

,

(4.3)
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and

�̄�n+1

i− 1
2 , j = 1

c

M∑

m=1

��mFi− 1
2 , j,mωm = 1

c

M∑

m=1

��m(F1
i− 1

2 , j,m
+ F2

i− 1
2 , j,m

)ωm

= ε

c2
�y j

M∑

m=1

��m{Ai−1/2, jμm(I n,−
i−1/2, j,m1μm>0 + I n,+

i−1/2, j,m1μm<0)

+ D1
i−1/2, j (μ

2
mδxφ

n+1,L
i−1/2, j1μm>0 + μ2

mδxφ
n+1,R
i−1/2, j1μm<0)

+ D2
i−1/2, j (μ

2
mδxϕ

n+1,L
i−1/2, j1μm>0 + μ2

mδxϕ
n+1,R
i−1/2, j1μm<0)

+ Bi−1/2, j (μ
2
mδx I

n
i−1, j,m1μm>0 + μ2

mδx I
n
i, j,m1μm<0) (4.4)

+ E1
i−1/2, jμmδtφ

n+1
i−1/2, j + C1

i−1/2, jμmφn+1
i−1/2, j

+ E2
i−1/2, jμmδtϕ

n+1
i−1/2, j + C2

i−1/2, jμmϕn+1
i−1/2, j

+ Pi−1/2, jμm(S̄m − ε∂x (θβ̃x Ĩm))|i− 1
2 , j }ωm

−−→
ε→0

�y j

M∑

m=1

��m{ 1

2πc
μmφn+1

i−1/2, j − �t

4πc
μmδtφ

n+1
i−1/2, j }ωm

= �y j
3c

(φn+1
i−1/2, j − �t

2
δtφ

n+1
i−1/2, j )�eT1 = �y j

3c

φn+1
i−1/2, j + φn

i−1/2, j

2
�eT1 .

With �e1 = (1, 0) is the unit vector, then by the limits in (4.3) and (4.5), it is easy to see that
the above coupled GKS and UGKS method possesses the asymptotic preserving property,
provided the following proposition holds.

Proposition 2 Let σt and σs be positive. Then, as ε tends to zero, the numerical scheme given
by coupling (3.6) for the fluid and (3.12) for the radiation goes to the standard implicit central
difference scheme for the equilibrium diffusion limit system (2.9) of radiation hydrodynamics.

Proof Firstly, as ε → 0, the term of ε−1-order in the third equation of (3.12) satisfies

I n+1
i, j,m → 1

2π
φn+1
i, j = 1

2π
ac(T n+1

i, j )4. (4.5)

Integrating the above equation with respect to the angular variable, we find that

c(Er )
n+1
i, j → φn+1

i, j = ac(T n+1
i, j )4, ( �Fr )n+1

i, j → 0, ¯̄Pn+1
i, j → 1

3
a(T n+1

i, j )4 ¯̄D. (4.6)

Secondly, we integrate the flux 1
ε
Fk+1
i−1/2, j in the angular variable to obtain the macro flux

1
ε
�k+1

i−1/2, j,m,n in (4.5). Then, taking ε → 0, under Proposition 1 we obtain

1

ε
�n+1

i−1/2, j → �y j
(

− 1

3σ n+1
i−1/2, j

φn+1
i, j − φn+1

i−1, j

0.5 ∗ (�xi + �xi−1)
+ 4

3
(Ēr ṽx )|i− 1

2 , j

)
. (4.7)
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Similarly, as ε → 0, the other macro boundary interface fluxes go to

1
ε
�n+1

i+1/2, j → �y j
(

− 1

3σ n+1
i+1/2, j

φn+1
i+1, j − φn+1

i, j

0.5 ∗ (�xi + �xi+1)
+ 4

3
(Ēr ṽx )|i+ 1

2 , j

)
,

1
ε
�n+1

i, j−1/2 → �xi
(

− 1

3σ n+1
i, j−1/2

φn+1
i, j − φn+1

i, j−1

0.5 ∗ (�y j + �y j−1)
+ 4

3
(Ēr ṽy)|i, j− 1

2

)
,

1
ε
�n+1

i, j+1/2 → �xi
(

− 1

3σ n+1
i, j+1/2

φn+1
i, j+1 − φn+1

i, j

0.5 ∗ (�y j + �y j+1)
+ 4

3
(Ēr ṽy)|i, j+ 1

2

)
.

(4.8)

Dividing the third equation of (3.12) by ε and integrating the resulting equation over the
angular variable, with the utilization of second equation of (3.12) and Eq.(4.8), as ε → 0 the
energy transport equation goes to

ρn+1
i, j

En+1
i, j − En

i, j

�t
+ (Er )

n+1
i, j − (Er )

n
i, j

�t

+ 1

�xi

{(

− 1

3σ n+1
i+1/2, j

φn+1
i+1, j − φn+1

i, j

0.5 ∗ (�xi + �xi+1)
+ 4

3
(Ēr ṽx )|i+ 1

2 , j

)

−
(

− 1

3σ n+1
i−1/2, j

φn+1
i, j − φn+1

i−1, j

0.5 ∗ (�xi + �xi−1)
+ 4

3
(Ēr ṽx )|i− 1

2 , j

)}

+ 1

�y j

{(

− 1

3σ n+1
i, j+1/2

φn+1
i, j+1 − φn+1

i, j

0.5 ∗ (�y j + �y j+1)
+ 4

3
(Ēr ṽy)|i, j+ 1

2

)

−
(

− 1

3σ n+1
i, j−1/2

φn+1
i, j − φn+1

i, j−1

0.5 ∗ (�y j + �y j−1)
+ 4

3
(Ēr ṽy)|i, j− 1

2

)}

= 0.

(4.9)

Based on the above Eq. (4.9), together with the discretization of the third equation of (3.1)
for the fluid, we recover the numerical discretization of the third equation for the equilibrium
diffusive radiation hydrodynamics (2.9).

Thirdly, multiplying the last equation of (3.12) with �� and integrating the resulting equa-
tion in the angular variable, with the help of the first equation of (3.12) and (4.5) we get

ρn+1
i, j

�vn+1
i, j −�vhi, j

�t + 1
�xi

{
φn+1
i+1/2, j+φn

i+1/2, j
6c − φn+1

i−1/2, j+φn
i−1/2, j

6c

}

+ 1
�y j

{
φn+1
i, j+1/2+φn

i, j+1/2
6c − φn+1

i, j−1/2+φn
i, j−1/2

6c

}

= 0.

(4.10)

Thus, with the discretization of the second equation of (3.1) for the fluid part and the above
equation (4.10), the numerical discretization of the second equation for the equilibrium
diffusive radiation hydrodynamics (2.9) is recovered.

Since there is no ε term in the first equation of (2.1), the discretization for the first equation
of (3.6) is the samemass conservation equation of (2.9). This shows that the coupledGKS and
UGKS method for the system (2.1) does have the asymptotic preserving property. By virtue
of (4.8), Eq. (4.9) becomes a standard five points scheme for the third (diffusion) equation of
(2.9). Therefore, the current scheme can recover the diffusion solution without the constraint
on the cell size being smaller than the photon’s mean free path. 
�
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Table 1 Initial condition for the
Mach 1.2 radiative shock
problem

Parameter Pre-shock value Post-shock value Units

ρ 1.00000000e+00 1.29731782e+00 g cm−3

u 1.52172533e−01 1.17297805e−01 cm sh−1

T 1.00000000e−01 1.19475741e−01 keV

Er 1.37201720e−06 2.79562228e−06 Jk cm−3

Table 2 Initial condition for the
Mach 3 radiative shock problem

Parameter Pre-shock Value Post-shock value Units

ρ 1.00000000e+00 3.00185103e+00 g cm−3

u 3.80431331e−01 1.26732249e−01 cm sh−1

T 1.00000000e−01 3.66260705e−01 keV

Er 1.37201720e−06 2.46899872e−04 Jk cm−3

5 Numerical Results

In the following examples, we take the unit for length is cm, the unit for time is ns, the
unit for temperature is keV and the unit for the energy is GJ . With these units, the light
speed c = 29.89cm/ns, the radiation constant a = 0.001372GJ/(cm3 ∗ keV 4). And we
take θ = 0 for the Eulerian simulation. Based on the above units, we can take ε = 1 inthe
simulation. For the angle direction, the S4 is used for the DOMmethod. The maximum error
for the whole nonlinear iteration is 10−6, for the macro auxiliary equations is 10−8, and for
the radiation transfer equation is 10−7. The maximum iteration number is 15 for the whole
nonlinear iteration, 50 for the macro auxiliary equations, and 20 for the radiation transfer
equation. Furthermore, all examples are tested on the ThinkPad X250 notebook with Inter
Core i7-5600U, 8GB RAM.

Example 1 (Radiative shock) The newly developed multiscale method will be tested in two
radiative shock cases, which are presented in [17,18]. For both shocks, the parameters are the
monatomic gas γ = 5/3, the specific heat cv = 0.14472799784454 J KkeV−1g−1(1J K =
109 J ), the total absorption coefficient σt = 577.35cm−1, and the scattering coefficient
σs = 0. The specifications of the conditions in the far-stream pre and post-shock regions are
provided in Tables 1 and 2 forMach 1.2 andMach 3 shocks, respectively. The initial condition
for the calculation is that on the left half of the spatial domain the pre-shock condition is
adopted and on the right half of the domain the post-shock state is used. The CFL number is
0.6 and two meshes with 500 and 1000 cells are used in each calculation. The steady state
solutions for both cases are obtained. For the strong shock, the material temperature reaches
its maximum at the post-shock state, this point is called the Zel’dovich spike.

Case 1. (Mach 1.2 shock) For the weak radiative shock at Mach 1.2, the numerical
results are shown in Fig. 1. There is a hydrodynamic shock, but no visible Zel’dovich spike
[18]. In the numerical solution, we observe a discontinuity in the fluid temperature due to
the hydrodynamic shock, and the maximum temperature is bounded by the far-downstream
temperature. This matches with the results in [17,18]. The total computational time is 61
min, and there are 5000 computational steps.

Case 2. (Mach 3 shock) For the strong radiative shock at Mach 3, the numerical results
are shown Fig. 2. Both hydrodynamic shock and Zel’dovich spike appear. Discontinuities in
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Fig. 1 Case 1 of example 1: numerical results for Mach 1.2 radiative shock

both fluid density and temperature are observed in the hydrodynamic shock. The Zel’dovich
spike emerges at the shock front with enhanced fluid temperature, and leads to a relaxation
region downstream where the fluid temperature and radiation temperature get to equilibrate.
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Fig. 2 Case 2 of example 1: numerical results for Mach 3 radiative shock

There is in good agreement with the results in [17,18]. The total computational time is 237
min, there are total 104 computational steps.

Example 2 (Interaction between a shock and a bubble) This is about aMach 3 shock, the same
as the case 2 in Example 1, interactingwith a denser bubble. Initially, there is a circular bubble
of radius R = 0.2 with its center located at (−0.008,0.01) in the computational domain
[−0.02.0.4] × [0, 0.02]. The bubble is 25 times denser than the surrounding gas, and the
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Fig. 3 Computed results at time t = 1.4ns of example 2. The left figures a, c, e the temperature, density,
and velocity of the purely Euler gas dynamic solution, while the right figures b, d, f the numerical results for
radiation hydrodynamics. The g is the computed radiation temperature
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Fig. 4 Computed material and
radiation temperatures at line
y = 0.01 and time t = 1.4ns in
Example 2
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Fig. 5 Comparing material
temperatures with the diffusion
limit solution at time t = 74ns
for Example 3
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opacity parameter in the bubble is 100 times of that in the ambient gas. The shock is introduced
at x = −0.012 with the same initial pre- and post-shock states for (ρ, T , Tr , u) as given in
Table 2, and the initial value for v is zero. The upper and lower boundary conditions are zero
gradients for the flowvariables and reflective for the radiation intensity. The radiation constant
aR and the light speed are the same as given in the first two examples. The computation is
performed with 150 × 50 cells. The output time is t = 1.4ns. As a comparison, we also
give the numerical solution of the Euler equations at the same output time. As shown in
the Fig. 3, the phenomena of Zel’dovich spike appears at the shock front by comparing the
material temperature with the radiation temperature at line y = 0.01 in Fig. 4. The total
computational time for the radiation hydrodynamics is 208 min, where the hydrodynamic
part takes 5min only.

Example 3 (Marshak Wave-2B) In order to test the capacity of the current scheme to capture
the radiative equilibrium diffusion solution in the optical thick limit, we set zero fluid velocity
and keep the energy exchange between the material and radiation. The opacity coefficient
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of the material is σ = 100
T 3 cm2/g with constant specific heat 0.1 GJ/g/keV and density 3.0

g/cm3. The initial material temperature T is set to be 10−6 keV. The computational domain
is a two-dimensional slab [0, 1] × [0, 0.01]. A constant isotropic incident radiation intensity
with a Planckian distribution at 1 keV is kept on the left boundary, and an initial constant
value is set at the right boundary. In Fig. 5, the result of material temperature is comparedwith
the the diffusion limiting solution at time 74 ns. Reasonable agreement has been obtained.

6 Conclusion

In this paper, a multiscale method for radiation hydrodynamics is developed by coupling
gas dynamic movement and radiative transfer. More specifically, the scheme simulates the
radiation transport through a gas dynamic system with momentum and energy exchange. For
the hydrodynamic part, theGKS is used to solve the compressible flowequations,while for the
radiative transfer part, the multiscale UGKS is adopted. Since both GKS and UGKS are finite
volume methods, all unknowns are defined inside each cell and consistent discretizations for
the hydrodynamics and radiative transfer can be constructed. Due to the multiscale nature of
UGKS, the final scheme has the asymptotic preserving property for the whole system. For
example, the coupled scheme can recover the equilibrium diffusion limit for the radiation
transport in the optically thick gas region, and has no requirement for the cell size being less
than photon’s mean free path. Theoretically, accurate solution can be obtained in different
optical thickness regimes. The standard radiation shock wave problems and the interaction
between the shock and dense bubble have been tested to validate the proposed method. The
Marshak wave problem is simulated to test the asymptotic preserving property of the scheme.
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