Chapter 1. Logic

To reason correctly, we have to follow some rules. These rules of reasoning are what we called logic. We will
only need a few of these rules, mainly to deal with taking opposite of statements and to handle conditional statements.

We will use the symbol ~ (or —) to denote the word “not”. Also, we will use the symbol V to denote “for all”,

“for any”, “for every”. Similarly, the symbol 3 will denote “there is (at least one)”, “there exists”, “there are (some)”
and usually followed by “such that”. The symbols V¥ and 3 are called quantifiers.

Negation. Below we will look at rules of negation (i.e. taking opposite). They are needed when we do indirect
proofs (or proofs by contradiction). For any expression p, we have ~ (~ p) = p.
Examples. (1) ) ,-is f—is
expression: x>0 and x <1
opposite expression: x <0 or x > 1

rule: ~ (p and g) = (~ p) or (~ q)

@ expression: x <0 or x > 1
opposite expression: x>0 and x <1
rule: ~ (p or g) = (~ p)and (~ q)

3) statement :  Forevery x > 0, x has a square root. (True)
quantified statement : Vx>0 (x has a square root).
opposite statement :  There exists x > 0 such that x does not have a square root. (False)
quantified opposite statement : Ix >0 ~ (x has a square root).
) statement :  For every x > 0, there is y > 0 such that y? = x. (True)
quantified statement : Vx >0, dy > 0 (y? = x).

opposite statement :  There exists x > 0 such that for every y > 0, y? # x. (False)

quantified opposite statement : dx > 0, Vy >0 ~ (y? = x).

From examples (3) and (4), we sce that the rule for negating statements with quantifiers is first swirch every
Y to 3 and every 3 1o VY, then negate the remaining part of the statement.

If-then Statements. If-then statements occur frequently in mathematics. We will need to know some equivalent
ways of expressing an if-then statement to do proofs. The statement “if p, then g™ may also be stated as “p implies g,
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“p only if g, “p is sufficient for ¢, “g is necessary for p” and is commonly denoted by “p —> ¢”. For example,
the statement “if x = 3 and y = 4, then x? + y? = 25” may also be stated as “x = 3 and y = 4 are sufficient for
x>+ 2 =257 or “x* + y? = 25 is necessary for x = 3and y = 4”.

Example. (5) statement :  If x > 0, then |x| = x. (True)
opposite statement : x >0 and |x]| # x. (False)
rule: ~(p = ¢g)= p and (~¢q)
Remark. Note
p = qg =~ (~(p = q)
=~ (p and (~q))
=(~p)or ~(~q)
=(~p) org.
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For the statement “if p, then g” (p = ¢q), there are two related statements: the converse of the statement is “if
g, then p” (9 = p) and the contrapositive of the statement is “if (~ g), then (~ p)’ (~ g = ~ p).

Examples. (6) statement : If x = —3, then x> = 9. (True)
converse : If x2 =9, then x = —3. (False, as x may be 3.)
contrapositive :  If x? # 9, then x # —3. (True)

@) statement :  x = -3 — 2x = —6 (True)
converse :  2x = —6 = x = =3 (True)
contrapositive :  2x # —6 — x # —3 (True)

®) statement :  If [x| = 3, then x = —3. (False, as x may be 3.)
converse : If x = —3, then |x| = 3. (True)

contrapositive :  If x # —3, then |x| # 3. (False, as x may be 3.)

Remarks. Examples (6) and (7) showed that the converse of an if-then statement is not the same as the statement
nor the opposite of the statement in general. Examples (6), (7) and (8) showed that an if-then statement and its
contrapositive are either both true or both false. In fact, this is always the case because by the remark on the last page,

(~q) = (~p) =~(~q) or (~p)
= q or (~p)
= (~p)org
= p=49q.

So an if-then statement and its contrapositive statement are equivalent.

Finally, we introduce the terminology “p if and only if ¢” to mean “if p, then ¢ and “if ¢, then p”. The statement
“p if and only if ¢ is the same as “p is necessary and sufficient for ¢”. We abbreviate “p if and only if g” by “p <=
g”.So p &< g means p =—> g andg —> p”. The phrase “if and only if”’ is often abbreviated as “iff”’.

Caution! Note YoV = VAVa and do3B = FB3x, but VoIS # IBVa. For example, “cvery student is assigned a
number” is the same as “V student, 3 number such that the student is assigned the number.” This statement implies
different students may be assigned possibly different numbers. However, if we switch the order of the quantifiers, the
statement becomes “I number such that V student, the student is assigned the number.” This statement implies there
is a number and every student is assigned that same number!



Chapter 2. Sets

To read and write mathematical expressions accurately and concisely, we will introduce the language of sets. A
set is a collection of “objects” (usually numbers, ordered pairs, functions, etc.) If object x is in a set S, then we say x is
an element (or a member) of S and write x € S. If x is not an element of S, then we write x ¢ S. A set having finitely
many elements is called a finite set, otherwise it is called an infinite set. The empty set is the set having no objects and
is denoted by #.

A set may be shown by listing its elements enclosed in braces (eg. {1, 2, 3} is a set containing the objects 1, 2, 3, the
positive integer N = {1,2,3, ...}, theinteger Z = {..., -2, —1,0, 1,2, ...}, the empty set # = {}) or by description
enclosed in braces (eg. the rational numbers Q = {% : m € Z, n € N}, the real numbers R = {x : x is a real number}
and the complex numbers C = {x + iy : x, y € R}.) In describing sets, the usual convention is to put the form of the
objects on the left side of the colon and to state the conditions on the objects on the right side of the colon. The set
will consist of all elements satisifying all the conditions. It is also common to use a vertical bar in place of colon in set
descriptions.

Examples. (i) The closed interval with endpointsa, bis[a,b] ={x: x € R and a < x < b}.
(ii) The set of square numbers is {1, 4,9, 16,25, ...} = {n? : n € N}.

(iii) The set of all positive real numbersis R™ = {x : x € R and x > 0}. (If we want to emphasize this is a subset
of R, we may stress x is real in the form of the objects and write R = {x e R : x > 0}. If numbers are always
taken to mean real numbers, then we may write simply Rt = {x : x > 0}.)

(iv) The set of points (or ordered pairs) on the line £,, with equation y = mx is {(x, mx) : x € R}.

For sets A, B, we say A is a subset of B (or B contains A) iff every element of A is also an element of B. In
that case, we write A C B. (For the case of the empty set, we have ¥ C § for every set S.) Two sets A and B are
equal if and only if they have the same elements (i.e. A = Bmeans A C Band B C A.) So A = B if and only if
(xeA < xeB).IfAC Band A # B, then we say A is a proper subset of B and write A C B. (For example,

if A=1{1,2},B=1{1,2,3},C ={1,1,2,3}, then A C B is true, but B C C is false. In fact, B = C. Repeated
elements are counted only one time so that C has 3 elements, not 4 clements.)

For a set S, we can collect all its subsets. This is called the power set of S and is denoted by P(S) or 25. For
examples, P(¥) = {4}, P({0}) = {4, {0}} and P({0, 1}) = {@, {0}, {1}, {0, 1}}. For a sct with n clements, its power
set will have 2" element. This is the reason for the alternative notation 25 for the power set of S. Power set is one
operation of a set. There are a few other common operations of sets.

Definitions. Forsets A, A>, ..., A,,
(1) their unionis Ay U A, U---UA, ={x:x€Ajorx e Aror --- orx € A,},
(i1) their intersectionis Ay N A, N---NA, ={x:xe€Ayandx € Ayand --- andx € A,},

(iii) their Cartesian product is

Al XAy X - X A, ={(x1,%x2,...,x4):x1 € Ajand x, € Ayand --- and x,, € A,,},

(iv) the complementof Ay in Ajis Aj\ A, ={x:x € Ajand x & A,}.

Examples. (i) {1,2,3} U {3,4} ={1,2,3,4}, {1,2,3}1N{2,3,4} ={2,3}, {1,2,3}\{2,3,4}={1}.
(i) [—-2,4]NN={1,2,3,4}, [0,2]U[1,5]U[4,6]=0,6].

(i) ([0,71NZ)\{n® :n e N} =1{0,1,2,3,4,5,6,7}\ {1,4,9,16,25,...} = {0,2,3,5,6,7}.

V) RxRxR={(x,y,2):x,y,z€ R}, Q x R\ Q) = {(a, b) : a is rational and b is irrational}.
Remarks. (i) For the case of the empty set, we have

AUB=A=0UA, ANG=0=0NA, AxP=0=0xA, A\¥=A and ¥\ A = 0.
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(ii) The notions of union, intersection and Cartesian product may be extended to infinitely many sets similarly. The
union is the set of objects in at least one of the sets. The intersection is the set of objects in every one of the sets.
The Cartesian product is the set of ordered tuples such that the i-th coordinate must belong to the i-th set.

(ii1) The set A} U A, U--- U A, may be written as U Ay. If for every positive integer k, there is a set Ay, then the
k=1
notation A} U A, U A3 U --- may be abbreviated as U A or U Ay If for every x € S, there is a set A,, then
k=1 keN

the union of all the sets A,’s for all x € S is denoted by U A,. Similar abbreviations exist for intersection and

. xes
Cartesian product.

Examples. (i) ([1,2]U[2,3]1U[3,4]U[4,5]U--)NZ =[1, +00) NZ = N.

(i) ﬂ[0,1+%) :[0,2)0[(),1%)0[0,1%)0[0,1%)ﬂ»«»:[(),l].

ne

(iii) Forevery k € N, let Ay = {0, 1}, then

Al X Ay x A3 x ---={(x1,x2,x3,...): eachx,isOQorlfork=1,2,3,...}.

(iv) Foreachm € R, let£,, be the line with equation y = mx on the plane, then U ¢, = R? V{0, y): yeR,y #0}
meR
and () €n = {(0,0)}.
I)IER

(v) Showthatif AC BandC C D, then ANC C BND.

Reason. Foreveryx € ANC,wehavex € Aandx € C.Since AC BandC C D, wehavex € Bandx € D,
which imply x € B N D. Thus, we see that every elementin A N C is also in B N D. Therefore, ANC € BN D.

(vi) Show that (AU B)\ C = (A\ C) U (B \ C).

Reason. Forevery x € (AUB)\C, wehavex € AUBandx ¢ C. Socither x € A orx € B. In the former case,
x € A\ Corinthelatter case,x € B\ C.Sox € (A\C)U(B\C).Hence, (AUB)\C C(A\CYU(B\C).

Conversely, forevery x € (AN C)U (B \ C), eitherx € A\ Corx € B\ C. In the former case, x € A
and x ¢ C or in the latter case, x € Bandx ¢ C.Inboth cases,x e AUBandx € C.Sox € (AUB)\C.
Hence, (A\ C) U (B\ C) C (AU B)\ C. Combining with the conclusion of the last paragraph, we have
(AUB)\C=(A\C)U(B\C).

We shall say that sets are disjoint iff their intersection is the empty set. Also, we say they are mutually disjoint iff
the intersection of every pair of them is the empty set. A relation on a set E is any subset of £ x E. The following is
an important concept that is needed in almost all branches of mathematics. It is a tool to divide (or partition) the set of
objects we like to study into mutually disjoint subsets.

Definition. An equivalence relation R on a set E is a subset R of E x E such that

(a) (reflexive property) forevery x € E, (x,x) € R,
(b) (symmetric property)if (x,y) € R, then (v, x) € R,
(c) (transitive property) if (x, y), (v,z) € R, then (x,2) € R.

We write x ~ y if (x,y) € R. Foreach x € E, let [x] = {y : x ~ y}. This is called the equivalence class

containing x. Note that every x € [x] by (a) so that U[x] = E.If x ~ y, then [x] = [y] because by (b) and (c),
xeE

7€[x] €= z~x & z~y < z€[y].Ifx +# y, then [x] N[y] = ¥ because assuming z € [x] N [y] will

lead to x ~ z and 7 ~ y, which imply x ~ y, a contradiction. So every pair of equivalence classes are either the same

or disjoint. Therefore, R partitions the set E into mutually disjoint equivalence classes.
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Examples. (1) (Geometry) For triangles T; and 75, define Ty ~ T if and only if T} is similar to 75. This is an
equivalence relation on the set of all triangles as the three properties above are satisfied. For a triangle T, [T'] is the set
of all triangles similar to 7.

(2) (Arithmetic) For integers m and n, define m ~ n if and only if m — n is even. Again, properties (a), (b), (¢) can
easily be verified. So this is also an equivalence relation on Z. There are exactly two equivalence classes, namely
01={...,—4,-2,0,2,4,...}(evenintegers)and [1] = {..., =5, -3, —1,1,3,5, ...} (odd integers). Two integers
in the same equivalence class is said to be of the same parity.

(3) Some people think that properties (b) and (c) imply property (a) by using (b), then letting z = x in (¢) to conclude
(x, x) € R. This is false as shown by the counterexample that £ = {0, 1} and R = {(1, 1)}, which satisfies propertics
(b) and (c), but not property (a). R fails property (a) because O € E, but (0, 0) € R as O is not in any ordered pair in R.

A function (or map or mapping) f from a set A to a set B (denoted by f : A — B)is a method of assigning to
every a € A exactly one b € B. This b is denoted by f(a) and is called the value of f at a. Thus, a function must be
well-defined in the sense that if a = 4, then f(a) = f(a’). The set A is called the domain of f (denoted by dom f)
and the set B is called the codomain of f (denoted by codom f). We say f is a B-valued function (eg. if B = R, then
we say f is areal-valued function.) When the codomain B is not emphasized, then we may simply say f is a function
on A. The image or range of f (denoted by f(A) orim f orran f)istheset {f(x): x € A}. (To emphasize this is a
subset of B, we also write itas {f(x) € B:x € A}.) Theset G = {(x, f(x)) : x € A} is called the graph of f. Two
functions are equal if and only if they have the same graphs. In particular, the domains of equal functions are the same
set.

Examples. The function f : Z — R given by f(x) = x? has dom f = Z, codom f = R. Also, ran f =
{0,1,4,9,16, ...}. This is different from the function g : R — R given by g(x) = x> because dom ¢ = R # dom f.
Also, a function may have more than one parts in its definition, eg. the absolute value function / : R — R defined by

hix) = {)ix :ii i ?) . Be careful in defining functions. The following is bad: let x, = (—1)" and i(x,) = n. The
rule is not well-defined because x; = —1 = x3, buti(x;) = 1 # 3 = i(x3).

Definitions. (i) The identity functionon aset Sis Is: S — S givenby Ig(x) = x forall x € S.

(iiy Let f : A — B,g : B" — C be functions and f(A) € B’. The composition of g by f is the function
gof:A— Cdefinedby (go f)(x) =g(f(x)) forallx € A.

(iii) Let f : A — Bbeafunctionand C C A. The function f|¢c : C — B defined by f|c(x) = f(x)foreveryx € C
is called the restriction of f to C.

(iv) A function f : A — B is surjective (or onto) iff f(A) = B.
(v) A function f : A — B is injective (or one-to-one) iff f(x) = f(y) implies x = y.
(vi) A function f : A — B is a bijection (or a one-to-one correspondence) iff it is injective and surjective.

(vii) For an injective function f : A — B, the inverse function of f is the function f~! : f(A) — A defined by
) =x & fx)=y.

Remarks. A function f : A — B is surjective means f(A) = B, which is the same as saying every b € B is an f(a)
for at least one a € A. In this sense, the values of f do not omit anything in B. We will loosely say f does not omit
any element of B for convenience. However, there may possibly be more than one a € A that are assigned the same
b € B. Hence, the range of f may repeat some c¢lements of B. If A and B are finite sets, then f surjective implies the
number of elements in A is greater than or equal to the number of elements in B.

Next, a function f : A — B is injective means, in the contrapositive sense, that x # y implies f(x) #Z f(v),
which we may loosely say f does not repeat any element of B. However, f may omit elements of B as there may
possibly be elements in B that are not in the range of f. So if A and B are finite sets, then f injective implies the
number of elements in A is less than or equal to the number of elements in B.

Therefore, a bijection from A to B is a function whose values do not omit nor repeat any element of B. If A and
B are finite sets, then f bijective implies the number of elements in A and B are the same.
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Remarks (Exercises). (a) Let f : A — B be a function. We have f is a bijection if and only if there is a function
g:B — Asuchthatgo f = I4 and f o g = Iy. (In fact, for f bijective, we have g = f ' is bijective.)

®MIff:A— Bandh: B — C are bijections, thenk o f : A — C is a bijection.

(c)Let A, Bbesubsetsof Rand f : A — B be a function. If for every b € B, the horizontal line y = b intersects the
graph of f exactly once, then f is a bijection.

Example. Show that £ : [0, 1] — [3, 4] defined by f(x) = x> + 3 is a bijection.

Method 1 If f(x) = f(y), then x> + 3 = ¥ + 3, which implies x> = y*. Taking cube roots of both sides, we get
x = v. Hence f is injective. Next, for every y € [3, 4], solving the equation x> +3 = v for x, we get x = /v — 3.
Since y € [3,4] implies y — 3 € [0, 1], we see x € [0, 1]. Then f(x) = y. Hence f is surjective. Therefore, [ is
bijective.

Method 2. Define g : [3, 4] — [0, 1]by g(y) = I/y — 3.Foreveryx € [0, 1]Jand y € [3,4], (go f)(x) = g(x*+3) =
J3+3)y =3 =xand (fog)(y) = f(Iy =3) = (Jy — 3)> + 3 = y. By remark (a) above, f is a bijection.

To deal with the number of elements in a set, we introduce the following concept. For sets S and S;, we will
define S; ~ S and say they have the same cardinality (or the same cardinal number) if and only if there exists a
bijection from S; to S,. This is easily checked to be an equivalence relation on the collection of all sets. For a set
S, the equivalence class [S] is often called the cardinal number of S and is denoted by card S or |S|. This is a way
to assign a symbol for the number of elements in a set. It is common to denote card ¥ = 0, , for a positive integer
n, card{1,2,...,n} = n, card N = Ry (read aleph-naughr) and card R = c¢ (often called the cardinality of the
continuum).



Chapter 3. Countability

Often we compare two sets to see if they are different. In case both are infinite sets, then the concept of countable
sets may help to distinguish these infinite sets.

Definitions. A sect S is countably infinite iff there exists a bijection f : N — § (i.e. N and S have the same cardinal
number Rg.) A set is countable iff it is a finite or countably infinite set. A set is uncountable iff it is not countable.

Remarks. Suppose f:N — S is a bijection. Then f is injective means (1), f(2), f(3), ... are all distinct and f
is surjective means { (1), f(2), f(3),...} = S.Son € N « f(n) € S is a one-to-one correspondence between N
and S. Therefore, the elements of S can be listed in an “orderly” way (as f(1), f(2), £(3),...) without repetition or
omission. Conversely, if the elements of S can be listed as s, 2, . . . without repetition or omission, then f : N — §
defined by f(n) = s, will be a bijection as no repetition implies injectivity and no omission implies surjectivity.

Bijection Theorem. Let g: S — T be a bijection. S is countable if and only if T is countable.

(Reasons. The finite set case is clear. For infinite sets, it is true because S countable implies there is a bijective function
f N — §, whichimpliesh = go f : N — T is bijective, i.e. T is countable. For the converse, /4 is bijective implies
f = g~ ' o his bijective.)

Remarks. Similarly, taking contrapositive, S is uncountable if and only if T is uncountable.

Basic Examples. (1) N is countably infinite (because the identity function /nj(n) = n is a bijection).
(2) 7Z is countably infinite because the following function is a bijection (one-to-one correspondence):

N = {1, 2 3 4 5 6 1, 8, 09, }
rd I I e R
Z = {0 1, -1, 2, =2, 3, =3, 4, -4, }

z if n 1s even

The function f : N — Zis given by f(n) = 2 neln e s and its inverse function g : Z — N is given
& Y —(%=) ifmnisodd
2

2m ifm >0
by g(m) = { 1—2m ifm<0
(3) N x N = {(m, n): m, n € N} is countably infinite. an  a,2y 1,3 0,49
(Diagonal Counting Scheme) Using the diagram on the right, de-
fine f:N—->NxNby f(D)=(1D1, fQ =21, fG =12, @01 22 (23
@ =@G D, f5) = (2,2), f(6) = (1,3), ..., then f is injective
because no ordered pair is repeated. Also, f is surjective because

mtn—2 B B
(m,n>=f<2 k+n)=f(<m+” 2>2<m+n 1>+n)'
k=0

Justcheck go f = Iyjand fog = Iy.

3. (3,2

“. 1

(4) The open interval (0, 1) = {x: x € R and 0 < x < 1} is uncountable. Also, R is uncountable.

() = O.ananansas... Suppose (0, 1) is countably infinite and f:N — (0, 1) is a bijection as
f(2) = O.anananay... shown on the left. Consider the number x whose decimal representation is
fQ) = Oayanazas. .. 0.b1hsbsbs . . ., where b, = {f ii Z ; } Then 0 < x < 1 and x # f(n)

f@&) = 0.a4100043044 . ..
. for all n because b, # a,,. So f cannot be surjective, a contradiction. Next R
is uncountable because tan 7 (x — %) provides a bijection from (0, 1) onto R.

To determine the countability of more complicated sets, we will need the theorems below.
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Countable Subset Theorem. Let A C B. If B is countable, then A is countable. (Taking contrapositive, if A is
uncountable, then B is uncountable.)

Countable Union Theorem. If A, is countable for everyn € N, then U Ay is countable. In general, if S is countable
neN
(say f : N — S is a bijection) and A, is countable for every s € S, then U As = U Ay is countable. (Briefly,
ses neN
countable union of countable sets is countable. )
Product Theorem. If A, B are countable, then Ax B = {(a,b): a € A,b € B}iscountable. Infact,if A, As, ..., A,
are countable, then Ay X Ay X --- X A, is countable (by mathematical induction).

(Sketch of Reasons. For the countable subset theorem, if B is countable, then we can list the elements of B and to
count the elements of A, we can skip over those elements of B that are not in A. For the countable union theorem, if
we list the elements of A; in the first row, the elements of A, in the second row, . . ., then we can count all the elements
by using the diagonal counting scheme. As for the product theorem, we can imitate the example of N x N and also
use the diagonal counting scheme.)

Examples. (5)Q = Oljl S, where S, = {ﬂ tme Z}.Foreveryn € N, the function f, : Z — S, givenby f,(m) = m
n= n n
1s a bijection (with f,~ 1 %) = m), so S, is countable by the bijection theorem. Therefore, QQ is countable by the

countable union theorem. (Then subsets of Q like Z \ {0}, NU {0}, Q N (0, 1) are also countable.)

(6) R\ Q is uncountable. (In fact, if A is uncountable and B is countable, then A \ B is uncountable as A \ B
countable implies (A N B) U (A \ B) = A countable by the countable union theorem, which is a contradiction).

() C={x+iy:x,y € R} contains R and R is uncountable, so by the countable subset theorem, C is uncountable.

(8) Show thattheset A = {r/m : m € N, r € (0, 1)} is uncountable, butthe set B = {r/m : m e N,r € QN (0, 1)}

is countable.

Solution. Taking m = 1, we see that (0, 1) C A. Since (0, 1) is uncountable, A is uncountable. Next we will

observe that B = U B, where By, = {r/m :r € QN O, 1)} = U {ro/m} for each m € N. Since
meN re(@ﬂ(o,l)

QnN (0, 1) is countable and {r/m} has 1 element for every r € QN (0, 1), B,, is countable by the countable union

theorem. Finally, since N is countable and B, is countable for every m € N, B is countable by the countable

union theorem.

(9) Show that the set L of all lines with equation y = mx + b, where m, b € QQ, is countable.

Solution. Note that for each pair m, b of rational numbers, there is a unique line y = mx + b in the set L. So the
function f : Q x Q — L defined by letting f(m, b) be the line y = mx + b (with ! sending the line back to
(m, b)) is a bijection. Since Q x Q is countable by the product theorem, so the set L is countable by the bijection
theorem.

(10) Show thatif A, = {0, 1} foreveryn € N, then A; x Ay x A3 X ---is uncountable. (In particular, this shows that
the product theorem is not true for infintely many countable sets.)

Solution. Assume A; X Ay x A3 X --- = {(ay,a2,a3,...) : eacha; = Oor 1} is countable and f : N —
Ay X Ay x Az x ---is a bijection. Following example (4), we can change the n-th coordinate of f(n) (from O to
1 or from 1 to 0) to produce an element of A} X Ay x A3 x --- not equal to any f(n), which is a contradiction.
So it must be uncountable.

(11) Show that the power set P(N) of all subsets of N is uncountable.
Solution. As in example (10), let A, = {0, 1} for every n € N. Define g : P(N) - A; Xx Ay X A3 X --- by
1 ifmeS
g(S) = (a1, a», a3, ...), where a,, = {O ifmg s (For example, g({1,3,5,...}) = (1,0,1,0,1,...).) Note
g has the inverse function g‘l ((al, az,as, .. .)) = {m : a,, = 1}. Hence g is a bijection. Since A; x Ay Xx A3 X - -~
is uncountable, so P(IN) is uncountable by the bijection theorem.

10



(12) Show that the set S of all nonconstant polynomials with integer coefficients is countable.

Solution. For n € N, the set of S, of all polynomials of degree n with integer coefficients is countable because
the function f : S, — (Z\{0}) X Z x --- x Z defined by f(@,x" + dn_ix" '+ -+ +ag) = (@u, du_i, ..., ap)
is a bijection and (Z \ {0}) x Z x --- x Z is countable by the product theorem. So, § = U S, is countable by
neN
the countable union theorem.
(13) Show that there exists a real number, which is not a root of any nonconstant polynomial with integer coefficients,

Solution. For every nonconstant polynomial f with integer coefficients, let Ry denotes the set of roots of f. Then
R; has at most (deg f) elements, hence R, is countable. Let S be the set of all nonconstant polynomials with
integer coefficients, which is countable by the last example. Then U Ry is the set of all roots of nonconstant
fes
polynomials with integer coefficients. It is countable by the countable union theorem. Since R is uncountable,
R\ U R/ is uncountable by the fact in example (6). So there exist uncountably many real numbers, which are
fes
not roots of any nonconstant polynomial with integer coefficients.

Remarks. Any number which is a root of a nonconstant polynomial with integer coefficients is called an algebraic
number. A number which is not a root of any nonconstant polynomial with integer coefficients is called a transcendental
number. transcendental numbers? If so, are there finitely many or countably many such numbers? Since every rational
number % is the root of the polynomial bx — a, every rational number is algebraic. There are irrational numbers like
++/2, which are algebraic because they are the roots of x2 — 2. Using the identity cos 30 = 4 cos®# — 3cos0, the
irrational number cos 20° is easily seen to be algebraic as it is a root of 8x> — 6x — 1. Example (13) showed that there
are only countably many algebraic numbers and there are uncountably many transcendental real numbers. In a number
theory course, it will be shown that 7 and e are transcendental.

Theorem.

(1) (Injection Theorem) Let f : A — B be injective. If B is countable, then A is countable. (Tuking contrapositive,
if A is uncountable, then B is uncountable.)

(2) (Surjection Theorem) Let g : A — B be surjective. If A is countable, then B is countable. (Taking contrapositive,
if B is uncountable, then A is uncountable.)

(Reasons. For the first statement, observe that the function 7 : A — f(A) defined by A(x) = f(x) is injective
(because f is injective) and surjective (because A(A) = f(A)). So h is a bijection. If B is countable, then f(A) is
countable by the countable subset theorem, which implies A is countable by the bijection theorem.

For the second statement, observe that B = g(A) = U{g(x)}. If A is countable, then it is a countable union of

X€EA
countable sets. By the countable union theorem, B is countable.)

Examples. (14) Show Q is countable by using the injection theorem,

Solution. Define f : Q — Z x Nby f(x) = (m, n), where m/n is the reduced fraction form of x. Then f is
injective because f(x) = f(x') = (m, n) implies x = m/n = x’. Since Z x N is countable by product theorem,
so Q is countable by the injection theorem.

(15) Let A; be uncountable and A», ..., A, be nonempty sets. Show that Ay x Ay X --- x A, is uncountable.
Solution. Define g : Ay X Ay x --- X A, = A by g(x1, X2, ..., x,) = x1. Since Ay, ..., A, are nonempty, let
a; € Ay, ...,a, € A,. Then forevery a; € A, we have g(a;, as, ..., a,) = a; so that g is surjective. Since A;

is uncountable, by the surjection theorem, Ay X Ay X --- X A, is uncountable.

The following is a famous statement in mathematics.

Continuum Hypothesis. If S is uncountable, then there exists at least one injective function f : R — S, i.e. every
uncountable set has at least as many elements as the real numbers.

In 1940, Kurt Godel showed that the opposite statement would not lead to any contradiction. In 1966, Paul Cohen
won the Fields” Medal for showing the statement also would not lead to any contradiction. So proof by contradiction
may not be applied to every statement.

11



Chapter 4. Series

Definitions. A series is the summation of a countable set of numbers in a specific order. If there are finitely many
numbers, then the series is a finite series, otherwise it is an infinite series. The numbers are called ferms. The sum of
the first # terms is called the n-th partial sum of the series.

o
An infinite series is of the form a; + a» + a3 +...or we may write it as E a.
—— —— ——

k=1
It term 2% germ 3 term

The first partial sumis §; = a;. The second partial sumis S, = a;+a,. The nth partialsumis S, = a;+ax+...+a,.

Series are used frequently in science and engineering to solve problems or approximate solutions. (E.g. trigono-
metric or logarithm tables were computed using series in the old days.)

1
1,1,1,1 _ _ 1,1 1 1 1,1,1,1 T _
Examples.(1) 1434+ +3+7c+... =2(S, = 14+5+5+.. 45 =2—5, 1+5+3+5+7+... = ,11Lrgo(2—§) 2.)
We say the series converges to 2, which is called the sum of the series.
Q) 1+1+1+1+1+14+...=00(S,=1+1+...+1=n, lim S, = 00.) We say the series diverges (to c0).
A — 01— 00

n

1 ¥fn %S odd , lim S, doesn’t exist.) We say the series diverges.
0 ifniseven n—ooo

3) 1—1+1—1+1—1+1—1+....(Sn:{

oc
Definitions. A series Z ap = ay+az+asz+. .. convergesto anumber S iff lim (a; +a;+...4+4a,) = lim S, = S.

11— 00 n—00
k=1

o0

In that case, we may write Z ar = S and say S is the sum of the series. A series diverges to oo iff the partial sum S,
k=1
tends to infinity as # tends to infinity. A series diverges iff it does not converge to any number.

Remarks. (1) For every series Z ay, there is a sequence (of partial sums) {S,}. Conversely, if the partial sum sequence
k=1

{S,} is given, we can find the terms a, as follows: a; = S1, a0 = S — 81, ..., ax = Sy — Sy_1 for k > 1. Then

a1 +...+a, =54+ —S)+. ..+ (S — Si-1) = S,i- So {S,} is the partial sum sequence of Z ay. Conceptually,

k=1
series and sequences are equivalent. So to study series, we can use facts about sequences.

o0 o0
(2) Let N be a positive integer. Z ay converges to A if and only if Z ap convergesto B =A — (a; +--- + an-1)

k=1 k=N
because

B = lim(aN+"'+an):nli)ngo(al+a2+"'+an)_(a1+"'+aN71):A_(al'i‘""i‘aNfl)-

n—oo

So to see if a series converges, we may ignore finitely many terms.

[ee] (e e]
Theorem. If Z ay converges to A and Z by converges to B, then
k=1 k=1

SNa+b)=A+B=Y a+Y b, Y (@—-b)=A-B=) ax—» b, Y cax=cA=c)y a
k=1 k=1 k=1 k=1 k=1 k=1 k=1

for any constant c.
For simple series such as geometric or telescoping series, we can find their sums.

12



Theorem (Geometric Series Test). We have

0 1— rn+1 1 .
Zrk:1im(1+r+r2+._.+r"):1im1—: T iflrl <1
k=0 e rmee AT doesn’texist otherwise
E le. 0.999 o + — 0 + o + - 9( ) 1=1.000-... So, this sh that th ber 1
xample. 0.999... = — =1= o, this shows that the number
P 10 T 100 T 1000 T

has two decimal representations!

Theorem (Telescoping Series Test). We have Z(bk — bg1) = lim (b1 — by) + (b2 — b3) + -+ + (by — bur1))
=1 n—c0
= lim (b1 — b,y1) = b1 — lim b, converges if and only if lim b, is a number.

=N .1 1, 11 1
Examples. (1 ———:1—— S P e I R =1
xamp ()kzk(k+1> Zk T =) +G-9+G -+ Jim ———
@) Y GV = 5VEDy = (5 - 5y + (V5 - V5 4 =5 — lim SUGED — 5 50 _ 4.
— 00

If a series is not geometric or telescoping, we can only determine if it converges or diverges. This can be done
most of the time by applying some standard tests. If the series converges, it may be extremely difficult to find the sum!

Theorem (Term Test). If Zak converges, then klim a, = 0. (If klim ay # O, then the series Zak diverges.) If

k=1 k=1
00

lim a; = 0, the series E ay may or may not converge.
k—c0
k=1

(Reason. Suppose Z ay converges to S. Then lim S, = S and 11m ay = lim Sr—S-1)=5S-85=0)
— Q0

n—00
k=1

Term test is only good for series that are suspected to be divergent!

Examples. (1) 1+1+1+1+.... Herea, = 1 for all &, so klim a, = 1. Series diverges.
—00

g 1 1 1 1
2 =)= 1 — —4...di b li )= 0=1#£0.
2) ;cos(k) cos1 + cos > + cos 3 + 1verges because kl)rgo cos(k) Cos #*

3) Zcosk = cos1 4+ cos2 + cos3 + ... diverges because klim cosk # 0. (Otherwise, klim cosk = 0. Then
—> 00

k=1 —00
klim |sink| = k]im vV1—cos2k=1and0 = klim [cos(k + 1) = klim |coskcos1 —sinksinl| =sinl #0, a
contradiction.)

“1- % + i - é +.... Here gy = (—%)"—l for all k, so klim ar = 0. (Term test doesn’t apply!) Series converges

by the geometric series test.

1 1 1 1 1 1 1 1
o) 1+ 5+§+Z+Z+Z+ Z+§+"'+§+"" We have kl_i)rgoak = 0. (Term test doesn’t apply.) Series
2 times 4 times 8 times
diverges to 0o because S; < §; < 83 < ---and Sy _1 = n has limit co.

13



o0

For a nonnegative series Z ay (i.e. ap > Oforevery k), wehave S} < S, < 83 < ...and lim S, mustexist as a

11— 00
k=1

o0 o0 oo
number or equal to +00. So either Z ay converges to a number or Z ay diverges to +00. (In short, either Z ap =S

k=1 k=1 k=1
oc

or Z a, = +00.) For nonnegative series, we have the following tests.
k=1

Theorem (Integral Test). Let f : [1, +00) — R decrease to 0 as x — +0o0. Then Z f (k) converges if and only if
k=1

/OO fx)dx < oo. (Note in general, Z fk)y # /00 fx)dx.)
1 k=1 1

(Reason. This follows from f(2) + f3)+ ...+ f(n) +--- < /OO fxdx< f(H+fQ)+...+ fen—1+---
as shown in the figures below.) :

Fay 4

F@ ¢ ‘ ol
ro 1 Qs

L

.

Y
[

|

i

1 2 3 4 n 1 2 3 4 n
e 1
Examples. (1) Consider the convergence or divergence of .
ples. (1) g genceof ) 17
1 B ® 7 on > 1
As x 00, 14+ x2 o0, SO —— O.Now/ ——dx = arctanx| = — — — < 00. So —_
4 4 1+x2\‘ 1 4+x2 , 2 4 ;1+k2
converges.
o o0 1
2) Consider the convergence or divergence of —— and —_—.
@ vere vere ;klnk ;k(lnk)z
o X o
Asx J oo, xInx and x(Inx)? 7 oo, so their reciprocals decrease to 0. Now / 0 =In(lnx)| = 0. So
5 xlnx )
=1 . *®  dx 1% 1 > 1
Z diverges. Next ——=——] = -— <00.50 Z ————— converges.
— kink > x(Inx)? Inx|, In2 — k(Ink)?
Th test). Fi l b = o | =1 ! ! ! if and only i 1
eorem (p-test). For a real number p, {(p) = Zk_l’ =1+ Y + 3 + 4—p+...convergeszfan onlyif p > 1.

k=1

(Reason. For p < 0, the terms are at least 1, so the series diverges by term test. For p > 0, f(x) = Xl, decreases
x~PH >

|
to 0 asx — +oo. Since/ —dx =
1 xP —p+1

1 * 1

= 1i’fp>1,/ —pdx:(lnx)l‘lx’:ooifpzland
— X

. [ 1 P 1

= o if p < 1, the integral test gives the conclusion.)

—dx =
1 xP -p+1f

Remarks. For even positive integer p, the value of £(p) was computed by Euler back in 1736. He got

_? I B i1 27)¥ By,
5(2)—€, §(4)—9—O, sy £@2n)y = (1) 20!

ey

14



k+1

where By = land (k + 1)By, = — E ( + )B,,, for k > 1. The values of £(3), £(5), ... are unknown. Only in the

m
m=0

1980’s, R. Apery was able to show £(3) was irrational.

o0 oo oo
Theorem (Comparison Test). Given vy > up > O for every k. If Z v converges, then Z uy converges. If Z Uy
k=1 k=1 k=1

oc
diverges, then E vy diverges.
k=1
o0

o0 o0 o0 o0
(Reason. v, > u; > 0= Z v > Z uy > 0. If Z v; 1s a number, then Z Uy is a number. If Z Uy = +00, then

i=1 i=1 k=1 i=1 k=1
[ee]
D=

k=1

)
Theorem (Limit Comparison Test). Given uy, vy > Oforeveryk. If lim Xisa positive number L, then either (both
oo Uk

o0
Z uy and Z v converge) or (both diverge to +00). If 11m — =0, then Z uy converges = Z v converges. If
k=1 k=1 k=00 iy k=1 k=1
Vg
lim — = o0, then uy, diverges = v diverges.
(Sketch of Reason. For k large — =~ L. ForL >0,> v~ > Luy =L uy;. If one series converges, then the

other also converges. If one dlverges (to +00), so does the other. For L = 0, v, < uy eventually. For L = 00, vy > uy
eventually. So the last two statements follow from the comparison test.)

Examples. Consider the convergence or divergence of the following series:

=1 1 o 3k Jk+1 > .1
DY el z 2 @3 ()

1 >0 1 1
Solutions. (1) Since 0 < 5 cos — and Z converges by p-test, ]Z:]: 5 cos(%) converges.
(2) Since 0 < (é)k < 3 fork > 2 and Z(—)k diverges by the geometric series test i ‘ diverges
2 Sl e gesbyes Py RS
JEEL
VE+T k1 e . k1R 1
(3) When £ is large, —— Ty = an We compute kll)rglo g = kll)rglo X P15k = 1. Since Z o

— vk +1 - .
converges by p-test, Z 215k converges by the limit comparison test.
k=1

1 1 1 sin @
(4) When k is large, X is close to 0, so sin(E) is close to X because (}in})T =1 (e sinf =6 as 8 — 0).
n(%) I sin @
=1

21 > 1
lim - = 1. Since kzl: % diverges by p-test, ;Sin(z) diverges by the limit

We compute lim
k—o0 T
comparison test.

For series with alternate positive and negative terms, we have the following test.

Theorem (Alternating Series Test). If ¢, decreasestoQOask — oo (i.e. ¢c; > ¢y >c3 > ... > 0Oand klim ce =0),
— 00

[
then Z(—l)kﬂck =c —Cy+c3—c4+ 05— ... converges.

15



(Reason. Sincec; > >c3>...>0,wehave0 < 8, <8, <8 <...< 85 <8 <8,.Since lim |S, — S,—1]| =
n—oo

lim ¢, = 0, the distances between the partial sums decrease to O and so llm S, must exist.)

n—>00

)k
kink
and & 7 oo, sol/(klnk)\Oande"‘\Oandcoskn_( ).

Examples. Both Z

and Z e " cos km converge by the alternating series test because ask 7 oo, kIlnk / o0

For series with arbitrary positive or negative term, we have the following tests.

o0 o0
Theorem (Absolute Convergence Test). If Z |ak| converges, then Z ay converges.
k=1 k=1
o0

(Reason. From —|ai| < ay < |ag|, we get 0 < ag + |ag| < 2|ax|. Since Z 2|ay| converges, so by the comparison test,
k=1

Z(ak + |ax|) converges. Then Zak Z(ak + lag]) — Z |ax| converges.)

k=1 k=1 k=1

oo oo o0
Definition. We say Z ay converges absolutely iff Z |ax| converges. We say Z ay converges conditionally iff Z a
k=1 k=1 k=1 k=1

(e e]
converges, but E |ai| diverges.
k=1

Examples. Determine if the following series converge absolutely or conditionally

@ )ZCOSk (b)zcloi_k;:.

2. |cosk
Z . Since Z converges by p-test, it follows that Z 3

— k=1

cosk

converges by the

Solutions. (a) Z

o
. cosk
comparison test. So E converges absolutely by the absolute convergence test.

k3
(b) Z

k=1
1 >, coskm 1

However, —— decreases to 0 as k — +00. So by the alternating series test, = S Y

1+k y & ; 1+k ,;( iy

o0

=3t km = (=Dt /oo o
—— DECAUsSC COSKIT = (— . — =1n X
=1 ]+k i 1+x 1

coskm
1+k

1+k

C
=00 = Z — diverges.
k=1

2. coskm ..
converges. Therefore Z ] converges conditionally.
k=1

Theorem (Ratio Test). If a; # O for every k and klim |ag1/a| exists, then
—00

<l = Zak converges absolutely
1< 1

1
= = Zak may converge (e g. Z ) or diverge (e.g. Z E) .
k=1

Ag+1

k—>oo | ay kl
>1 = E ay diverges

k=1
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A1
Elk ay Ay i T A1
la| + lagc1| + laxea| + ... & |lax|(1 +7 + 7% + 73 + ...) which converges if < 1 by the geometric series test and
> gy =Y tapr” diverges if r > 1 by the term test.)

. A2 Ajtn ~ ~ n
(Sketch of reason. Letr = lim — ———| & 7, 50 |Grqn| X |a]r" and

k— o0

, then for & large,

>

Theorem (Root Test). If klim lax| exists, then

<1l = Zak converges absolutely
k=1

. k o
kll)rgo Via § = = Zak may converge (e g. Z ) or diverge (e g. Z )

kl k=1 k=1

>1 = Zak diverges
k=1

(Sketch of reason. Letr = klim ¥/|ax|, then for k large, &/Ta] ~ r. So |ax] = r*, 3 |ag| &~ Y rk)

Examples. Consider the convergence or divergence of the following series:

e 1 >\ k!
(M ;—3k — @ ;k—k

g 3 -2k -4 oo
Solutions. (1) Since klirgo T = lim T et = Jim - (%)H-l =3 < 1, by the ratio test, ]Z:l: Er—Ys
1 1 1 1
converges. Alternatively, since klim e = Im —— = lim —— = - < 1, by the root
—00

3k—2k k—o00 k3k_2k k—>oo3k1_(%)k

o
1
test, ; m converges.

k+ D! kX 1
(2) Since 11m k+1 i

1 >, k!
_ —— = — < 1, by the ratio test, E — converges.
—oo (k + 1)k+1 k! T 1+ )k e y Kk g

k=1

Remarks. You may have observed that in example (1), the limit you got for applying the root test was the same as the
limit you got for applying the ratio test. This was not an accident!

Theorem. If a; > O for all k and 11m Bherl r € R, then klim %/ay = r. (This implies that the root test can be
—00

k—o0 ak
applied to more series than the ratio test. )

k+1
Examples. (1) Let a; = &, then lim Gt _ lim % = 1. So, klim Vi=1.
—00

k—>oc0  ay k—o00
k! 1 Vet 1 : K\
(2) Letay = —, then lim Gt _ 2 as above. So lim %/g; = lim —— = —, i.e. when k is large, k! ~ (—) ,
k k—oo ay e k—o0 k—oo k e e

which is a simple version of what is called Stirling’s formula. Tt is useful for estimating n! when # is large. For

100 100
example, since log;; — 2 1.566, so — ~ 10"3%, then we get 100! ~ 10'%¢9, which has about 157 digits.
e (4

i
brv1 — by

Th S tion by P t.LtS~:E = iand Aby = —————— = by — by, th

eorem (Summation by Parts). Let S; k=]ak ar +a + +a; an " Gt —k K1 vs then

n—1

Z by = Suby — Z S Aby.
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(Reason. Note g; = Sy and ay = S — Sg—; fork > 1. So,

n

> arbe = Siby + (S2 = SOb2 + ...+ (S — S 1)y

= Snbn - Sl(bZ - bl) e T -1 (bn - bnfl)-)

2. sink
Example. Show that Z - converges.

1 1 1 1 1
Leta, = sink and by, = e Using the identity sin m sin 353 (cos(m — 5) — cos(m + 5)) , we have

1 1
cos 5 — cos(k + 5
Sy =sinl+sin2+---+sink = 2 ( 2){

-1
2sin 5

1 Sn
This implies |Sg| < W for every k. Applying summation by parts and noting that lim — = 0, we get
Sin —o0 n

©_ sink " sink s, =1 1 1 © 1 1
Sy S (85N (L)) oS (L,
o k n—> 00 = k n—oo \ n P k+1 k ’ k k+1

=1

[ee]
Now Z
k=1

sink & 1 1
absolute convergence test, E = E Sk (— - —) converges.
k=1 ko k=1 ko k-1

1 1 1 > /1 1 1
Sl - — < — Z - — = — by the telescoping series test. So by the
kK k+1 sin(1/2) &=/ \k k+1 sin(1/2)

Inserting Parentheses and Rearrangements of Series.

Definition. We say Z by is obtained from Z ay by inserting parentheses iff there is a strictly increasing function
k=1 k=1

p : NU{0} — NU{0} suchthat p(0) = 0, by = a1+ - -Fapay, b2 = dpye1+- - +ap2), b3 = apyr1+ - +ap3ys - - - -

(Note b, is the sum of k,, = p(n) — p(n — 1) terms.)

o0 oo o0 o0
Grouping Theorem. Let Z by, be obtained from Z ay by inserting parentheses. If Z ay converges to s, then Z by
k=1 k=1 k= L k=1

will converge to s. Next, if lim a, = 0, k, is bounded and Z by converges to s, then Z ay will converge to s.
e =1 =1
pln)
Reason. Let s ay and t, = by For the first part, b 11m t, = lim ar = s. For the second part,
( n Z k n Z k- p Z k= n oo Z k — p

=
let p(n) — p(n — 1) be bounded by M For a positive mteger 1, let p(i)<j<pl—+ 1) Forr =1,2,..., M, define

iy+r f =<
Cr.jz{gp()+ if%;::>j ThenZak_ 11m sj_llm t,+11m(c11 e teyj)=5s+0+---+0=3s)
Examples. (1) Si Z N U S N to 1, so by the th
X ince = - — — - converges to 1, so € theorem,
P 227378 16 £ Y
PR (AL R (UL UL Y (N L
2 \4 "3 16 32 ' 64 128 ' 256 ' 512 1024 T
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2) A—1D+ 0 —=1)4---convergesto0,but 1 —1+4+1—1+4---diverges by term test. So lim a, = 0 is important.

n—00

1 1 1 1 1T 1 1 1 1 1
A?SO, a-1H+ (5 + 373" 5) + (5 + 3 + 3737 3" 5) + .-+ converges to. (): However, the serie.s
without parentheses diverges (as S, = 1 and S,2,,, = 0) even though the terms have limit 0. So k, bounded is

important.
3) Si 1 ! + P_1 —+ i ! ! 3 ] (by the limit i
ince - _ o= —— )= —— converges e limit compari-
2 34 Z\2j =1 2j) T &ajej—n ONTEE™Y P
X1 1 1 1 O (— 1)k
son test with Z —), so by the theorem, | — -+ - — -4 -.. = converges to the same sum.
= J? 2 3 4 i

oo o0
Definition. Z by is a rearrangement of Z ay iff there is a bijection o : N — N such that by = a, ).
k=1 k=1

i1 1
Example. Givenln2=1—- - 4+ - — - + - — — 4 ... (which converges conditionally). Consider the rearrangement

3 4'5 6
L e that
3 2 5 7 4 9 ]] 6 SCIrve al
N S N e N = N — N~

24 1= 2+ 1= 24 1-
I-D+G-D+GE-+G—p+...=h2
T 1 ~1 +1 -3 ...=3n2
1 +d-H+ I +d-H+...=3m2

oc
Riemann’s Rearrangement Theorem. Ler ¢; € R and Z ay converge conditionally. For any x € R or x = Fo00,
k=1

[o'e) oo oo
there is a rearrangement Z Ao (k) ofz ai such that Z Aoy = X.
k=1 k=1 k=1

a, ifa, >0 _{O ifa, >0

(Sketch of reason. Let p, = { Then a; = pr — g and |ag| = pr + gx.

0 ifg, <O lag] ifap <O
o0 o0 o0
Now both Z Dic» Z g must diverge to +-oc0. (If both converges, then their sum Z |ax| will be finite, a contradiction.

o0 [ [
If one converges and the other diverges to +00, then Z ay = Z Dk — Z g will diverges to £00, a contradiction
k=1 k=1 k=1
also.) Let u,, v, be sequences of real numbers having limits x and u, < v,, U, < v,o1, v1 > 0. Now let Py, P>, ...
oc

be the nonnegative terms of Z ay in the order they occur and @1, Q», ... be the absolute value of the negative terms
k=1

in the order they occur. Since Z Py, Z Qy differ from Z Pk Z gy only by zero terms, they also diverges to +00.

Let mq, k; be the smallest intkeg]ers séclll that P, + - -- —|Ii }]’,,,1 >k 1I)1 and Py + -+ Py, — Q1 — -+ — Qp, < U.
Let my, ky be the smallest integers such that P, +---+ P,,, — Q1 —--- — Q¢ + Puyy1 +---+ Py, > v2 and
Pi+- 4Py, —0O1— - —0Op+ Py +---+ Puy— Q41— - - — Qk, < up and continue this way. This is possible
since the sums of P, and Qy are +-00. Now if s,,, t, are the partial sums of this series Py +-- -+ P, —Q1—---— O, +---

whose last terms are P,,,, Oy, , respectively, then |s, — v,| < P, and |t, — u,| < Qy, by the choices of m,, k,. Since
P., @, have limit 0, so s,, t, must have limit x. As all other partial sums are squeezed by s, and t,, the series we
constructed must have limit x.)

o0 o0
Dirichlet’s Rearrangement Theorem. Ifa; € R and Z ay converges absolutely, then every rearrangement Z A (i)

k=1 k=1
00

converges to the same sum as E ay.
k=1
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oo oo
(Reason. Define py, g as in the last proof. Since py, gx < |y, Z Di» Z gy converge, say to p and g, respectively.

k=1 k=1
o0 o0

Since ao (k) = Poty — Go k), WE MAY View Z Po iy as a rearrangement of the nonnegative terms of Z ay and inserting
k=1 k=1

m

zeros where a, ¢ < 0. For any positive integer m, the partial sum s, = Z Doty < Z pr = p- Since pp > 0, the
k=1 k=1

partial sum s,, is also increasing, hence Z Doy converges. Now, for every positive integer n, Z pr < Z Doty < P-

k=1 k=1 k=1
Asn — 00, we get Z Doty = p- Similarly, qu(k) = g. Then Zag(k) =p—q= Zak.)
k=1 k=1 k=1 k=1
1 1 1 1 1 _1 1
Example. Z(——)k — — — 4+ = — = + ... converges (absolutely) to ——2— = ——
P TR AT -»n 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R T R T T T LR TP R T TR
——

2 terms 4 terms 8§ terms

+...

. = 1, . 1
is a rearrangement of E (—5) , S0 it also converges to 3
k=1

Remarks. As a consequence of the rearrangement theorem, the sum of a nonnegative series is the same no matter how
the terms are rearranged.

Complex Series

Complex numbers S;, S,, S3,... with S, = u,, + iv, are said to have limit llm S, =u+iviff 11m Uy =1U

n—

and lim v, = v. A complex series is a series where the terms are complex numbers. The definitions of convergent,

n—oc

absolutely convergent and conditional convergent are the same. The remarks and the basic properties following the
definitions of convergent and divergent series are also true for complex series.

The geometric series test, telescoping series test, term test, absolute convergence test, ratio test and root test are
[ o0

also true for complex series. For z; = x; + iy, we have Z Zx converges to z = x + Iy if and only if Z Xy converges

k=1 k=1
00

to x and Z v converges to y. So complex series can be reduced to real series for study if necessary.
k=1

Examples. (1) Note 11m i" # 0 (otherwise 0 = lim |{”| = lim 1 is a contradiction). So Z i diverges by term test.

n—00 n—00
k=1

1 k
2)If |z] < 1, then ‘ ‘ < - and Z 2 converges by p-test implies Z converges absolutely. However, if

k=1
+1 2 2 k

——1z] = |z| > 1 implies Z — diverges by the ratio test.

k
2| > 1, then llm‘ ‘ lim
k+172 2| i k+1)2 Z
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Chapter 5. Real Numbers

Decimal representations and points on a line are possible ways of introducing real numbers, but they are not too
convenient for proving many theorems. Instead we will introduce real numbers by its important properties.

Axiomatic Formulation. There exists a set R (called real numbers) satisfying the following four axioms:
(1) (Field Axiom) R is a field (i.e. R has two operations + and - such that forany a, b, ¢ € R,
(i) a+b,a-beR, (ia+b=b+a,a-b=">-a, (iy(a+b)y+c=a+kh+c),(@a-b)y-c=a-b-c),
(iv) there are unique elements 0, 1 € Rwith 1 #Qsuchthata +0=a,a-1=a,
(v) there is a unique element —a € R such that @ 4+ (—a) = 0; if @ # 0, then there is a unique element a ! such
thata - (¢ 1) = 1.
Vi)a-(b+c)y=a-b+a-c.)
(This axiom allows us to do algebra with equations. Define @ — b to mean a + (—b); ab to meana - b; 3 to
mean a - (b~"). Also, define2 =14+1,3=2+1,...)
(2) (Order Axiom) R has an (ordering) relation < such that for any ¢, b € R
(i) exactly one of the followinga < b,a = b, b < a is true,
(i) ifa <b,b <c,thena < ¢,
(i) ifa < b,thena +c < b +c,
(iv) ifa <band 0 < ¢, thenac < be.
(This axiom allows us to work with inequalitics. For example, using (ii) and (iii), we can see that if a < b
andc < d,thena+c <b+dbecausea+c < b+c < b+d. Also, we can get O < 1 (for otherwise 1 < 0
would imply by (iii) that 0 = 1 + (—1) < 0+ (—1) = —1, which implies by (iv) that 0 < (—1)(—1) =1,
a contradiction). Now definea > btomean b < a; a < btomeana < b or a = b; etc. Also, define
closed interval [a,b] = {x : a < x < b}; open interval (a,b) = {x : a < x < b}; etc. Part (i) of the
order axiom implies any two real numbers can be compared. We define max(a;, ..., a,) to be the maximum
of ai, ..., a, and similarly for minimum. Also, define |x| = max(x, —x). Then x < |x| and —x < |x]|,
ie. —|x] <x < |x|.Next|x] <aifandonlyifx <gand —x < a, ie. —a < x < q. Finally, adding
—|x] <x <|x|and —|y] <y <|y|, we get —|x| — |y] < x4y < |x|+ |y|, which is the triangle inequality
Ix +yl < Ix[+ |yl)
(3) (Well-ordering Axiom) N = {1, 2,3, ...} is well-ordered (i.e. for any nonempty subset S of N, there is m € S
such that m < x for all x € S. This m is the least element (or the minimum) of S).
(This axiom allows us to formulate the principle of mathematical induction later.)

Definitions. For a nonempty subset S of R, S is bounded above iff there is some M € R such that x < M for all
x € S. Such an M is called an upper bound of S. The supremum or least upper bound of S (denoted by sup S or lub S)
is an upper bound M of S such that M < M for all upper bounds M of S.

(4) (Completeness Axiom) Every nonempty subset of R which is bounded above has a supremum in R.

(This axiom allows us to prove results that have to do with the existence of certain numbers with specific
propertics, as in the intermediate value theorem.)

Examples. (1) For S = {%:n € N} = {1, %, %,...}, the upper boundsof Sarcall M > 1. SosupS =1 € S.

(2)For S = {x € R:x < 0}, the upper bounds of Sare all M > 0. SosupS =0¢ S.

Definitions. N = {1,2,3,4, ...} is the natural numbers (or positive integers), Z = {...,—3,-2,—1,0,1,2,3,...}

is the integers, Q = {®:m € Z and n € N} is the rational numbers and R\ Q = {x € R:x ¢ Q} is the irrational

n
numbers.

Remarks (Exercises). The first three axioms are also true if R is replaced by Q. However, the completeness axiom
is false for Q. For example, S = {x : x € Q,x > 0,x? < 2} is bounded above by 3 in Q, but it does not have a
supremum in Q.
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As above, we define S to be bounded below if there is some m € R such that m < x for all x € S. Such an m is
called a lower bound of S. The infimum or greatest lower bound (denoted by inf S or glb S) of S is a lower bound m
of S such that m < m for all lower bounds m of S.

inf § \ & Sup S
<<=— lower bounds 91 ﬁ Te upper bounds ——=
are here N are here

Remarks (Exercises). (1) Let —B = {—x : x € B}. (This is the reflection of B about 0.) If B is bounded below,
then — B is bounded above and inf B = — sup(— B). Similarly, if B is bounded above, then — B is bounded below and
sup B = — inf(— B). From these and the completeness axiom, we get the following statement.

(Completeness Axiom for Infimum) Every nonempty subset of R which is bounded below has an infimum in R.

< -B > < B >
< [ ] | [ 14 ) ] >
< C ] I C \ A / J -
inf(-B) sup(-B) 0 infB infA supA supB

(2) For a set B, if it is bounded above and ¢ > 0, then let ¢cB = {cx:x € B}. (This is the scaling of B by a factor of
c.) We have supcB = csup B. If § # A C B, then inf B < inf A whenever B is bounded below and sup A < sup B
whenever B is bounded above.

< [ ] [ ] >
- L J L J -
infB B supB inf(c+B) c+B sup(c+B)

B3 ForceR,letc+ B ={c+ x:x € B}. (This is a translation of B by c units.) It follows that B has a supremum
if and only if ¢ 4+ B has a supremum, in which case sup(¢c + B) = ¢ + sup B. The infimum statement is similar, i.e.
inf(c + B) = ¢ + inf B. More generally, if A and B arc bounded, then letting A+ B ={x+v:x € A,y € B}, we
have sup(A + B) = sup A + sup B and inf(A + B) = inf A 4 inf B.

If S is bounded above and below, then S is bounded. Note sup S, inf S may or may not be in S. Also, if S
is bounded, then for all x € S, |x|] = max(x, —x) < max(sup S, —inf §) (because x < sup S and —x < —infS.)
Conversely, if there is ¢ € R such that forall x € S, |x| < ¢, then —¢ < x < ¢ so that S is bounded (above by ¢ and
below by —c.)

Simple Consequences of the Axioms.

Theorem (Infinitesimal Principle). Forx, y e R, x < y + e foralle > Qifand only if x < y. (Similarly, y —& < x
foralle > OQifandonly if y < x.)

Proof. If x < y,thenforalle > 0,x <y =y + 0 < y + £ by (iv) of the field axiom and (iii) of the order axiom.

Conversely, if x < y 4 ¢ for all & > 0, then assuming x > y, we get x — v > 0 by (iii) of the order axiom. Let
gy = x — y, then x = y + &. Since g9 > 0, we also have x < y + &g. These contradict (i) of the order axiom. So
x < y. The other statement follows from the first statement since y — & < x isthe same as y < x + &.

Remarks. Taking y = 0, we see that [x| < ¢ for all ¢ > 0 if and only if x = 0. This is used when it is difficult to
show two expressions a, b are equal, but it may be easier to show |a — b| < ¢ for every ¢ > 0.

Theorem (Mathematical Induction). For everyn € N, A(n) is a (true or false) statement such thar A(1) is true and
foreveryk € N, A(k) is true implies A(k + 1) is also true. Then A(n) is true for all n € N.
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Proof. Suppose A(n) is false for some n € N. Then S = {n € N: A(n) is false} is a nonempty subset of N. By the
well-ordering axiom, there is a least element m in S. Then A(m) is false. Also, if A(n) is false, then m < n. Taking
contrapositive, this means that if n < m, then A(n) is true.

Now A(l)istrue,som # landm e Nimplym > 2. Som — 1> 1. letk=m—1eN,thenk=m —1 <m
implies A(k) is true. By hypothesis, A(k 4+ 1) = A(m) is true, a contradiction.

Theorem (Supremum Property). If a set S has a supremum in R and ¢ > 0, then there is x € S such that
supS —e& < x <supS.

Proof. Since supS — ¢ < sup S, sup S — ¢ is not an upper bound of S. Then there is x € S such that supS — ¢ < x.
Since sup S is an upper bound of S, x < sup S. Therefore sup S — & < x < supS.

Theorem (Infimum Property). If a set S has an infimum in R and & > 0, then there is x € S such that inf S + ¢ >
x > inf S.

Proof. Sinceinf S+ & > inf S, inf S + ¢ is not a lower bound of S. Then there is x € S such that inf S + & > x. Since
inf S is alower bound of S, x > inf S. Therefore inf S + ¢ > x > inf S.

Theorem (Archimedean Principle). For any x € R, there isn € N such tharn > x.

Proof. Assume there exists x € R such that for all n € N, we have n < x. Then N = {n:n € N} has an upper
bound x. By the completeness axiom, N has a supremum in R. By the supremum property, there is n € N such that
supN — 1 < n, which yields the contradiction supN <n + 1 € N,

Question. How is @ contained in R? How is R \ Q contained in R?

Below we will show that QQ is “dense” in R in the sense that between any two distinct real numbers x, y, no matter
how close, there is a rational number. Similarly, R \ @ is “dense” in R. First we need a lemma.

Lemma. For every x € R, there exists a least integer greater than or equal to x. (In computer science, this is called
the ceiling of x and is denoted by [x7.) Similarly, there exists a greatest integer less than or equal to x. (This is denoted
by [x]. In computer science, this is also called the floor of x and is denoted by | x].)

Proef. By the Archimedean principle, there is n € N such thatn > |x|. Then —n < x < n. By (iii) of the order axiom,
0<x+4+n<2n Theset S ={k € N:k > x + n} is a nonempty subset of N because 2n € S. By the well-ordering
axiom, there is a least positive integer m > x + n. Then m — n is the least integer greater than or equal to x. So the
ceiling of every real number always exist.

Next, to find the floor of x, let k be the least integer greater than or equal to —x, then —k is the greatest integer
less than or equal to x.

Theorem (Density of Rational Numbers). If x < y, then thereis © € Q such thatx < 2 < v,

Proof. By the Archimedean principle, thereisn € Nsuchthatn > 1/(y —x).Sony —nx > landhencenx+1 < ny.

Letm =[nx]+1,thenm — 1 =[nx] <nx < [nx]+1=m.Sonx <m <nx + 1 <ny,i.e.x<%<y.

Theorem (Density of Irrational Numbers). If x < y, then thereis w € R\ Q suchthatx < w < y.

Proof. Let wy € R\ Q. By the density of rational numbers, there is == € Q such that “’0‘7 <% < “;7 If= =0,
then pick another rational number between 0 and m So we may take 7+ # 0.) Let w = 7wy, then w € R\ Q and
X <w<y.

Examples. (1) Let S = (—o0, 3) U (4, 5], then S is not bounded below and so S has no infimum. On the other hand,
S is bounded above by 5 and every upper bound of § is greater than or equalto 5 € S. Sosup § = 5.

(2) LetS = {% :neN}={1, %, %, }1, ...}. In the examples following the definition of supremum, we saw sup S = 1.
Here we will show inf § = 0. (Note 0 € S.) Since % > O forall n € N, 0 is a lower bound of S. So by the
completeness axiom for infimum, inf S must exist. Assume S has a lower bound ¢t > 0. By the Archimedean
principle, there is n € N such thatn > 1/¢. Thent > 1/n € S, a contradiction to ¢ being a lower bound of S. So

0 is the greatest lower bound of S.
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3) Let S =[2,6)NQ. Since 2 < x < 6 forevery x € S, S has 2 as a lower bound and 6 as an upper bound. We
will show inf S =2 andsupS = 6. (Note 2 € Sand 6 ¢ S.) Since 2 € S, so every lower bound 7 satisfy r < 2.
Therefore inf S = 2. For supremum, assume there is an upper bound u < 6. Since 2 € S, so 2 < u. By the
density of rational numbers, thereisar € Qsuchthatu < r < 6. Thenr € [2,6)NQ = S. As u < r contradicts
i being an upper bound of S, so every upper bound u > 6. Therefore, sup S = 6.
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Chapter 6. Limits
Limit is the most important concept in analysis. We will first discuss limits of sequences, then limits of functions.

Definitions. An (infinite) sequence in aset S (e.g. S = Ror § = [0, 1]) is a list x{, x3, x3, ... of elements of S in a
specific order. Briefly it is denoted by {x,}. (Mathematically it may be viewed as a function x: N — § with x(n) = x,
for n € N.) We say the sequence {x,} is bounded above iff the set {x;, x5, x3, ...} is bounded above. (Bounded below
and bounded sequences are defined similarly.) We will also write sup{x,} for the supremum of the set {x{, x5, x3, ...}
and inf{x,} for the infimum of the set {x;, x2, x3, ...}.

CAUTION: Since we seldom talk about a set with one element from now on, so notations like {x,} will denote
sequences unless explicitly stated otherwise,

For x, y € R, the distance between x and y is commonly denoted by d(x, y), which equals |x — y|. Below we will
need a quantitative measure of what it means to be “close” for a discussion of the concept of limit. For &£ > 0, the open
interval (¢ — ¢, ¢ + ¢) is called the e-neighborhoodof ¢c. Note x € (c —&,c+ &) ifandonlyifd(x,¢c) = |x — ¢| < &,
i.e. every number in (¢ — &, ¢ + &) has distance less than & from c.

Limit of a sequence {x,} is often explained by saying it is the number the x,’s are closer and closer to as n gets
larger and larger. There are two bad points about this explanations.

(1) Being close or large is a feeling! It is not a fact. It cannot be proved by a logical argument.

(2) The effect of being close can accumulate to yield large separation! If two numbers having a distance less than or
equal to 1 are considered close, then O is close to 1 and 1 is close to 2 and 2 is close to 3, ..., 99 is close to 100,
but 0 is quite far from 100.

So what is the meaning of close? How can limit be defined so it can be checked? Intuitively, a sequence {x,} gets
close to a number x if and only if the distance d(x,,, x) goes to 0. This happens if and only if for every positive &, the
distance d(x,, x) eventually becomes less than £. The following example will try to make this more precise.
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Example. As n gets large, intuitively we may think x,, = gets close to 2. For ¢ = 0.1, how soon (that is, for

72
what n) will the distance d(x,, 2) be less than ¢? (What if ¢ = 0.01?7 What if &¢ = 0.001? What if ¢ is an arbitrary

positive number?)

Solution. Consider d(x,,2) =

2n? —1
" ‘ = ] < ¢. Solving for n, we get n®> > (3/¢) — 1. If ¢ = 0.1, then

21l | n2+
n > 4/29. So as soon as n > 6, the distance between x, and 2 will be less than ¢ = 0.1.

(If ¢ = 0.01, then n > +/299. So n > 18 will do. If ¢ = 0.001, then n > +/2999. So n > 55 will do.
If0 < e <3, thenn > [/(3/e) — 1]+ 1 will do. If ¢ > 3, then since ﬁ < 3 < gforeveryn € N, so
n > 1 will do. So for every ¢ > 0, there is a K € N so that as soon as n > K, the distance d(x,, 2) will be less
than ¢.) Note the value of K depends on the value of ¢; the smaller ¢ is, the larger K will be. (Some people write K,
to indicate K depends on ¢.)

Definition. A sequence {x,,} converges to a number x (or has limit x) iff for every ¢ > 0, there is K € N such that for
every n > K, it implies d(x,, x) = |x, — x| < & (which means xg, Xg11, Xg42,... € (x —&, X+ &).)

Remarks. (i) From the definition, we see that {x,} converges to x, {x, — x} converges to 0 and {|x, — x|} converges
to 0 are equivalent because in the definition, |x, — x| is the same as [(x, — x) — 0] = ||x, — x| — O|.

(i1) To show {x,} converges to x means for every ¢ > 0, we have to find a K as in the definition or show such a K
exists. On the other hand, if we are given that {x,} converges to x, then for every ¢ > 0, (which we can even
choose for our convenience,) there is a K as in the definition for us to use.

Let us now do a few more examples to illustrate how to show a sequence converges by checking the definition.
Later, we will prove some theorems that will help in establishing convergence of sequences.
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Examples. (1) Let v, = ¢. Foreverye > 0, let K = 1, then n > K implies |v, — ¢| = 0 < &. So {v,} converges to c.

1 1
(2) Let w, = ¢ — —. For every ¢ > 0, there exists an integer K > — (by the Archimedean principle). Thenn > K
n &

implies |w, —c| = < &. So {w,} converges to c.

K

n
(3) Let x, = ——— . Show that {x,} converges to —1 by checking the definition.
(cosn) —n

1
Solution. For every ¢ > 0, there exists an integer K > 1 + — by the Archimedian principle. Then n > K implies
£

n cosn 1 1
| = | <

— (- e — < T So {x,} converges to —1.

(cosn) —n (cosn) —n

(4) Let y, = (—1)". Show that {y,} does not converge.

Solution. Assume {y,} converges, say to y. Let & = 0.1. Then there exists K € N such that n > K implies
[(—=1)" — y| < & = 0.1. Taking an odd integer n > k, we get | — 1 — y| < 0.1, which implies y € (—1.1, —=0.9).
Taking a even integer n > K, we get |1 — y| < 0.1, which implies y € (0.9, 1.1). Since no y is in both (—1.1, —0.9)
and (0.9, 1.1), we have a contradiction.

(5) Let z, = n'/". Show that {z,,} converges to 1 by checking the definition.

Solution. (Let 4, = |z, — 1| = z, — 1. By the binomial theorem,

—1 —1
n(nT)ui_l_..._*_u::Zn(nT)ui

n= ZZ - (1 +Mn)n =1 +nu, +
2 . 2 . ..
sothatu, < —1.) For every ¢ > 0, there exists integer K > 1 + = (by the Archimedean principle). Thenn > K
n— £
2

<
n—17

2
implies |z, — 1| = u, < \/ \/K ] < £. 80 {z,} convergesto 1.

Theorem (Uniqueness of Limit). If {x,} converges to x and v, then x = y (and so we may write lim x, = x).
n—0oo

Proof. Forevery ¢ > 0, we will show |x —y| < &. (By the infinitesimal principle, we will getx = y.) Letgg = ¢/2 > 0.
By the definition of convergence, there are K, K» € Nsuchthatn > K; = |x,—x| < ggandn > Ky = |x,—y| < &g.
Let K = max(K,, K,). By the triangle inequality, |[x —y| = |(x —xx)+ (xxk — Y| < |x —xx|+|xx —y] < g+eg = &.

Boundedness Theorem. If {x,} converges, then {x,} is bounded.

Proof. Let lim x, = x. Fore = 1,thereis K € Nsuchthatn > K = |x,—x| < 1 = |x,| = |(x, —x)+x| < 1+]|x].
n—oo

Let M = max(|xq], ..., |xk—1], 1 + |x|), then foreveryn € N, |x,| < M (ie. x, € [—M, M]).

Remarks. The converse is false. The sequence {(—1)"} is bounded, but not convergent by example (4). In general,
bounded sequences may or may not converge.

Theorem (Computation Formulas for Limits). If {x,} converges to x and {v,} converges to y, then

(1) {x, & y.} converges to x + y, respectively, i.e. lim (x, + y,) = lim x, £ lim y,,
n—o0o n—o0o n—o0o

(i) {x,ya} convergesto xy, i.e. lim (x,y,) = ( lim x,,) ( lim yn),
n—>00 n—00 n—00

(iii) {x,/yn} converges to x/y, provided y, #+ O for all n and y # 0.
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Proof. (i) For every ¢ > 0, there are Ky, K € Nsuchthatn > K1 = |x, — x| <¢/2andn > K; = |y, — y| < &/2.
Let K = max(K;, K»). Thenn > K implies n > K; and n > K. So for these ’s,

[(rEy) — =N =[G =)= < |xe — x|+ |ys — Yyl <&/2+¢/2 =¢.

(i1) We prove a lemma first.
Lemma. If{a,}is bounded and lim b, = 0, then lim a,b, = 0.

n— 00 n—0oo
Proof. Since {«,} is bounded, there is M such that |a,| < M for all n. For every £ > 0, since /M > O and

{b,} convergesto 0, there is K € Nsuchthatn > K = |b, — 0| < ¢/M = |a.b, — 0| < M|b,| < ¢.
To prove (i), we Write X, Y, — XY = Xu¥n — XuY + Xa¥ — Xy = Xu(¥n — ¥) + y(x, — x). Since {x,} converges,
{x,.} is bounded by the boundedness theorem. So by (i) and the lemma,
lim XnYn = lim (xnyn - Xy) + lim Xy = lim xn(yn - )’) + lim y(xn - )C) +xy = 0+0+ Xy =Xxy.
n—0o0 n—> 0 n—> 0 n—0o0 n—> 0
(ii1) Note %|y| > 0. Since {y,} converges to y, there is Ky € N such that n > K, implies |y, — y| < %|y|. By
the triangle inequality, |y| — |yl < |y, — ¥ < %|y| = %|y| < |ya| for n > Kg. Then for every n € N,

1yal = m = min(In1l, ..., [Yko-1l, 21¥]) > 0.

1 1 Xn . 1 X
Next we will show lim — = — (then by (i1), lim — = lim (x,—) = x— = —). Forevery ¢ > 0, let
n—>c0 y” n—>c0 n—0o0

y n
gy = m|yle > 0. Since lim y, =y # 0, there is K € Nsuch thatn > K = |y, — y| < &. Then
n—oo

n>K=

1 1‘ |y_yn| £o
— - —| = < =¢
Yo ¥ [Yelly] m|y|

Remarks. (1) As in the proofs of the uniqueness of limit and part (i) of the computation formulas, when we
have n > K{ = |a, —a| < gy andn > K, = |b, — b| < &, we may as well take K = max(K, K») to say
n>K =la, —al < g and |b, — b| < & from now on.

(2) By mathematical induction, we can show that the computation formulas also hold for finitely many sequences.
However, the number of sequences must stay constant as the following example shows

n—co\p n—oo n n—oo n

! 1 1 !
1= lim(—+~'+—)7é lim — 4+ lim ~=04---4+0=0.
n
n terms

Sandwich Theorem (or Squeeze Limit Theorem). Ifx, < w, < y, foralln € N and lim x, = lim y, = z, then
n—oo n—oo

lim w, = z.

n—oc
Proef. For any ¢ > 0, there is K suchthatn > K = |x, —z| < eand |y, —z| < &,1.. Xy, ¥, € (2 —&,2+¢€). Since
Xp S wy < Yn, SOW, € (Z — &,z +8)v ie. |wn - Z| <é&.

10"4/2
Example. Let w, = % cQforeveryn € N. (Note w; = 1.4, wy = 1.41, w3 = 1.414, ws = 1.4142,...))
10°4/2 — 1 1074/2 10"v/2 — 1
Then % <wy < 10\”/— = /2. Since lim % =2, by the sandwich theorem, lim w, = V2.

Theorem (Limit Inequality). Ifa, > O foralln € Nand lim a, = a, then a > 0.
n—oo

Proof. Assume a < 0. Then for ¢ = |a|, there is K € Nsuch thatn > K = |a, — a| < ¢ = |a|, which implies

a—¢&<a, <a+e&=a+ (—a) =0, acontradiction.

Remarks. By the limit inequality above, if x, < y,, lim x, = x, lim y, = y, then taking a, = y, — x, > 0, we get
n—oo n— oo

the limit y — x > 0, i.e. x < y. Also,ifa <x, <band lim x, = x, then lima =a < lim x, =x < lim b = b,

n—>00 n—>00 n—>00 n—00

ie. x, € [a, bl and lim x, = x imply x € [a, b]. (This is false for open intervals as % €(0,2), lim — =0¢(0,2).)
n— oo n—oon
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Supremum Limit Theorem. Ler S be a nonempty set with an upper bound c. There is a sequence {w,} in S converging
to cifand only if c = sup S.
Proof. If c = sup S, then for n € N, by the supremum property, there is w,, € S such that ¢ — % =supS— % <w, <

sup S = c¢. Since lim (¢ — —) = lim ¢ = ¢, the sandwich theorem implies lim w, = ¢ = sup S.
n—00 n n—00 n—>00

Conversely, if a sequence {w,} in S converges to ¢, then w,, < sup S implies ¢ = lim w, < sup S. Since ¢ is an
n—oo
upper bound of S, so sup S < ¢. Therefore ¢ = sup S.

Infimum Limit Theorem. Ler S be a nonempty set with a lower bound c. There is a sequence {w,} in S converging

to ¢ ifand only if c = inf S.

Examples. (1)Let S = {% :n e N} ={1, %, %, ...}. Since 0 < % for all n € N, 0 is a lower bound of the set S. Now
the sequence {%} in S converges to 0. By the infimum limit theorem, inf S = 0.

(2) Let S = {xm + 1 :x € QN (0, 11,y € [1,2]}. Since § < x7 + )l forallx € QN (0,1]andy € [1,2], Lisa
lower bound of S. Now the sequence {%n + %} in S converges to % By the infimum limit theorem, inf S = %

(3) Let A and BbeboundedinR. Provethatif A—2B = {a—2b:a € A, b € B}, thensup(A—2B) = sup A—2inf B.

Solution. Since A and B are bounded, sup A and inf B exist by the completeness axiom. Forx € A — 2B, we
havex = a —2bforsomea € Aandb € B.Sox =a—2b <supA —2inf B. Hence sup A — 2 inf B is an upper
bound for A — 2 8. By the supremum limit theorem, there is a sequence a, € A such that {a,} convergestosup A.
By the infimum limit theorem, there is a sequence b, € B such that {,} converges to inf B. Then {a, — 2b,} is a
sequence in A — 2B and {a, — 2b,} converges to sup A — 2 inf B by the computation formulas for limits. By the
supremum limit theorem, therefore sup(A — 2B) = sup A — 2inf B.

Definition. A subsequence of {x,} is a sequence {x,,}, where n; € Nandn; <ny <n3 <...

Examples. For the sequence x1, x2, X3, X4, X5, X6, . .., if we set n; = jz, we get the subsequence x, Xa, X9, X16, - - - -
If nj = 2j + 1, then we get the subsequence xs, x5, x7, X9, .... If n; is the j-th prime number, then we get the
subsequence X3, X3, X5, X7, .. ..

Remarks. (1) Taking n; = j, we see that every sequence is a subsequence of itself. A subsequence can also be
thought of as obtained from the original sequence by throwing away possibly some terms. Also, a subsequence of a
subsequence of {x,} is a subsequence of {x,}.

(2) By mathematical induction, we have n; > j forall j € Nbecausen; > landn;y; > n; > jimpliesn;jy > j+ 1.

Subsequence Theorem. [f lim x, = x, then lim Xn, = X for every subsequence {xn,} of {xa}. (The converse is
n—c0 J—>00
trivially true because every sequence is a subsequence of itself.)

Proof. Forevery ¢ > 0, thereis K € Nsuchthatn > K = |x;, — x| <e. Then j > K = n; > K =[x, — x| <e.

Question. How can we tell if a sequence converges without knowing the limit (especially if the sequence is given by
a recurrence relation)?

For certain types of sequences, the question has an easy answer.

increasing X <Xxp <Xx3<.
.re . decreasin . X] > Xp > X3 > . . monotone .
Definitions. {x,}is . . g. 1 t="r2="= , respectively. {x,}1s . i
strictly increasing X <Xy <Xx3<. strictly monotone
strictly decreasing X1 > Xy > X3 > .

increasing or decreasing
strictly increasing or decreasing

{xa} 18 { } , respectively.

Monotone Sequence Theorem. [f {x,} is increasing and bounded above, then lim x,, = sup{x,}. (Similarly, if {x,}
n—oo

is decreasing and bounded below, then lim x, = inf{x,}.)
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Proof. Let M = sup{x,}, which exists by the completeness axiom. By the supremum property, for any £ > 0, there is
xgsuchthat M —¢ <xg <M. Then j> K> M —e<xxk <x; <M= |x;]—M|=M—x; <e¢.
Remark. Note the completeness axiom was used to show the limit of x,, exists (without giving the value).

Examples. (1)Let0 < ¢ < land x, = ¢/". Thenx, < 1 and ¢! < ¢" = x, = /" < /0D = x, 1. So by
the monotone sequence theorem, {x,} has a limit x. Now x2, = (c!/?*)? = ¢!/* = x,. Taking limits and using the
subsequence theorem, we get x> = x. Sox = 0 or 1. Since 0 < ¢ = x; < x, the limit x is 1. Similarly, if ¢ > 1, then
V" will decrease to the limit 1.

(2) Does \/ 2442+ 2+ --- represent a real number?

Here we have a nested radical defined by x; = V2 and Xnte1 = /2 + x,. The question is whether {x,}
converges to a real number x. (Computing a few terms, we suspect that {x,} is increasing. To find an upper bound,
observe that if lim x,, = x, thenx = /2 + x implies x = 2.) Now by mathematical induction, we can show that

n—oc
Xp < Xpa1 < 2.(Ifx, < xp01 <2,then2+x, < 2+ x,41 < 4, so taking square roots, we get x,11 < X,12 < 2.)
By the monotone sequence theorem, {x,} has a limit x. We have x2 = lim fo = lim 2 +x, =2+ x. Then

n—0o0 n—0o0
x=—lor2 Sincev/2=x <x,s0x =2.

Another common type of sequences is obtained by mixing a decreasing sequence and an increasing sequence into
one of the form ay, by, as, by, as, bs, . ... In the next example, we will have such a situation and we need two theorems
to handle these kind of sequences.

[o'e)
Nested Interval Theorem. If I, = [a,,b,] is such that Iy 2 I, D I3 D ..., then ﬂl I, = la,b], where

=

oc
a= lim a, < lim b, =b.If lim (b, — a,) =0, then N I, contains exactly one number.
n—co n—0o n—co n=1

L L L 1 1 1
T T T T T T
a a a e Dby by by

Proof.I; O I, O Iz O ... implies {a,} is increasing and bounded above by b and {b,} is decreasing and bounded

below by a;. By the monotone sequence theorem, {a,} converges to a = sup{a,} and {b,} converges to b = inf{bh,}.
Since a, < b, forevery n € N, taking limits, we have ¢, < a < b < b,.. Consequently, x € [a,, b,] (i.e. a, <x <b,)

for all n if and only if lim a, =a <x <b = lim b,. So or%] I, =[a,b]l. 0= lim (b, —a,) =b—a,thena =b
n—0o0 n—0o0 n= n—0o0

and F%l I, = {a}.

n=

Remarks. Note in the proof, the monotone sequence theorem was used. So the nested interval theorem also implicitly
depended on the completeness axiom.

Intertwining Sequence Theorem. If {x,,,} and {x3,,_1} converge 1o x, then {x,} also converges to x.

Proof. Forevery ¢ > 0, since {x,,,} convergesto x, thereis Ky € Nsuchthatm > Ky = |xp, — x| < &. Since {x2,_1}

also converges to x, there is K; € Nsuchthat m > Ky = |x3,_1 — x| < &. Now if n > K = max(2Ky, 2K, — 1),
theneithern =2m > 2Ko = |x, — x| = |xoyn — x| <corn=2m—1>2K,— 1= |x, — x| = |xo;—1 — x| < &.
Example. Does —— represent a number?
14+
14--- .
Here we have a continued fraction defined by xy = 1l and x,,.; = 1/(1 +x,). Wehave xy = 1,x = 1/2,x3 =
2/3,x4 = 3/5, . ... Plotting these on the real line suggests 1/2 < x2, < X242 < X201 < X2,_1 < 1 forall n € N.

This can be easily established by mathematical induction. (If 1/2 < x5, < Xppa0 < Xopa1 < X2q—1 < 1, then
14+ x0: < 14+ x0000 < 14 x2,01 < 1+ x0,_1. Taking reciprocal and applying the recurrence relation, we have
Xon41 > Xopg3 > Xopy2 > X2,. Repeating these steps once more, we get X2,42 < X2p44 < X2p43 < X2p41.)

Let I, = [xon, xon 1], then /y D I, D I3 D ---. Now
|x y | 1 1 |me] - X,"| < |)C,,,71 - X,"| 4 |)C X
— 1l = —_ = = = -1 — -
meom T+ T4x| (+x)0+x)  A+Ha+h 9™
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. . 4 44 4 4 4.9,21

Using this, we get |x2, 1 — x24| < §|x21172 — x| < 66|x2nf3 “Xmal < <5y lx1 — x2| = (5) 3
N— —

2n—2

o

By the sandwich theorem, lim (xy,_; — x2,) = 0. So by the nested interval theorem, ﬂl I, = {x} for some
n—0o0 n=

x and lim x5, = x = lim x,_;. By the intertwining sequence theorem, lim x, = x. So x = lim x,.; =

n—> 0 n—> 0 n—> 0 n—0o0

lim 1/(1+x,) = 1/(1 +x). Then x = (-1 +/5)/2.Since x € I, x = (=1 +/3)/2.

(Instead of estimating the lengths of the 7,’s and squeezing them to 0 to see their intersection is a single point,

we can also do the following. Let I, = [x2,, x2,_1] be as above so that I; 2 I, D I3 D ---. By the nested interval
oo 1
theorem, N I, = [a, b], where a = lim xp, and b = lim x;,_. Taking limits on both sides of x5,,) = — and
n=l1 n—0o n—>00 1 + X9
1 1
Xy = ——, wegeth = anda = ——.Thenb(1 +a) =1 =a(l + b), which yields b +ab = a + ab,
2T o 8 1+a 1+b (1 +a) (1+5) Y

o0
soa = b. Hence ﬂl I, is a single point.)

=

Back to answering the question above in general, French mathematician Augustine Cauchy (1789-1857) intro-
duced the following condition.

Definition. {x,} is a Cauchy sequence iff for every ¢ > 0, there is K € N such that m, n > K implies |x,, — x,| < &.

Remark. Roughly, the condition says that the terms of these sequences are getting closer and closer to each other.

1 1 1 1 1
Example. Let x, = —- (Note that if m,n > K, say m > n, then we have |x,, — x,| = S - 5<53= ﬁ')
n n m n
1
For every ¢ > 0, we can take an integer K > — (by the Archimedean principle). Then m,n > K implies

NG

1 .
| X — x| < 2 < &.50 {x,} is a Cauchy sequence.

Theorem. If {x,} converges, then {x,} is a Cauchy sequence.

Proof. For every ¢ > 0, since lim x, = x, thereis K € Nsuchthat j > K = |x; — x| < &/2. Form,n > K, we
n—>00

have |x,, — X, < |xm — x|+ |x —x,] <&/24+¢/2 = ¢. So {x,} is a Cauchy sequence.

The converse of the previous theorem is true, but it takes some work to prove that. The difficulty lies primarily
on how to come up with a limit of the sequence. The strategy of showing every Cauchy sequence in R must converge
is first to find a subsequence that converges, then show that the original sequence also converge to the same limit.

Theorem. [If{x,} is a Cauchy sequence, then {x,} is bounded.

Proof. Let ¢ = 1. Since {x,} is a Cauchy sequence, there is K € Nsuchthat m,n > K = |x, — x| <& = 1.
In particular, for n > K, |xg — x| < 1 = x| = [y — xk) + x| < |xp — xg| + |xx| < 1+ |xg|. Let
M = max(|x(|, ..., lxxk_1l, 1 + |xk]), thenforalln € N, |x,| < M (ie. x, € [—M, M]).

Bolzano-Weierstrass Theorem. If {x,} is bounded, then {x,} has a subsequence {x,,} that converges.

Proof. (Bisection Method) Let ¢y = inf{x,}, by = sup{x,} and I, = [a;, b1]. Let m be the midpoint of I;. If there
are infinitely many terms of {x,} in [a, m], then let ay = a;, b = m; and I, = [ay, b;]. Otherwise, there will be
infinitely many terms of {x,} in [mq, b;], then let ap = my, b = by and I, = [a», b»]. Fork = 2, 3,4, ..., repeat
this bisection on /i to get 1. We have I; = [a;,b;]1and Iy 2 I, 2 Iz O .... By the nested interval theorem, since

by —ay

[ee]
lim (b; — a;) = lim — =0, N I, contains exactly one number x.
Jj—>co oo 271 n=1

Take ny = 1, then x,;, = x; € 1. Suppose n; is chosen with x,, € I;. Since there are infinitely many terms x, in
Ij11, choose njy > nj and x,,,, € I;11. Then lim | %, — x| < lim (b; — a;) = 0. Therefore, lim Xn; = X.

I
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Remarks. In the proof, the nested interval theorem was used, so the Bolzano-Weierstrass theorem depended on the
completeness axiom.

Alternate Proof. We will show every sequence {x,} has a monotone subsequence. (If {x,} is bounded, then the
monotone sequence theorem will imply the subsequence converges.)
Call x,, a peak of {x,} if x,, > x; for all k > m. If {x,,} has infinitely many peaks, then we order the peaks by

strictly increasing subscripts my < my < m3 < ---. By the definition of a peak, x,, > Xy, > Xy = . S0 {xp,}
is a decreasing subsequence of {x,}. On the other hand, if {x,} has only finitely many peaks x,,,, - - -, X, , then let
ny = max{mi, - --, my} + 1. Since x,, is not a peak, there is ny > n; such that x,, > x,,. Inductively, if x,, is nota

peak, there is njy1 > n; with x,,,,, > x,,. So {x,,} is a strictly increasing subsequence of {x,}.

Remarks. This alternate proof used the monotone sequence theorem, so it also depended on the completeness axiom.

Cauchy’s Theorem. {x,} converges if and only if {x,} is a Cauchy sequence.
Proof. The ‘only if” part was proved. For the ‘if” part, since {x,} is a Cauchy sequence, {x,} is bounded. By the
Bolzano-Weierstrass theorem, {x,} has a subsequence {xn;} that converges in R, say Alim Xn; = X.

We will show 11m x, = x. Forevery ¢ > 0, since {x,} is a Cauchy sequence, there is Ky € N such that m,
n> K = |x,— x,,l < g/2. Since 11m Xn; = X, there is K, € N such that j > K, = lxn, — x| < &/2. If

n>J =max(K;, Ky),thenn; > J > K1 J > Kyand [x, — x| < |x, — x,1‘,|—|—|x,z, x| <e/2+e/2=c¢.

Example. Does the sequence {x,,} converge, where x; = sin 1 and x; = x4_; + f k=2,3,4,.
m m
. . smk
We will check the Cauchy condition. For m > n, x, — x, = Z (xp — xk1) = ——— and
k=n+1 k=n+1

] 1 1 11
_ < —_— =
m —Xu| = (n+1)2+ +m2 = n(n+1)1L +(m— Dm (n n+1>+

( 1 1) 1 1 1
H— = < -
m—1 m n o m n

So for ¢ > 0, by the Archimedean principle, there is K > 1/¢. Thenm,n > K = |x,, — x,| < % < ¢. Therefore, by
the Cauchy theorem, {x,} converges.

Limits of Functions

Let S be an interval (or more generally a set). Suppose f: S — Ris a function. We would like to define lim f(x).

For this to be a meaningful expression, in the interval case, xo must be a point on the interval or an endpoint. In the
general case, xg must be “approachable” by the points of S.

CONVENTION. In discussing the limit of a function f : S — R at x¢, xg is always assumed to be the limit of some
sequence in S\ {xg} so that xy can be approached by points of S. (We say xq is an accumulation (or limit or cluster)
point of S iff xq is the limit of a sequence {x,} in S\ {xp}.)

Let f : S — R be a function. To say lim f(x) =

X—Xp
roughly means the distance between f(x) and L is as small
as we please when x € S is sufficiently close to xy.(Again,
small and close need to be clarified.)

Example. Let f(x) = (x> — 3x%)/(x — 3). If x gets close to 3 and x # 3, then f(x) = x? should be close to 9. In
other words, the distance d(f(x), 9) = | f(x) — 9] goes to 0 when the distance d(x, 3) = |x — 3| gets small. So for
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every positive g, the distance | f(x) — 9| will soon or later be less than £ when the distance |[x — 3| becomes small
enough. For ¢ = 0.1, how small d(x, 3) be (that is, for what x) will make d(f(x), 9) = | f(x) —9| < &7 Equivalently,
we are seeking a positive § sothat) < [x — 3| < § = |f(x) — 9| < &.

Now [f(x) — 9] <& © 89 < f(x) <9.1.502.9833 7 4/8.9 < x <4/9.1 ®3.0166and —0.0167 <x —3 <
0.0166. If we take § = 0.016,then0 < [x — 3| <§ = |f(x) — 9| < &.

(Forsmalle >0, | f(x) -9 <e9—ec< f(x)<94+e=>V9—e—-3<x—3< 94+ —3.Sowe may
take § = min(//94+¢e—3,3—V9—¢),then0O < |x = 3| <d=|f(x) —9] <&)

Following the example, we are ready to state the precise definition of the limit of a function.

Definition. Let £ : S — R be a function. We say f(x) converges to L (or has limit L) as x tends to xg in S iff for
every & > 0, there is § > 0 such that for every x € §, 0 < |x — xg| < § implies | f(x) — L| < &. This is denoted by
lim f(x)= L (or lim f(x) = L in short.)
X—>Xo X—Xo
xes

In the definition, § depends on & and xg. For different & (or different xg), § will be different. If a limit value exists,
then it is unique. The proof is similar to the sequential case and is left as an exercise for the readers.

Examples. (1) For g : [0, 00) — R defined by g(x) = /x, show that lirrg)g(x) =0 and lirrlg(x) = 2 by checking
the -8 definition.

Solution. Forevery ¢ > 0, let§ = 2. Then forevery x € [0, 0), 0 < |x —0| < § implies |g(x)—0| = /X < Vé=¢.
This takes care of the checking for the first limit.

|x — 4| [x — 4|
<

JX+2 T 2
x—4] &

< — = &.
2 2

For the second limit, note that |v/x — 2| = . For every ¢ > 0, let 6 = 2¢. Then for every

x €[0,00),0 < |x —4| < §implies |g(x) — 2| <

1 1
(2)Let f : R\ {0} — Rbedefined by f(x) = W Show that lirré fx)= m by checking the £-§ definition.
X X—

5¢ 10

Solution. (Note that = < for x € (1, 3).) For every ¢ > 0, take § = min(1, 10¢). Then

10x 10
x—2] &

<
0 ~10°-°

1‘_|x—2| Ix — 2

1
d <landd < 10¢.Foreveryx € R\ {0}, 0 < |x — 2| < § implies x € (1, 3). So f(x)—m <

and we are done.

Notation: We will write x,, — xgin S \ {xo} to mean sequence {x,} in S \ {xg} converges to xg.

Sequential Limit Theorem. m f(x) = L ifand only if for every x, — xoin S\ {xo}, lim f(x,) = L.
) n—0o0

li
X—>
xes

In quantifier symbols (¥ = for any, for every, for all, 3 = there is, there exists),

Xlirgl fx)=L <<= Ve>0, 3§ >0suchthatVx € S,0<|x — x| <5 = |f(x)—L| <e¢,
—Xp

xe§

Xlirgl f(x)#L <<= Jeg>0suchthatV§ >0, Ix e S,0<|x —xp|l <dand |f(x) —L|>¢&.
—Xp

xe§

Proof. If Xli_)rgl f(x) =L, thenforevery ¢ > 0,thereisé > Osuchthatforx € S,0 < |[x —xg| <d = |f(x)—L| < &.

xes§

If lim x, = xo and x,, # xo, then there is K € Nsuchthatn > K = 0 < |x, — x| < §(= |f{xx) — L] < &). So

n—oC

lim f(x,)=L.
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Conversely, if Xli)n)} f(x) # L, then there is & > O such that forevery § > 0, thereis x € Swith0 < [x —xg| < &

xes

and | f(x) — L| > . Now, setting § = L, thereis x, € S with O < |x, — xo| < 8 = % and | f(x,) — L| > &. By the
sandwich theorem, x, — xpin S \ {x¢}. So lim f(x,) = L. Then0 = lim |f(x,) — L| > &, a contradiction.

Remarks. If lim f(x,) exists for every x,, — xpin S\ {x¢}, then all the limit values are the same. To see this, suppose
n—oo

X, — xo and w,, — xgin S\ {xo}. Then the intertwining sequence {z,} = {x1, w1, X2, w7, X3, W3, ...} converges to xg
in S\ {xo}. Since { f(x,)} and { f (w,)} are subsequences of the convergent sequence { £ (z,,)}, they have the same limit.

Consequences of Sequential Limit Theorem.

(1) (Computation Formulas)If f, g : S — R are functions, Xlin)} f(x)=Lqand Xlin)} g(x) = L,, then
— X0 — X0

xes xes
+ + +
lim ({7 tew)=Li] 7 tLo=Jim f@) ] T4 lim g()
xe$§ / / xes / xe$§

respectively (in the case of division, provided g(x) # O forevery x € S and Ly # 0).

Proof. Since f(x) and g(x) have limits L, and L,, respectively, as x tends to xg in S, by the sequential limit
theorem, f(x,) and g(x,) will have limits L; and L, respectively, for every x, — xp in S\ {xo}. By the
computation formulas for sequences, the limit of f(x,) + g(x,) is L; + L, for every x, — x¢in S\ {x¢}. By the
sequential limit theorem, f(x) + g(x) has limit L; + L, as x tends to xg in S. Replacing + by —, -, /, we get the
proofs for the other parts.

Alternate Proof. If X]i)n)} f(x)=L, and Xli)nxl g(x) = L,, then for every ¢ > 0, there are §; > 0 such that for

xS xe§

everyx € S,0 < |x —xp| < ) implies | f(x) — L] < %andéz > O suchthatforeveryx € S, 0 < |x —x¢| < &
implies |g(x) — Ly| < f. Now we take § = min{éd;, §;) > O so that § < §; and § < §,. Then, for every x € S,
0 < |x — xg] < é implies both 0 < |x — xg] < &1 and O < |x — x¢| < 65 so that

(£ () + 2(6)) = (L1 + Lo)| = 1(f(x) = L) + (8(x) — La)| < |£(x) — Ly| + 1g(x) — La| < % + g —.

The other parts of the computation formulas can be proved by adapting the arguments for the sequential case.

(Sandwich Theorem or Squeeze Limit Theorem) If f(x) < g(x) < h(x) for every x € S and Xli_)rg fx)=L =

xes
Xll)n)}o h(x), then Xll)rglo g(x) = L.

xes xes

(3) (Limit Inequality) If f(x) = Oforall x € S and Xli)nxl f(x)=L, then L > 0.

xes

The proofs of (2) and (3) can be done by switching to sequences like the first proof of (1) or by adapting the

arguments of the sequential cases and checking the -8 definition like the alternate proof of (1).

Next we will discuss one-sided limits.

Definitions. For f : (a, b) — R and x4 € (a, b), the left hand limitof f atxgis f(xo—) = lim f(x) = xlin; fx).
—Xp

X=X,
4 xe{a.xo)

The right hand limit of f at xpis f(xg+) = lim f(x) = Xlin} fx).
+ — X

X=X
0 X€(x0,b)

Theorem. For xy € (a, b), Xlinxl f(x) =L ifand onlyif f(xo—) = L = f(xp+).
— X0

x€(a,b)
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Proof. If lim f(x) = L, then for every ¢ > 0, there is § > 0 such that for x € (a,b), 0 < |x — x| < § =

X—=>X0
| f(x) — L| < ¢&. In particular, for x € (a,xg), 0 < |[x —xgl <8 = |f(x) — L| < &. So f(xp—) = L. Similarly, for
x €(x0,0),0<|x —x0] <8=|f(x)—L| <e&.So f(xo+) = L.

Conversely, if f(xo—) = L = f(xo+), then for every ¢ > 0, there is §; > 0 such that for x € (a, xg),
0 < |x—x¢l <6 = |f(x)—L| < ¢andthereis §, > Osuchthatforx € (xp,0),0 < |x—xg| < 5, = |f(x)—L| < &.
As § = min(dy, 63) < 8; and §,, we haveforx € (a,5), 0 < |x — x| <S=|f(x)— L| <e&.So lim f(x)=L.

X—> X0

increasing F&x) = f»
e . ) . decreasing . fx)y=rf»m
Definitions. A function f: S — Ris strictly increasing on Siff foreveryx,y € S,x <y = Ty < FO)
strictly decreasing J&x)y= fy)
Also, f is .monotone on S iff fis . fnereasing ot degreasmg . on S, respectively.
strictly monotone strictly increasing or strictly decreasing
bounded above bounded above
For a nonempty subset Sy of S, we say f is { bounded below } on Sy iff {f(x):x € Sp}is { bounded below } ,
bounded bounded

respectively. If The set Sy is not mentioned, then it is the domain S.

For monotone functions, the following theorem is analogous to the monotone sequence theorem. It will be used
. . . . . dx dy
in the next chapter to prove the continuous inverse theorem, which will be used to prove the i 1 / d—} rule later.
y X
Also, it will be used again in the chapter on integration.

Monotone Function Theorem. If f is increasing on (a, b), then for every xo € (a,b), f(xo—) = sup{f(x) 1 a <
x < xo} and f(xo+) = inf{f(x) : xo0 < x < b} and f(xo—) < f(xo) < f(xo+). If f is bounded below, then
fla+) =inf{f(x):a < x < b}.If f is bounded above, then f(b—) = sup{ f(x) : a < x < b}. Also f has countably
many discontinuous points on (a, b), i.e. J = {xo : xo € (a,b), f(xo—) # f(xo+)} is countable. (The theorem is
similarly true for decreasing functions and all other kinds of intervals.)

Proof. If a < x < xg < b, then f(x) < f(xp). So M = sup{f(x) : a < x < x} < f(xg). By the supremum
property, for every &€ > 0, there is ¢ € (a, xg) suchthat M — ¢ < f(c) < M.If welet§ = xy — ¢, then

Vx e(a,xp),0<|x—xgl<d=>c=xg—-d0<x<xo= fO)< fX) <M= |f(x)—M|<M-— f(c) <e.

So lim f(x) =M < f(x¢). Similarly, f(xg) < lim+ f(x) =inf{f(x) : xo < x < b}. In the case f is bounded

X*).XO X*).XO

below or above, the proof of the existence of f(a+) or f(b—) is similar.

Next let xo € (a, b) with f(xo—) < f(xo+). By the density of rational

numbers, we may choose a g(xp) € Q between f(xo—) and f(xo+). The
function g: J — Q is injective because if f is discontinuous at xgy, x; with
g0y L O/ Xp < X1, then
Xo + X1
ool g00) < Floh) =[R2 < F(am) < g,
/> By the injection theorem, J is countable, i.e. f has countably many discontinuous
] ;CO ;61 points on (a, b). The cases of decreasing functions or other kinds of intervals are
similar.

Appendix: Infinite Limits and Limit at Infinity
We begin with a definition of a sequence having +o¢ as limit. In this case, the sequence does not have any upper
bound in R, i.e. the sequence will pass any fixed r € R eventually and keep on going. Sequences with —o0 as limit

and functions with o0 limit are defined similarly.
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Definitions. (1) A sequence {x,,} diverges to +00 (or has limir +00) iff for every r € R, there is K € N (depending on
r)such that n > K implies x, > r. Similarly, a sequence {x,,} diverges to —oo (or has [imit —o0) iff for every r € R,
there is K € N (depending on r) such that n > K implies x,, < r.

(2) A function f : § — R diverges to +00 (or has [imit +00) as x tends to xqg in S iff for every r € R, there is
& > 0 (depending on r and xg) such that for every x € S, 0 < |x — x9| < 6 implies f(x) > r. Similarly, a function
f S — Rdiverges to —o< (or has limit —o0) as x tends to xg in S iff for every r € R, there is § > 0 (depending on r
and xp) such that forevery x € S, 0 < [x — x| < § implies f(x) < r.

Exercise. Prove that if {x,} is an increasing sequence, then either the limit of {x,} exists (as a real number) or the limit
is +00. (The decreasing case is similar with +00 replaced by —o0.)

Limit at infinity for functions are defined similarly as for sequences as follow.

Definitions. (1) Let f : S — R be a function such that 400 is an accumulation point of S (i.e. there is a sequence
in S diverges to +00.) We say f(x) converges to L (or has [imit L) as x tends to +o00 in S iff for every ¢ > 0, there
is K € R such that for every x € S, x > K implies | f(x) — L| < &. Similarly, let f : § — R be a function such
that —o0 is an accumulation point of S (i.c. there is a sequence in S diverges to —o0.) We say f(x) converges to L
(or has [imit L) as x tends to —o0 in S iff for every & > 0, there is K € R such that for every x € S, x < K implies
lf(x)— Ll <e.

(2) Let f : S — R be a function such that 400 is an accumulation point of S (i.e. there is a sequence in S
diverges to +00.) We say f(x) diverges to +00 (or has [imit +00) as x tends to +o¢ in S iff for every r € R, there is
K € R such that for every x € S, x > K implies f(x) > r. Similarly, let f : S — R be a function such that —oc is
an accumulation point of S (i.c. there is a sequence in S diverges to —00.) We say f(x) diverges to +0o0 (or has limit
+00) as x tends to —oo in S iff for every r € R, there is K € R such that for every x € S, x < K implies f(x) > r.
By replacing f(x) > r with f(x) < r, we get the definitions of limit equal to —o0 as x tends to 00 in S.

It is good exercises for the readers to formulate the computation formulas and properties for these limits, which
can be proved by checking these definitions just like the finite cases.
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Chapter 7. Continuity

Definitions. A function f: S — R is continuous at xo € S iff Xli)n)} f(x) = f(xp), i.e. forevery & > 0, thereis § > 0

xes
such that forall x € S, |x —xp| < 8 = |f(x) — f(x9)| < &. For E C S, we say f is continuous on E iff f is
continuous at every element of E. Also, we say f is continuous iff f is continuous on the domain S.

Sequential Continuity Theorem. [ : S — R is continuous at xo € S if and only if for every x, — xy in S,
lim f(xn) = f(XO) = f( lim )C,,).
n— 00 n—0oo

Proof. Just replace L by f(xg), 0 < |x —xgl <d8by|x —x¢l <dand x, — xpin S\ {x0} by x, — x¢in S (i.e. delete
the x, # xo requirement) in the proof of the sequential limit theorem.

Example. It is casy to give examples of continuous functions, such as polynomials. Here is an example of a function
1 ifxeQ
0 ifxgQ’

Reason. Forevery xg € R, n € N, by the density of rational numbers and irrational numbers, there arer, € Q, s, € Q
in (xo — L, x0). Now r, = Xg, 4 — Xo, but lim f(ry) =1and lim f(s,) =0. So lim f(x) cannot exist.
n—0c0 n—>00 X—=>Xo

n?

not continuous at any point. Let f(x) = { then f is discontinuous at every x € R!

Theorem. If f, g : S — R are continuous at xo € S, then f + g, fg, f/g (provided g(xy) # 0) are continuous at x.

Proof. Since f, g are continuous at x, Xlij&lﬂ(f +g)(x) = Xan;ﬂ fx)+ xlirgln g2(x) = fxp) + g(xo) = (f + g)(x0p).

So f + g is continous at xg by definition. The subtraction, multiplication and division cases are similar.

Theorem. If f : S — R is continuous at xo, f(S) C 8, g : S — Ris continuous at f(xp), then g o f is continuous
at xo.

Proof. By the sequential continuity theorem, all we need to show is that lim (g o f)(x,) = (g o f)(xg) for every
n—oo

sequence {x,} converging to xg. Since f is continuous at xg, by the sequential continuity theorem, the limit of f(x,)
is f(xg). Since g is continuous at f(xg), so lim g(f(x,)) = g(lim f(x,)) = g(f(x0)).
n—o0o n—0o

In the discussions below, S will denote an interval of positive length.

Theorem (Sign Preserving Property). If g: S — R is continuous and g(x¢) > O, then there is an interval I =
(xo — 8, xo +8) with 6 > O such that g(x) > O foreveryx € SNI.(The case g(xy) < 0 is similar by considering —g.)

Proof. Let ¢ = g(x¢) > 0. Since g is continuous at xg, there is § > 0 such that for x € S, |x — x| < § =
lg(x) — g(x0)| < &.Sox € SN (xo—3,x0 +3) = 0= gxo) — & < g(x).

Intermediate Value Theorem. If f:[a, b] — R is continuous and yy is between f(a) and f(b) inclusive, then there
is (at least one) xo € [a, b] such that f(xg) = yo.

Proof. The cases yg = f(a) or yop = f(b) are trivial as xo = a or b will do. We assume f(a) < yo < f(b). (The
other possibility f(a) > yg > f(b) is similar.) The set S = {x € [a, b]: f(x) < yo} is nonempty (a € S) and has b as
an upper bound. Then xg = sup S € [a, b].

By the supremum limit theorem, there is a sequence {x,} in S such that lim x, = xy. Note x,, € [a, b] implies
Xxg € [a, b]. Then f(xg) = lim f(x,) < yo by continuity of f at xg. Assume f(xg) < yg. Then xg # b as yg < f(b).
Define g(x) = yo — f(x) on [a, b]. Since g(xg) > 0, by the sign preserving property, there is x; > xg such that
g(x1) > 0. Then f(x1) < yo. So xg < x; € S, which contradicts xg = sup S. Therefore, f(xg) = yo.

Examples. (1) The equation x° + 3x + sinx = cosx + 10 has a solution. To see this, let f(x) = x> + 3x +sinx—
cosx — 10, then f(0) = —11and 26 < £(2) < 30. Since f is continuous, the intermediate value theorem implies
f(x) = 0forsome x € (0, 2).
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(2) Suppose p(x) = x" +a1x" ' +---+a, withn odd. Let xo = 1 + |ai| + -+ + |a.| > 1, then we have
pxo) = x +arxi 4 ~1+ an and p(—xg) = —xf +aixf ' =+ a,. Soxl — p(xg) = —aixy - —a,

and xj + p(—xo) = aix; -+ 4 a,. By the triangle inequality,
xg — p(xo) -1 -1 -1 I
x6’0+ Jiraeny = larxg |4 Flan] < larlxg " 4 Flaalxg = (arl +-- -+ la.Dxy < xg.
Then p(x) > 0and p(—x¢) < 0. By the intermediate value theorem, there is a root of p(x) between —xg and xg.
Extreme Value Theorem. If f:[a,b] — R is continuous, then there are x,

wy € la, bl such that f(wy) < f(x) < f(xg) for every x € |a, b]. So the range
of fis f([a, b]) = [f(wy), f(xo)]. In particular, f is bounded on [a, b]

In this case, we write f(xg) = sup{f(x) : x € [a,b]} = Ir%a);] f(x) and
Swo) = inf{f(x): x € [a,b]} = xg[lcitr;)] fx). ’

a X wo b

Proof. We first show f([a, b]) = {f(x) : x € [a, P]} is bounded above. Assume it is not bounded above. Then each

n € N is not an upper bound. So there is z,, € [a, b] such that f(z,) > n. By the Bolzano-Weierstrass theorem, {z,,}

in [a, b] has a subsequence {z,,} converging to some zo € [a, b]. Since f is continuous at zg, lim f(z,,) = f(zo0),
j—o00

which implies { f(z,;)} is bounded by the boundedness theorem. However, f(z,,) > n; > j irhplies {f(zn;)} is not
bounded, a contradiction.

By the completeness axiom, M = sup{f(x) : x € [a, b]} exists. By the supremum limit theorem, there is a
sequence {x,} in [a, b] such that lim f(x,) = M. By the Bolzano-Weierstrass theorem, {x,} has a subsequence {x,, }
n—oc

such that klim Xn, = Xo In [a, b]. Since f is continuous at xo € [a, b], M = klim f(xn,) = f(x0) by the subsequence
theorem and the sequential continuity theorem, respectively.
Similarly, inf{ f(x) : x € [a, b]} = f(wp) for some wy € [a, b].

d dy
The following two theorems are for explaining the d_x =1 / d—) rule in the next chapter.
y X

Continuous Injection Theorem. [f f is continuous and injective on [a, b), then f is strictly monotone on |a, b] and
f([a, b]) = [f(a), f(B)] or [ f(B), f(a)]. (This is true for any nonempty interval in place of [a, b). The range is an
interval with f(a+), f(b—) as endpoints.)

Proof. Since f is injective, either f(a) < f(b) or f(a) > f(b). Suppose
fo L f(a) < f(b). Lety € (a, b). Then f(y) cannot be greater than f(b), otherwise
by the intermediate value theorem, there is w € (a, y) such that f(w) = f(b),
contradicting injectivity. Similarly, f(y) cannot be less than f(a). Therefore,
fla) < f(y) < f(b). If a < x <y < b, then similarly f(a) < f(x) <
f@) L f(¥) < f(b),ie. fisstrictly increasing on [a, b] and f([a, b]) =[f(a), f(B)]

; f f by the intermediate value theorem.

The case f(a) > f(b) leads to f strictly decreasing on [a, b].

fy L+

Continuous Inverse Theorem. If f is continuous and injective on [a, b, then f~' is continuous on f ([a, b])<
Proof. By the last theorem, f is strictly monotone on [a, b]. We first suppose f is strictly increasing. Then ! is
also strictly increasing on f([a, b]) = [f(a), f (D)].

For yo € (f(a), f(D)], letr = fY(yo—) = lim f~'(y), which exists by the monotone function theorem.

Y=Y
Since f~'(v) € [a,b], r € [a,b]. Let {y,} be a sequence in (f(a), yo) converging to yo, then w, = f'(¥n)
will converge to r by sequential limit theorem. Since f is continuous at r, by the sequential continuity theorem,
f@r)y = lim f(w,) = lim f(f “'(3)) = yo. Then f~'(yo) = r = f~'(yo—). Similarly, if yo € [f(a), (b)), then
F Y ye+) = £ Y (yp). So f~is continuous on [ f (@), f(b)] = f([a, b]). The case f is strictly decreasing is similar.
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Appendix: Fundamental Theorem of Algebra

The extreme value theorem is often used in estimating integrals. More precisely, if f : [a, b] — R is continuous,

b
then form = min f(x) and M = rr%aé] f(x),wehavem < f(x) <Mand m(b —a) < / fx)dx <M —a).
X€la. o

x€la,b)

Here we will mention that there is a version of the extreme value theorem for continuous functions defined on
closed disks of finite radius on the plane. As an application of this fact, we can sketch a proof of the fundamental
theorem of algebra, which asserts that every nonconstant polynomial with complex coefficients must have a root.

Let p(2) = 2" + aiz" '+ --- +a, and m = inf{| p(2)| : z € C}. We have

i n i n
—k —k —k —k
21 = |p@ = Y ae ™| < 1p@I+ Y larllzl"™ = 1p@1 > 12l = laelle”™ = 12" (1= D laellzl ™).
k=1 k=1 k=1 k=1

—_—
—1— as |z]->c0

n ]
So for |z] large, 1 — Z lag]lz| 7 > 3 For a very large K > +/2m, we have |z| > K implies
k=1

- — 1 i ] i
p@1= 120" (1 = Y laulizl™) = Sl > Sk > m.
k=1

Let Dg be the closed disk {z : |z] < K}. Wehave m = inf{|p(2)| : z € C} = inf{| p(2)| : z € Dk} = | p(zp)| for some
zo € Dg by the extreme value theorem, since | p(z)] is continuous on Dy .

We claim m = |p(z0)] = 0. Suppose m # 0. Then f(z) = p(z + z0)/p(z0) is a polynomial of degree n and
fO=1.80 f(z)=1+biz+---+b,7" forsome by, ..., b, with b, # 0. Let k be the smallest positive integer such
that by # 0. Then f(z) = 1+ biz* + -+ + by2". Since | p(z + 20)| = m = | p(z0)|, we get (x) |f(z)| > 1 forall z.

Introduce the notation ¢’ = cos o +1i sin &, which describes the pqints on the unit circle. Since the absolute Value
of —|by| /by is 1, 80 —|by| /by = €' for some . Let 0 = a/k, then e*’by = ¢/®b; = —|by|. Considering w = re'
with r < |bg|"¥(= 1 = r¥|by| > 0), we have |1 + brw®| = |1+ ber*e™®| = [1 — r¥|by|| = 1 — r* || and

|f )] = 11+ brw* + - + byw"| < |1+ bw*| + b w* ™ | + - + [bw”
=1 —r*bel + b [P + -+ alr”
= 1= r*(Ibel = bisalr = - = |balr" ™).

—|bi|> 4B >0 AS r—0+

Taking w = re'® with a very small positive r, we have | f(w)| < 1 — r¥(3]b|) < 1, a contradiction to (x). Therefore
m = | p(zo)| = 0 and zg is a root of p(z).
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Chapter 8. Differentiation

Definitions. Let S be an interval of positive length. A function f:S — R is differentiable at xq € S iff f'(xg) =

lim M exists in R. Also, f is differentiable iff f is differentiable at every element of S.
X—Xo X — Xo
xe8

Theorem. If f : S — R is differentiable at xy, then f is continuous at xy.

Proef. By the computation formulas for limits,

fx) — f(xo0)

X — Xp

lim f(x)= lim [( )(X —x) + f(xo)] = f'(x0) - 0+ f(x0) = f(x0).

X—Xg X—Xg

Theorem (Differentiation Formulas). If f, g : S — R are differentiable at xq, then f + g, f — g, fg, f/g (when
g(xo) # 0) are differentiable at xo. In fact, (f £ g)'(x0) = f'(x0) £ g'(x0), (f8)'(x0) = f'(x0)g(x0) + f(x0)g'(x0)

and (i)’(xo) _ f(x0)g(x0) — J;(Xo)g (xo)
g g(xo)

Proef. By the computation formulas for limits,

lim

X—>Xg X — Xg X—>Xp

(f£)) - (FE)x0) _ lim [f(x) — f(x0) n g(x) —g(xo)] — F) + ¢/ (xo)

X — X X — Xp

(f&)x) — (f8)(x0)

i RCIZID0 _ gy [ LOZTED 010 D=8 | gt + g o,
LAV
. Qu-Qw . [f(X)—f(xo) ) = (xo> ‘o )]
o X — Xp o xox g(x)g(xo) x—xg oS00 x —
f'(x0)g(x0) — f(x0)8’ (xo)
g(x0)?

Theorem (Chain Rule). If f : S — R is differentiable at xg, f(S) C S’ and g : ' — R is differentiable at f(xy),
then g o f is differentiable at xg and (g o ) (x0) = g'(f(x0)) f'(x0).
Proof. The function

8 —8(fxo)) ..
MY =1 vy fr) it y # f(xo)

g'(f(x0)) if y = f(xo)
is continuous at f(xo) because yli}{‘x )h(y) = ¢'(f(x0)) = h(f(x0)). So g(y) — g(f(x0)) = h(¥)(y — f(x0)) holds

for every y in the domain of g. Then

lim 82D =82S0 i px >)f(7f:(°) B o)) £ (x0) = &'(F (xo)) f (o)

X=X X — Xo X—>X0

Remarks. Note f differentiable at xo does not imply f’ is continuous at xg. In fact, the function f(x) = x2sin % for

1
x # 0and f(0) = lim x*sin — = 0 is continuous and differentiable with f'(x) = 2xsin1 — cos 1 for x # 0 and
xX—> X

1 1 1
F/(0) = lim(x? sin — —0)/x = 0. However, f is not continuous at 0 because lim f'(x) = lim 2x sin — — cos — does
x—0 X x—0 x—0 X X

1
not exist, hence not equal to f£/(0). In particular, f is not twice differentiable. (Also, the function g(x) = x?sin =
X

for x # 0 and g(0) = 0 is differentiable on R, but g’(x) is not continuous at 0 and g’(x) is unbounded on every open
interval containing (.)
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Notations. C%(S) = C(S) is the set of all continuous functions on S. For n € N, C"(S) is the set of all functions
f:S — R such that the n-th derivative £ is continuous on S. C*(S) is the set of all functions having n-th derivatives
for all n € N. Functions in C!(S) are said to be continuously differentiable on S.

Inverse Function Theorem. If f is continuous and injective on (a, b) and f'(xo) # 0 for some xy € (a, b), then f~!

s differentiable at yo = f(x0) and (£ (0) = ——, ie. = =1 [ %
is differentiable at yo = f(x¢) an Yo) = —— ie —— = —.
f'(x0) dy dx
X —Xp )

if x # xg 1
Proof. The function g(x) = f (f) = S (x0) is continuous at xy because lim g(x) = ——— = g(xp).

if x = xp =X J'(x0)

S (x0)
Since f is continuous and injective on (a, b), f~! is continuous by the continuous inverse theorem. So lim f~'(y) =
y—=>Yo
'O = 0w

1 (0) = xo and (f 'Y (yo) = lim
Y=o Yy —>Y

= lim g(f ') = g(r0) = ——.
y—>Yo f/ (X() )

Local Extremum Theorem. Ler f : (a,b) — R be differentiable. If f(xq) = mir}) f(x)or f(xy) = max f(x),
x€(a.by xe(a,by

then f'(xg) = 0.
Proof. If f(x) = min f(x), then 0 < lim O = fxo) _ f'(xo) = lim w <0.So f'(xo) = 0.
xea, + i 0

X=Xy X — Xo X=Xy

The other case is similar.

Rolle’s Theorem. Ler f be continuous on [a, b] and differentiable on (a, b). If
; \ f(a) = f(b), then there is (at least one) zg € (a, b) such that f'(zg) = 0.

Proof. This is trivial if f is constant on [a, b]. Otherwise, by the extreme
value theorem, there are xg, wy € [a, b] such that f(xy) = ma;}() fx) >
x€la.bl

l \_/ %o & Xg[lcit% f(x) = f(wy). Either f(xg) # f(a) or f(wy) # f(a). So either xy or
wo is in (a, b). By the last theorem, f'(xg) = 0 or f'(wy) = 0.

Mean-Value Theorem. Ler f be continuous on [a, b] and differentiable on
(a, b). Then there exists xy € (a, b) such that f(b) — f(a) = f'(x0)(b — a).
b) —
Proof. Define F(x) = f(x) — (w(x —a)+ f(@)). Then F(a) =
—a
0 = F(b). By Rolle’s theorem, there is xy € (¢, b) such that 0 = F'(xy) =

a o e F(x0) — W, which is equivalent to f(b) — f(@) = f'(xo)(b — a).

Examples. (1) Fora < b, show |sinb — sina| < |b — a|. (By the mean-value theorem, there is xg € (a, b) such that
sinb — sina = (cosxp)(b — a), so |sinb —sinal| < |b—al.)

(2) Show (1 4+x)* > 1+ axforx > —landa > 1. (Let f(x) = (1 + x)* — 1 — ax, then there is xy € (0, x) if
x>0o0rxye (x,0)if —1 < x < O such that

(1 +x)* =1 —ax = f(x) = f(0) = f'(x)(x —0) = a((1 +x0)* " = Dx > 0.)

(3) Showlnx <x —1forx > 0. (Let f(x) =Inx —x + 1, then f(1) = 0.If x > 1, then there is xy € (1, x) such
that

1
IHX—x+1:f(x):f(x)—f(l):f/(xo)(x—1):(x—o—l)(x—l)fo.
The case 0 < x < 1 is similar.)
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(4) To approximate +/16.1, we can let f(x) = /x. Then f(16.1) — f(16) = f'(c)(16.1 — 16) for some c
between 16 and 16.1. Now ¢ =~ 16 and f(16.1) — f(16) ~ f/'(16)(16.1 — 16) = 0.0125, which gives
V/16.1 = f(16.1) = 4.0125.

Curve Tracing Theorem. If [’ > O (respectively ' > 0, ' <0, f' <0, [ #0, f' = 0) everywhere on (a, b), then
f is increasing (respectively strictly increasing, decreasing, strictly decreasing, injective, constant) on (a, b).

Proof. If x, y € (a,b) and x < y, then by the mean value theorem, there is xo € (x,y) such that f(y) —
f(x) = f'(xe)(y — x) > O (respectively > 0, < 0, < 0, # 0, = 0). Therefore, f(x) < f(y) (respectively
fxy< fO), f&x)= fO), f)> ), f&)#FO), fx)=fO)N.

Remarks. For differentiable function f, the converse of the strictly increasing (respectively strictly decreasing,
injective) parts of the curve tracing theorem are false. To see an example, consider f(x) = x>, which is strictly
increasing on R, but f'(0) = 0. The converse of the increasing (respectively decreasing, constant) parts are true
because (f(x) — f(xg))/(x — x¢) is nonnegative (respectively nonpositive, zero) for x, xg € (a, b) and hence the same
for the limit as x tends to xg on (a, b).

Local Tracing Theorem. If f : [a, b] — R is continuous and f'(c) > 0 for some ¢ € [a, b, then there are ¢y, c; € R
suchthatcy < c < cyand f(x) < f(c) < f(y)forallx € (co,c)N[a,blandall y € (¢, cy)N|a, b. A similar result
for the case f'(c) < 0 holds and the inequality becomes f(x) > f(c) > f(y).

Proof. Let f'(c) > 0. Assume there is no such ¢y. Then for every n € N, there is x, € (¢ — %, ¢) N [a, b] such that

F(xs) > F(c). This leads to f'(c) = lim M

n—00 Xp — C

< 0, a contradiction. The other parts of the theorem are

similar.

1
Remarks. If f'(c) > 0, we may nothave f(x) < f(c¢) < f(y) similar to above as the function f(x) = x2%sin — with

X
f(0) = O satisfies f'(0) = 0, but f takes positive and negative values on every open interval about 0.

Exercise. A function f : [a, b] — Ris said to have the intermediate value property iff for every yq in the open interval
with endpoints f(a) and f(b), there exists at least one xo € (a, b) such that f(xg) = yo. We have already showed
that continuous functions on [a, b] satisfied this property. Prove that if g is differentiable on [a, b], then g’ has the
intermediate value property. In particular, if g’(x) # 0 for all x € [a, b], then g’ > O or g’ < 0 everywhere on [a, b].

Next we will introduce the generalized mean-value theorem, which has two very important applications, namely
Taylor’s theorem and 1 Hdpital’s rule.

Generalized Mean-Value Theorem. Ler f, g be continuous on [a, b] and differentiable on {(a, b). Then there is
xo € (a, b) suchthat g’ (x0)(f (B) — f(@)) = f'(x0)(g(b) — g(a)). (Note the case g(x) = x is the mean-value theorem.)

Proof. Let F(x) = f(x)(g(b) — g(a)) — (f(b) — f(a))(g(x) — g(a)), then F(a) = f(a)(g(b) — g(a)) = F(b). By
Rolle’s theorem, there is xg € (a, b) such that 0 = F'(xq) = f'(x0)(g(b) — g(a)) — g’ (x0)(f (b) — f(a)).

Taylor’s Theorem. Let f: (a, b) — R be n times differentiable on (a, b). For every x, ¢ € (a, b), there is xo between
x and c such that

, " (n—1)
f(c)(x—c)—i—f(C)(x—c)2+...+—f ©

n—1
1 20 S A A

x—=0o).

(n)
F@ =@+ )

(x — ¢)" is called the Lagrange

(n)
(This is called the n-th Taylor expansion of f about c. The term R,(x) = / (,XO)

n
form of the remainder.)

n—1 k) ¢
Proof. Let I be the closed interval with endpoints x and ¢. For ¢ € I, define g(¢) = (n — 1)!2 / k‘( )

k=0
where fO = £, (x —x)° = 1. Let p(¢) = _(x -0 Wegetg'(t) = FON)(x —)" Land p'(t) = (x — )" . By

the generalized mean value theorem, there is xg between x and ¢ such that

('x - t)kv

g'(x0)  [px)—p@)]l= p'x)[ gx) —g()l
—— —_— —— ——

[ (Y (x—xg)" ! (x—c)/n (x—xp)" ! (=11 f ()
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(n) n=l r@k) ()
Then f(X) — (ngici), + f n(!XO) _ Z f (C) _ ) + f n(!-XO) (X _ C)”.

Lemma. Let h : (a,b) — [0,4+00) be a bounded function, where a may be real or —oc and b may be real or
+00. We have lim h(x) = 0 if and only if lim+ sup{h(t) :a <t < x} = 0. Similarly, lir;}lﬁ h(x) =0 if and only if

x—>at

llr;)]isup{h(t) x<t<b}=0

Proof. For right hand limits at a, lim+ h(x) = 0 is the same as for every & > 0, there ex