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This article first proposes a score-based test for a double autoregressive model against a threshold double
autoregressive (AR) model. Itis an asymptotically distribution-free test and is easy to implement in practice.
The article further studies the quasi-maximum likelihood estimation of a threshold double autoregressive
model. It is shown that the estimated threshold is n-consistent and converges weakly to a functional of a
two-sided compound Poisson process and the remaining parameters are asymptotically normal. Our results
include the asymptotic theory of the estimator for threshold AR models with autoregressive conditional
heteroscedastic (ARCH) errors and threshold ARCH models as special cases, each of which is also new
in literature. Two portmanteau-type statistics are also derived for checking the adequacy of fitted model
when either the error is nonnormal or the threshold is unknown. Simulation studies are conducted to assess
the performance of the score-based test and the estimator in finite samples. The results are illustrated
with an application to the weekly closing prices of Hang Seng Index. This article also includes the weak
convergence of a score-marked empirical process on the space ID(R) under an e-mixing assumption, which
is independent of interest.

KEY WORDS: Compound Poisson process; Quasi-maximum likelihood estimation; Score test; Thresh-

old ARCH model; Threshold double AR model; Volatility.

1. INTRODUCTION

Generally speaking, the conditional mean function and the
conditional variance function (i.e., the volatility or diffusion) of
a time series are most important in practice. A lot of time series
models have been suggested in the literature, see Tong (1990).
The threshold autoregressive (TAR) model proposed by Tong
(1978) has been widely investigated for the conditional mean
function and it has been applied in a wide range of fields such as
economics, econometrics, finance, etc. A comprehensive survey
on TAR models is available in Tong (1990, 2011) and Hansen
(2011). The ARCH-type models proposed by Engle (1982) and
Bollerslev (1986) are commonly used in modeling the condi-
tional variance functions in economic and financial time series.
An overall review on generalized ARCH (GARCH) models was
given in Francq and Zakoian (2010). The TAR model simply
with the plug-in GARCH model, called TAR/GARCH model,
has been used for a full specification of time series, see Li and
Lam (1995), Li and Li (1996), and Tsay (2010). In this model,
the driving random component in the GARCH part is not ob-
servable, but rather to the innovations of the TAR model. One
cannot directly measure on the market volatilities via its obser-
vations. Its structure is generally unclear, except for a special
case in Ling (1999), such that there is not any theoretical sup-
port to the statistical inference of this model up to date. These
disadvantages can be avoid in an alternative class of ARCH-
type models proposed in the literature, such as of autoregressive
moving-average (ARMA) models with ARCH errors in Weiss
(1986) and conditional heteroscedastic ARMA models in Tsay
(1987).
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Following Weiss (1986), in this article we consider a class of
self-exciting TAR models with conditional heteroscedasticity,
called threshold double autoregressive (TDAR) models. Specif-
ically, a time series {y,} is said to be a TDAR model of order
(p1, P25 q1, q2) (hereafter abbreviated as TDAR(p1, p2; 41, g2))
if it satisfies the following equation:

dro+20L b1y yiej + St\/am + 0L ytz,j,
if y,q=<r,
V=

@20 + Zfil @2 yi—j + 8z\/0620 + Z‘f:] ay; ytz_jv
if yi_q >r,

(1.1)

where ¢;;’s and «;;’s are the coefficients, r is the threshold
parameter, d is a positive integer called the delay parameter,
and p; and g; are known nonnegative integers. Compared with
the TAR/GARCH model, a significant difference of model (1.1)
is that the conditional variance is specified in function of the
observations. Its expression gives a visible dynamic behavior of
the conditional variance and provides a direct way to compute
the one-step future volatility. Its structure, such as the strict
stationarity and V-uniform ergodicity, was studied by Cline and
Pu (2004) under a general setting.
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Model (1.1) implies the DAR model as a special case. The
related work can be found in Ling (2004, 2007), Chan and Peng
(2005), Ling and Li (2008), Zhu and Ling (2013), and Chen, Li,
and Ling (2014). When o;;’s are zeros, i = 1,2, j =1,..., ¢;,
model (1.1) reduces to a TAR model. Asymptotic theory on
least-square estimates (LSE) of TAR models were developed
by Chan (1993) and Li and Ling (2012) when the autoregres-
sive function is discontinuous and by Chan and Tsay (1998)
when the autoregressive function is continuous. Under the as-
sumption that the threshold effect is vanishingly small, Hansen
(1997, 2000) obtained the distribution- and parameter-free limit
of the estimated threshold. Seo and Linton (2007) proposed a
smoothed least-square estimation for the TAR/regression model
and showed that the estimated threshold is asymptotically nor-
mal but its convergence rate is less than n and depends on
the bandwidth. When ¢;;’s are zeros, model (1.1) is a thresh-
old ARCH (TARCH) model, see Rabemananjara and Zakoian
(1993) and Zakoian (1994). If the threshold were known, it is
more or less standard to estimate the parameters in model (1.1).
The difficulty is when the threshold is unknown. In this case, no
asymptotic theory has been established in literature up to now,
even for the simple TARCH model.

In this article, we first study Ling and Tong’s (2011), ab-
breviated to LT (2011), score-based statistic for testing the null
DAR model against the alternative TDAR model. Under the null
hypothesis, it is shown that the test statistic converges weakly
to the maxima of a squared standard Brownian motion. We
then study the quasi-maximum likelihood estimator (QMLE)
of model (1.1). It is shown that the estimated threshold is n-
consistent and converges weakly to a functional of a two-sided
compound Poisson process and the remaining parameters are
«/n-consistent and asymptotically normal. Our results include
the asymptotic theory of the estimator for TAR models with
Weiss’ (1986) ARCH errors and for TARCH models as special
cases, each of which is also new in literature. Two portmanteau
test statistics are derived for checking the adequacy of fitted
models. Simulation studies are conducted to assess the power of
our test and the performance of the QMLE in finite samples. The
results are illustrated with an application to the weekly closing
prices of Hang Seng Index.

The remainder of this article is organized as follows. Section 2
gives a score-based test and derives its limiting distribution. Sec-
tion 3 presents the QMLE and states its asymptotic properties.
Section 4 gives portmanteau test statistics. Simulation studies
are reported in Section 5 and an empirical example is analyzed in
Section 6. All proofs of main theorems are given in Appendices.
It includes the weak convergence of a score-marked empirical
process under an «-mixing assumption, which is independent
of interest.

Throughout the article, some symbols are conventional. C is
an absolutely positive constant, which may be different in dif-
ferent places. I(-) is the indicator function. R? is the Euclidean
space of dimension p and | - || denotes the Euclidian norm.
| - lloo is the supremum norm, that is, || fllec = sup,cg | f(X)I.
I, is an m x m identity matrix. Denote ID(A) as the space of
real-valued functions on the set A, which are right continuous
and have left-hand limits. The space D(A) is equipped with
the Skorohod topology (see Billingsley 1999). = denotes the
weak convergence.
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2. A SCORE-BASED TEST FOR DAR AGAINST
TDAR MODELS

It is an important step to test for a threshold effect in time
series modeling. The likelihood ratio (LR) test was studied by
Chan (1990) and Chan and Tong (1990) for AR against TAR
models, and by Wong and Li (1997,2000) for AR-ARCH against
TAR-ARCH models, see also Zhang et al. (2011). In this section,
we will study a score-based test for DAR against TDAR models.

Under the null hypothesis Hy, we assume that time series {y,}
follows a DAR model:

vi=¢'Y, 1+ eva'X,_y, 2.1)

where {¢,} is a sequence of independent and identically dis-
tributed (iid) random variables with zero mean and unit
variance, ¢ = (¢o, ¢1, ..., ¢Pp), 00 = (o, o0, ..., 05), Y, =
(L, y—1, ..., y—p),and X,y = (1, ytzfl, e ylz_q)’. The alter-
native H; is the threshold counterpart of (2.4) like model (1.1).
Letf = (¢', &) be the parameter and © be the parameter space,
which is compact withe < o; <& (i =0, ..., g), where o and
@ are some positive constants. The true value 6y = (¢, o))’ is
an interior point of ©. Given data {y;_,, ..., y,}, under Hy, the
conditional quasi-log-likelihood function (ignoring a constant)
can be written as

1 , ,
La®) = =3 k() with 1) =log(@X, 1)
t=1
+(yt - ¢/Yt—1)2.
(X,X,_l

Denote 5,, as the QMLE of 0, that is, the maximizer of L,(6) on
®. For simplicity, in this section, we assume that &, is symmetric.
If {,} is stationary and ergodic with Ey!' < oo, the density of &,
is positive on R, and k4 = E¢} < 0o, Ling (2007) showed that

~ 1 <
V@, —60) = = 7 > Di(Bo) + 0,(1),
t=1

where
Y/ —¢'Y,_
Dt(o) — < ,,1(yt ¢ t l)’
Ol/X,,1
_ ngl [1 _ (e — ‘f’,Yt—l)ziI)/
2“/X[71 a/X[71 ’
Y, Y _ I(y—q <
I =diag{E( -l ti} (o d_X)>,
ol()Xr—l

E <XZ_1X;II(y,_d < x))}
2(epX;1)? ’
x € R=RU {+o00},

for some positive integer d.
To introduce our test statistic, we first define the score marked
empirical process

—~ 1 ~
T,(x,0,) = —= U'DO)Gia<x), (22
t=1

Vi
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where U = diag{I,+1, VOS® — Dlgyi}, %= 2305,
and 1 < d < max{p, q, 1}. T,(x, 8,,) is precisely the score func-
tion in the LR test under H;. When g, ~ N(0, 1), it was dis-
cussed by LT (2011). Our current setting in (2.2) can be applied
for the cases when ¢, 7 N(0, 1). LT (2011) established the weak
convergence of T,(x,@,) on the space D[a, b] for any fixed
b < oo. Theorem 1 gives its weak convergence on the space
D(R). This improvement is not trivial and is because of a new
weak convergence under an o-mixing assumption in Appendix
A.

Theorem 1. Under the null Hy, if {y,;} from model (2.1) is
stationary and geometrically ergodic with E yt4 < 00, the density
of & is positive on R, and k4 = Esf < 00, then

Ty(x,0,) = Gpig42(x) in D(R),

where (G 442(x) 1 x € R}isa(p + g + 2)-dimensional Gaus-
sian process with mean zero and covariance kernel K,, =
Yny — IOt y; almost all paths of G ,4442(x) are continu-
ous in x.

Ideally, we should use the LR test for the threshold effect.
However, as mennoned in LT (2011), the LR test is a quadratic
form of T,(x, 9, ») and its limiting distribution involves some
nuisance parameters. Except Chan and Tong (1990) for the AR
model with iid normal errors, we need to use the simulation
approach to obtain its critical case by case; see, for example,
Wong and Li (1997, 2000). A possible way is to use a trans-
formation of 7,(x, #,). A general Gaussian process cannot be
transformed into a Brownian motion by a simple scaling and
linear transformation as a refg[ee pointed out. However, LT
(2011) observed that E;l T,(x,0,) = G*(x)under Hy, where
G*(x) is a vector Gaussian process in R with mean zero and
covariance kernel K§, = E;vly — 22!, and it has independent
increments. Because of this feature, LT (2011) showed that, for
any nonzero constant vector §, by a time-change technique, the
process B(t) = B'G*(x)/,/0, is a standard Brownian motion
ont =o0,/0, € [0, 1], where o, = B'(Z;' — T B.

Following LT (2011), we now define our score-based test
statistic as follows:

> lT X, 9,
Sy = max [,3 : (A )] 2.3)
xza ,B (Ena - n,oo)ﬁ
where a is a fixed constant, 8 is a nonzero p x 1 constant vector,
and

ZYZ IY, 1I(yt d < X)
n - d ’
' lag {l’l t=1 ”Xtil

1 Z": X1 X, _ I(y—a < x)
n = @ X,_)?

The range of maxima in S is [a, oo], while the one in LT
(2011) is [a, b] for any fixed b < oco. Our test avoids to select
the constant » as in LT (2011). By Theorem 1 and the continuous
mapping theorem, we have the following result:

Theorem 2. If the assumptions in Theorem 1 hold, then, for
any p x 1 nonzero constant vector 3, any fixed a € R and any

Journal of Business & Economic Statistics, January 2016

x € R, it follows that

lim P (S¢ < x) = P( max B*(r) <x),

n—o00 7€[0,1]
where B(t) is a standard Brownian motion on CJ[O0, 1].

Choosing the constant C, such that P(max,¢ 1] B*(t) >
C,) = a can provide an approximate critical value of Sy for re-
jecting the null Hj at the significance level «. Here, Cy; = 3.83,
Coos5 = 5.00, and Cy g, = 7.63 from the formula in Shorack and
Wellner (1986, p. 34)

4. (=1 2k 4 1?72
2 1 _ — A
P<rr?[3,’§13 ) Zx) =1 Zk 2k+1eXp< 8x )

There is no universal criterion for the choice of . A simple
choice for B is (1,..., 1), that is, we put equal weight on
each component of E IT(x, 9, »)- The optimal choice of 8 still
remains open. a is usually taken as the lower quantile of data
so that fn‘al exits. The simulation studies in Section 5 show
that S; has a good power empirically when a is around the
5(p + g + 2)% quantile of data.

Our test provides an easy and simple way to implement in
practice. But it may result in loss of power under some directions
as areferee pointed out. It is a compromise to the difficulty in the
LR test. LT (2011) showed that S has a nontrivial local power
under a general local alternative. For the following specific local
threshold alternative Hy,,:

N

WY, 1 1(yi—q < x)
Jn
WX, _ 1 I(y—qg <
+er Jog X1 + X1 10 d_X)’
Jn

with g, ~ N(0, 1), similar to Theorem 3.3 of LT (2011), we can
show that, under Hy,,,

Y = ¢6Yr—1 +

lim P (Sy < x) = P(Tren[ax [m. + B(0)]* < x),
where m, = /(' — 2. )%, u=(h},hy), r = Fy’l(r),
and F,(x) is the distribution of y, under Hy. Thus, our test
has a nontrivial local power unless m, = 0, which unlikely hap-
pens. In particular, for the TAR(1) model, it is equivalent to the
LR test in Chan (1990). It is expected to be useful for testing the
presence of threshold effects, see our simulation in Section 5.

3. THE QMLE AND ASYMPTOTICS OF TDAR MODEL

Assume that {y;,...,y,} is a sample from model
(1.1). Given the initial values {yi_p,..., yo}, where p =
max{pi, p2, g1, g2}, the conditional log-likelihood function
(omitting a constant) is defined as

1 u2(0)

1
-5 lOg (0) — =

L,(0) = Zz(a) with  £,(0) = Ih)

t=1

where 0 = (A, r) =

(¢, o), 5, ), 1) is the parameter with
oi = (dio, di1, - - -, Pip,) and o; = (o, 1, - . ., Uig,)', and

u;(0) = Yt — ,U«z(o): Mt(o) = (¢§Yl,z—l)l()’t—d <r)
(Yo DI (Yi—a > 1),
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he(0) = (&', X1~ (yi—a < 1)+ (@5X0,- 1) (Yi—a > 1),
3.1)

with Yi,t—l = (1, Vi—1y .-
ytzfq,_)’ fori =1, 2.

In practice, d is unknown and can be estimated consistently
by an analogous procedure in Chan (1993), Li and Ling (2012),
and Li, Ling, and Li (2013). For simplicity, we assume that d is
known and 1 < ii < max(p, 1). Let ® be the parameter space.
The maximizer 0, = (5::,,7’})/ of L,(0) on O is called a QMLE
of the true value 6y = (Ay, 70) € O. That is, 0, is defined by
0, = argmaxgce L,(0). Due to the discontinuity of L,(#) in 7,
one can take two steps to find 6,,:

Vep)sand X,y = (L y2 ...,

e For each fixed r, maximize L,(#) and get its maximizer
X (). ~

o Since the profile log-likelihood L} (r) = L,(A,(r),r) is a
piecewise constant function and only takes finite possi-
ble values, one can get the maximizer 7, of L*(r) by
the enumeration approach and then obtain the estimator
0, = (A'n(;\l’l)/sﬁl)/'

Generally, there exist infinitely many r such that L, (-) attains
its global maximum. One can choose the smallest r as an esti-
mator of ro, for example. According to this procedure, 8, is the
QMLE of 0y, that is, L, (0,) = maxgce L,(0).

In applications, the order (pi, p2;¢1,q2) is unknown and
needs to be determined. It can be selected by the Akaike infor-
mation criterion (AIC) or Bayesian information criterion (BIC)
as follows:

AIC({pis i) = —2L,0,) +2(p1 + pr + q1 + g2 + 5);
BIC({pi;¢i}) = —2L,(8,) + (p1 + p2 + q1 + ¢z + 5) log .

Without loss of generality, in what follows, we assume that the
order (p1, p2; 41, q2) is known. To state asymptotic properties
of 6,1, we first give two assumptions on the error {&,} and the
parameter space © as follows.

Assumption 1. {&;} is iid with zero mean and unit variance,
and has a positive and continuous density f(x) on R.

Assumption 2. The  parameter space @O = {0 ¢
RPFPHOHRES ) oL o or oy F ap, a0 > 0,0 =1,2, j =
0,1,...,¢q;}is compact.

The following theorem states the strong consistency of 5,,

Theorem 3. Suppose that Assumptions 1-2 hold and {y,} is
strictly stationary and ergodic with Ey? < oco. Then, 8, — 6,
almost surely (a.s.), as n — 00.

We should mention that there is no requirement for the mo-
ment of y, in Theorem 3 if p; = p» = g1 = ¢». Since the
compactness of ©, there exists a positive constant o such
that ;; > o > 0. Thus, a(1 + Y_7_, y> ) can control the log-
likelihood and the score functions such that they are bounded,
see Remark 3.2 in Ling (2007). Similar phenomenon can be also
found in Ling (2004) and Ling and Li (2008).

Let Z; = (3, ..., yi—p+1). Then {Z,} is a Markov chain.
Denote its [-step transition probability by P!(z, A), where z €
R” and A is a Borel set. To obtain the convergence rate of 7, and
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the asymptotic normality of = 5:,,(?,1), we need three more
assumptions as follows.

Assumption 3. {Z,} admits a unique invariant measure I1(-)
such that there exist K > 0 and p € [0, 1), for any z € R” and
anym > 1, |P™(z,-) — OC)|ly < K(1 4 [|z]|*)p™, where || - ||y

denotes the total variation norm.

This assumption is on the V-uniform ergodicity of model (1.1)
with V(z) = K(1 + ||z||?), under which {y,} is strictly stationary
if the initial value Z follows the invariant measure IT. Without
loss of generality, in what follows we assume that Zj ~ II.
Assumption 3 is stronger than that {y, } is geometrically ergodic.
From Corollary 2.2 in Cline and Pu (2004), Assumption 3 holds
if Assumption 1 holds with sup, .p {(1 + |x]) f(x)} < oo and

p 2 p
[ D2 maxtgul, @20} + D" maxes azp) < 1,
j=1 j=1

where ¢;; = 0for j > p; ando;; =0for j > ¢q;,i =1, 2.
Assumption 4. k4 = E(g}) < oo and Ey} < oo.

Assumption 5. There exist nonrandom vectors w =
(L, wy, ..., w,) withwg =rgand W = (1, Wy, ..., W,) with
W, = r such that

{(@10— ¢20)'W}2 + {(et10 — 0620)'W}2 >0,

where the vectors ¢;(’s and &;o’s have been extended by adding
zero entries such that they are (p + 1)-dimensional vectors for
simplifying notations, that is, ¢;; o = O for j > p; and otjj 0 =0
for j > ¢;,i = 1, 2. (In what follows, we use this convention.)

Assumption 5 is similar to the Condition 4 in Chan (1993)
and implies that either the conditional mean function w,(@) or
volatility function /,(f) in model (1.1) is discontinuous over
the hyperplane y,_; = ro. It is a necessary condition for the
n-convergence rate of 7,,. If oi19 = atp9, then Assumption 5 is
equivalent to (¢19 — ¢29)' W # 0, which is exactly the Condition
4 in Chan (1993) that u,(0) is discontinuous. The discontinuity
of u,(@) plays a key role in obtaining the convergence rate of
the estimated threshold in TAR models; see Chan (1993) and
Chan and Tsay (1998). In Assumption 5, w; and W,; may not be
components of w and W if d > p. In this case, Assumption 5 is
identical to ||¢p19 — ¢20ll + |10 — ool > 0, which is necessary
and sufficient for the identification of the threshold. Both w,(8)
and £,(0) are continuous over the hyperplane y,_; = r¢ if and
only if

®10 + d1a ro = P20 + P24 1o,

2 2
o0+ aig ry = o + g 1y,

b1j = ¢2j,
Ay :Oézj,j #d

In this case, we call model (1.1) continuous TDAR model. For
continuous TDAR models, the theory of estimation is challeng-
ing and we will study this case in a separate article.

Theorem 4. If Assumptions 1-5 hold and 6 is an interior
point of ©, then

i) n@ —ro) = O,(1);
() n sup  [[Ka(r) = Aa(ro)| = 0,p(1)

[r=ro|<B/n
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for any fixed constant 0 < B < oo,

where i,,(r) is the QMLE of the coefficients when r is known.
Further, it follows that

Vi, —ro) = n(,(ro) — Xo) + 0,(1)
— NO,Q 'z

asn — 00,
where Q = diag(A;, 0.5B;, A;,0.5B,), X =diag(¥, X»)
with
Y= , =12,
K T Kkg—1
;=B
where k3 = E(&}),
Yi l*lY/' t—1
Ai=E ’,—l'gi(ro)} ,
“ion‘,t—l
Xi l*lX/’ t—1
B;=FE }—l'gi(ro)},
(ot} Xi—1)?
and D, =E Vi1 Xi ( )}
i = —~ 1,8l
(o)X —1)/?

with g1(ro) = 1(yi—a < ro) and g2(ro) = I(y;—q > 10).

Ife; ~ N(O, 1), then ’én is the maximum likelihood estimator
of §p and Q7'EQ' = Q7! If ¢ is symmetric, then k3 = 0
and Q7'2Q 7! = diag {A]", (ks — DB ALY, (ks — DB ')

To describe the limiting distribution of n(7,, — rg), we con-
sider the limiting behavior of a sequence of normalized profile
log-likelihood processes defined by

La(2) = —2{L,(Xu(ro + 2/n), 1o
+z/n) = Ly(Aa(ro). ro)}, z€R. (3.2)

Using Theorem 4 and Taylor’s expansion, it is straightforward
to show that L,(z) can be approximated in D(R) by

Pn(@) =1z <0 &l (ro+2/n < yia < ro)

t=1

+1(z > 0)Z§2z1(ro < Yi—a <ro+2/n),

t=1

where
o tog %X {610 — 020V, + 60/l X )
= 10 —¢ ’
' 10Xi-1 o X1 1
2

oo X, {(¢10 — $20) Y1 — Sfm} .

{y =log n + - — g2
o‘20Xt—] alOthl

(3.3)

We further define a two-sided compound Poisson process
£(2) as

@) =1z <0z + Iz = 0)n(2), z€ R, (3.4)

where {1(2), z > 0} and {»(z), z > 0} are two independent
compound Poisson processes, both with jump rate 7 (rp), which

Journal of Business & Economic Statistics, January 2016

is the value of the density 7 (x) of y; at x = rg, £1(0) = 2(0) =
0 a.s. and the distributions of jump being given by the condi-
tional distribution of ¢; = ¢y, given y,_4 =r, and the con-
ditional distribution of ¢, = ¢, given y,_4 = r(;’ , respectively.
We work with the left-continuous version for g;(z) and the
right-continuous version for g,(z). The former conditional dis-
tribution is the limiting conditional distribution of ¢;; given
ro— 38 < yi—q <ryp as § | 0 and the latter that of ¢, given
ro < Yi—qg <ro+d8asé | 0.Clearly, p(z) goes to infinity a.s. as
7 — Foosince E¢; > 0 and E¢, > 0 by Assumption 5 and an
elementary inequality log(1/x) +x — 1 > 0 for x > O unless
x = 1. Thus, there exists a unique random interval [M_, M)
at which the process g(z) attains its global minimum. The fol-
lowing theorem states that n(7, — ro) converges weakly to a
functional of the compound Poisson process defined in (3.4).

Theorem 5. If Assumptions 1-5 hold, then n(r, — ro) =
M _. Furthermore, n(7, — ro) is asymptotically independent of
Jn ():n - XO), which is always N(0, Q7' 2 Q") asymptotically.

Wheno;; =0,i =1,2, j=1,...,g;, model (1.1) reduces
to a TAR model. Further, when o) = a»y, Theorem 5 reduces
to the asymptotic theory of the LSE of 6, in Chan (1993) for
the TAR model. When o9 # oy and (@) is discontinuous,
since our estimator is the QMLE, 3:,1 is more efficient than the
LSE of Aq in Chan (1993). Furthermore, 7,, has the same conver-
gence rate as the LSE of ry in Chan (1993), but the jump sizes
in the related compound Poisson processes are different. When
a9 # ayo and (@) is continuous, Chan and Tsay (1998) stud-
ied the LSE and showed that 7, is +/n2-consistent and 7, and A,
are asymptotically correlated. However, Theorem 5 in this case
showed that, based on our QMLE, 7,, is n-consistent and asymp-
totically independent of X,.. This fact is quite surprising because
the LSE and the QMLE result in sharply different convergence
rate of the estimated threshold.

Whena| = a;, Theorem 5 gives the asymptotic theory for the
TAR model with ARCH errors. The corresponding parameter is
0 =@, r)Y withA = (¢}, ¢, a’), and

Q 'z =
A 0 AT'D (B +By)~!

0 AS! A5 ' Dy(By + By)™!

k3(B1 +B2) 'DAT! k3(By +B2) 'DAT! (ks — 1)(By + Bo) !

where A;, B;, and D; are defined in Theorem 4 with replacing
a;o’s by ag. When all ¢;; =0, Theorem 5 gives the asymp-
totic theory for the TARCH model. The corresponding pa-
rameter is § = (A, ) with A = (&}, &}), and Q7'ZQ ! =
(kg4 — 1)diag(B1_1,B2_ l). Even for the last special cases, our
results are new in literature since the threshold parameter is
assumed to be known in Rabemananjara and Zakoian (1993),
Zakoian (1994), Li and Li (1996).

4. MODEL DIAGNOSTIC CHECKING

This section studies the asymptotic distributions of residual
and squared residual autocorrelation functions (ACF) of model
(1.1) and then uses them to construct test statistics for model
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Figure 1. Powers of the test statistic S; at significance level 0.05 based on 1000 simulations. The left panel is the power of the test of Hj
against the alternative (I). The right one is for the test of H, against the alternative (II).

Table 1. Simulation results for model (5.1) with 8, = (1, —0.6, 1, 0.5, —1, —0.2, 0.5, 0.3, 0)

n 10 o1 oy apy ®20 21 a0 g r
N, 1)
EM 1.0477 —0.5741 0.8650 0.4786 —1.0173 —0.1935 0.4180 0.2923 —0.0528
100 ESD 0.3542 0.2547 0.4112 0.2148 0.2555 0.1632 0.2288 0.1082 0.1242
ASD 0.3203 0.2363 0.3965 0.2116 0.2361 0.1550 0.2182 0.1029 0.1012
EM 1.0253 —0.5851 0.9398 0.4865 —1.0050 —0.1983 0.4596 0.2939 —0.0250
200 ESD 0.2337 0.1664 0.2931 0.1547 0.1692 0.1086 0.1579 0.0749 0.0548
ASD 0.2239 0.1670 0.2768 0.1501 0.1639 0.1088 0.1511 0.0725 0.0506
EM 1.0227 —0.5909 0.9734 0.4988 —1.0135 —0.1970 0.4861 0.2971 —0.0127
400 ESD 0.1605 0.1182 0.1977 0.1069 0.1132 0.0771 0.1088 0.0506 0.0256
ASD 0.1575 0.1171 0.1951 0.1051 0.1152 0.0764 0.1064 0.0510 0.0253
EM 1.0042 —0.6006 0.9973 0.4926 —1.0026 —0.1996 0.4946 0.2971 —0.0061
800 ESD 0.1080 0.0811 0.1391 0.0750 0.0830 0.0540 0.0778 0.0377 0.0140
ASD 0.1110 0.0825 0.1376 0.0741 0.0813 0.0539 0.0751 0.0360 0.0127
Sts
EM 1.0114 —0.5931 0.8219 0.4231 —1.0323 —0.2003 0.3254 0.2828 —0.0591
100 ESD 0.3659 0.2602 0.5377 0.2766 0.2791 0.1666 0.3446 0.1553 0.1753
ASD 0.3382 0.2506 0.6257 0.3338 0.2503 0.1620 0.3516 0.1589 0.1323
EM 0.9959 —0.5960 0.9006 0.4594 —1.0064 —0.1999 0.4243 0.2804 —0.0295
200 ESD 0.2421 0.1773 0.4446 0.2270 0.1790 0.1154 0.2686 0.1245 0.0866
ASD 0.2370 0.1751 0.4366 0.2317 0.1754 0.1132 0.2434 0.1106 0.0662
EM 0.9960 —0.6058 0.9034 0.4839 —1.0078 —0.1958 0.4477 0.2903 —0.0136
400 ESD 0.1673 0.1233 0.3450 0.1821 0.1236 0.0816 0.2042 0.0954 0.0456
ASD 0.1664 0.1230 0.3261 0.1738 0.1238 0.0800 0.1826 0.0833 0.0331
EM 0.9993 —0.6041 0.9535 0.4798 —1.0002 —0.2027 0.4736 0.2905 —0.0077
800 ESD 0.1137 0.0843 0.2469 0.1259 0.0871 0.0563 0.1424 0.0690 0.0172
ASD 0.1171 0.0865 0.2490 0.1329 0.0870 0.0562 0.1390 0.0636 0.0165
Dexp
EM 1.0486 —0.5790 0.8500 0.4320 —1.0358 —0.1845 0.3582 0.2618 —0.0719
100 ESD 0.3933 0.2770 0.5795 0.2883 0.2795 0.1700 0.3675 0.1440 0.2169
ASD 0.3568 0.2598 0.6281 0.3254 0.2643 0.1658 0.3531 0.1524 0.1527
EM 1.0134 —0.5929 09154 0.4657 —1.0238 —0.1893 0.4193 0.2888 —0.0331
200 ESD 0.2586 0.1855 0.4561 0.2337 0.1870 0.1120 0.3035 0.1177 0.1033
ASD 0.2495 0.1806 0.4531 0.2340 0.1854 0.1158 0.2554 0.1101 0.0763
EM 1.0055 —0.5981 0.9454 0.4881 —1.0089 —0.1962 0.4522 0.2991 —0.0182
400 ESD 0.1762 0.1242 0.3466 0.1752 0.1275 0.0829 0.2072 0.0858 0.0424
ASD 0.1750 0.1267 0.3324 0.1719 0.1303 0.0815 0.1876 0.0812 0.0382
EM 1.0008 —0.5995 0.9819 0.4917 —1.0089 —0.1986 0.4724 0.2968 —0.0087
800 ESD 0.1249 0.0883 0.2442 0.1278 0.0924 0.0578 0.1389 0.0590 0.0198
ASD 0.1231 0.0891 0.2352 0.1218 0.0918 0.0575 0.1328 0.0577 0.0191
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Table 2. Empirical quantiles of M_

o 0.5% 1% 2.5% 5% 95% 97.5% 99% 99.5%
N, 1) —45.02 —38.20 —30.38 —24.25 5.77 12.50 21.54 28.81
Sts —52.47 —46.91 —37.16 —29.66 8.75 19.23 33.56 46.25
Dexp —65.14 —56.61 —44.80 —34.44 11.86 22.93 37.78 51.14

checking. When the threshold is known, the related work can be
found in Li and Mak (1994) and Li and Li (1996).

Let &,(A, r) = &,(0) = u,;(0)//h,(0), where u,(0) and h,(0)
are defined in (3.1). Clearly, the residual g, = &/(A(T)), 7). Sim-
ilarly, define the residual g; by &; = et(/):(ro), ro) when rg is
known. We first define the lag k residual ACF as follows:

1 n _ _
D MR GRS

t=k+1

k=1,2,...,

where € = n! > r_, €. Similarly, we can define p; for {Z,}.
Denote p = (01, ..., pn) and p = (01, ..., pn), where m is a
fixed positive integer. We have the following theorem:

Theorem 6. Suppose that Assumptions 1-5 hold. Then,
Vnlp — pll = op(1). Furthermore,

Vnp = N, ),

where T=1,-TQ'2Q - D) 'T + £(TQ'S +
SQ'T), T=(T,...,T,),andS = (S, ..., Sp) with

T { Ur—k aut}
k=
hihi_; OA 16=0,

and S E{ ! Mk 8h,}
k= — .
hy Jhi—i OA 19=6

Here and in what follows, u; = u,(0) and h; = h;(0).

Following Li and Mak (1994), we define the lag k squared
residual ACF as follows:

1 & —
:;Z@z )(\zzk &%),

t=k+1

k=1,2,...,

where 82 = n~' Y/ 2. Similarly, we define 5 for {£2}. De-
note p* = (P}, ..., o) and p* = (0}, ..., o). We have the
following theorem:

Theorem 7. Suppose that Assumptions 1-5 hold. Then,
Vnlp* =%l = 0,(1) and

Vnp* = N(0,V),

where V=1, — (ks — D2DQ (ks — DQ — T}Q"'D' —
K3y — DT2DQTY +JQ7'D), D=(Dy,...,D,), and
J=(, ..., J,) with

neeli ()
t t—k 10=0,

d =gl L 0w Uik 1
an — .
FEEYUE ox \ -
=vo

Using Theorem 4, the proofs of Theorems 6 and 7 are straight-
forward and hence the details are omitted. In practice, T and
V are replaced by their sample averages, denoted by T and V,
respectively. By the previous two theorems, we can construct
the Ljung—Box test and the Li—-Mak test as follows:

m=mp' Y 'p~ x2 and Q} =np* VB ~ x2.,

as n is large. Generally, m is taken 6 and 12, see Tse (2002) for
a discussion on the choice of m.

5. SIMULATION STUDIES
We first examine the performance of S; in finite sam-
ples. Under the null Hy, {y;} follows a DAR(1) model: y, =

0.2y,-1 + &,/0.2+ 0.2y7 |, where &, is iid N(0, 1). The alter-
native models are

My =02y + Ay I(yi—1 < —1) +,/0.2+0.2y% |

with =3 <A <1;

Table 3. Coverage probabilities

& o 100 200 400 800
0.01 0.979 0.986 0.989 0.984
N, 1) 0.05 0.932 0.940 0.944 0.946
0.10 0.880 0.893 0.900 0.887
0.01 0.970 0.980 0.984 0.987
sts 0.05 0.906 0.925 0.934 0.949
0.10 0.859 0.871 0.884 0.886
0.01 0.970 0.969 0.987 0.991
Dexp 0.05 0.919 0.922 0.942 0.945
0.10 0.845 0.878 0.886 0.892
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Figure 2. The densities of n(7,, — ry) when n = 100 (a), 200 (b), 400 (c), and 800 (d), respectively, for &, ~ N(0, 1).
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Figure 3. Time plots of the weekly closing prices and the log-returns for Hang Seng Index.
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Figure 4. The density function of 7,,.

an y, =02y, + st\/O.Z +0.2y2 , +Ay2  I(y—1 < —1)
with0 <A <4.

We use the sample size n = 200 and 400, and 1000 replica-
tions. We take a as 5(p + g + 2)% quantile of data {y, ..., y,}
and 8 =(1,..., 1) in S7. The significance level « is 0.05. The
sizes of our test are 0.038 and 0.041 when n = 200 and 400,
respectively. They are close to its nominal values, but there is a
little conservation. Figure 1 illustrates the power of the test S/
in (2.3) with varying A. From Figure 1, we can see that our test
is powerful, especially when || increases.

To assess the performance of the QMLE in finite samples,
we use sample sizes n = 100, 200, 400, and 800, each with
replications 1000 for the following model:

1—0.6y_; +&4/1+0.5y>,, ify_ <0,
Vi =
1= 02y, +&,/0.5+03y2,, if y_1 > 0.

5.1)

g takes N(0, 1), standardized Student’s ts-distribution (sts)
and standardized double exponential distribution (Dexp,
also called standardized Laplace distribution), respectively.
Table 1 summarizes the empirical means (EM), the empirical
standard deviations (ESD), and the asymptotic standard devi-
ations (ASD). Here, the asymptotic standard deviations of /):,1
and 7,, are computed by using ¥ and € in Theorem 4 and by
resampling method in Li and Ling (2012), respectively. From
Table 1, we see that the consistency of the estimators is shown
by the empirical means and the closeness of the empirical stan-
dard deviations to the asymptotic standard deviations. We also
see that the values of the empirical standard deviations for 7,
are about halved each time when the value of n is doubled. This
partially illustrates the n-consistency of 7,,, under which the es-
timator of the threshold would approach the true value much
faster than the coefficient parameter estimators do.

We now study the coverage probabilities of ry. Using the re-
sampling method in Li and Ling (2012), we first obtain the em-

Journal of Business & Economic Statistics, January 2016

pirical quantiles of M_ by 10,000 replications. Table 2 gives the
values for different significance level « when ¢, takes N (0, 1),
sts, and Dexp. Based on the values in Table 2, the coverage
probabilities of r( are reported in Table 3. We can see that the
coverage probability is rather accurate when the sample size
n is 400. To see the overall feature of the estimated threshold,
Figure 2 displays the densities of n(7,, — ry) for different sample
sizes.

6. AN EMPIRICAL EXAMPLE

The purpose of this section is to analyze the log-return of
the weekly closing prices of Hang Seng Index over the period
January 2000-December 2007 with 418 observations in total.
Let P, be the weekly closing price at time ¢. The log-return y,
is defined as y, = 100(log P, — log P;_). Figure 3 shows time
plots of { P;} and {y,}, respectively.

The p-value of Tsay’s test (Tsay 1986) is 0.038, which sug-
gests that {y,} contains the nonlinearity at the significant level
0.05. The p-values of the McLeod-Li test (first 36 lags) are all
less than 10~°, which indicates that {y,} has the ARCH effect.
Tsay’s test and McLeod-Li’s test can be implemented in the R
package TSA. Further, our score-based test shows that it may
exist the threshold effect since the value of S}, is 7.139 for p = 2,
q = 3, and d = 3. Thus, linear ARMA model is inappropriate
to fit {y,}. To capture the nonlinearity and asymmetry contained
in {y;}, we employ TDAR models. Based on the AIC, we obtain
the following model:

—0.238 — 0.154y,_1 + 0.264y,_» + &0, if y,_1 <0,
(0.317) (0.149) (0.088) (0.423)
—0.104 4+ 0.096y,_; — 0.068y,_, + &0y, if y,_; > 0,
(0.250) (0.092) (0.061)

YV =

6.1)

4.402 4 0.513y? | 4 0.178y2, 4+ 0.105y? 5, if y,—; <0,

52— ] (1102) (0.165)  (0.124) (0.085)
"] 4.000 +0.075y%, +0.134y7 5, if y_; > 0,
(0.658) (0.059) (0.078)

where the values in parentheses are the corresponding stan-
dard deviations calculated from Theorem 4, and the estimated
delay lag d is 1. The estimator of the threshold is O in the
sense that we use 4 decimal places. By using the resampling
method in Li and Ling (2012) with 1000 replications, we get
the asymptotic standard deviation 0.423 and a 95% confidence
interval [—1.338, 1.190] of the threshold. Figure 4 gives the
density of 7,. The value of the log-likelihood is 613.41. To
check the adequacy of the fit, the Ljung—Box test statistic O,
and the McLeod-Li test statistic Q}, in Section 4 are used with
m = 6, 12. The p-values of Qg¢, Q12, O¢, and Q7, are 0.72,0.45,
0.84, and 0.53, respectively. These p-values suggest that the fit
is adequate at the significance level 0.05.

Model (6.1) clearly describes the asymmetric dynamic be-
havior of the log-returns in response to the past log-returns. The
last log-return y,_; always has a positive contribution to the
current log-return y;. Specifically, when y,_; is negative (i.e.,
the market is dropping down), see Figure 5(a), there is a larger
rebound force that pulls the current log-return y; up since its
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Figure 5. An illustration of model (6.1).

coefficient is —0.154. If the rebound successes (i.e., y; > 0),
then the persistent effect of y,_; against to y, will fade since
its coefficient is —0.068. However, if the rebound fails (i.e.,
y; < 0), then the persistent effect of y,_; against to y,4; will
cause a sharp drop since its coefficient is 0.264. This may be
because the market is weak and its investors lose their confi-
dence. When y,_; is positive, there is an analogous illustration,
see Figure 5(b). The equation atz in (6.1) reflects two different
volatilities when the stock market is up and down, respectively.
Given |y;_1/[, the uncertainty of the market will become larger if
the market is down. This may be the leverage effect in the stock
market.

APPENDIX A: PROOF OF THEOREM 1

A.1  Weak Convergence of a General Marked Empirical
Process

Let F; be the o-field. Assume Z, and &, t =0, £1, ..., are F;-
measurable p x 1 random vectors and univariate random variables,
respectively. We consider the general marked empirical process

[nt]
Wale,r) = —= D ZIGE 4 <x), (x,7)€[—00,00] x [0, 1],
=1

(A1)
where d is a positive integer.

Theorem 8. LetK, = E{Z,Z,1(§,_q < x)}. Assume (i) {(Z,, &_4)}
is an o-mixing process with geometric rate; (ii) E(Z,|F;—;) = 0 and
0< E[||Z,||2(log ||Z,||)5] < oo; (iii) K, and K, — K, are positive def-
inite for any x,y € R with x > y. Then, W,(x,t) = G(x, 1) in
D([—o0, 0] x [0, 1]), where {G(x, 1) : (x,T) € [—00, 00] x [0, 1]}
is a Gaussian process with mean zero and covariance kernel
cov(G(x, 11), G(y, 12)) = (11 A 1)K, y; almost all paths of G(x, 1)
are continuous in x and 7.

Proof. First, since {Z,1(&,_4 < x)} is a sequence of martingale dif-
ference, the convergence of the finite-dimensional distribution can be
shown by Cramer—Wold device and the martingale central limit theo-
rem; see, for example, Billingsley (1999).

Next, we use a bracketing technique to show the tight-
ness of W,(x, t). Denote I'(y (@) = a;l(a; < x)I(az < 1) for a =
(ay, az, a3) € R? and

F={Tun:xeR 1el01])

Let X, = (Zt/\/ﬁv [/nv é}_t—d)’ then
1 n n
Wilx. 1) = —= D Z A/ < DIE g < %)= Tin(Xu)-
=1 r=1

Adopt the convention I(a < x <b) = —I(b < x <a)ifa > b. Then,
for any (x1, 71), (x2, T2) € [—00, ~ o0] x [0, 1], we have
E||W,(x1, 1) — Wa(x2, )7

[nt] [nwa]

= ~E| Y ZdEa=x) =Y Ll g = x)
t=1 =1

[n13] [nT2]

A ZdE g <x) = Y LAy < x)

t=1 =1

2

[n12]

D ZAIG g <x)
t=1

[nt1]

Z Z,1(5_4 <x1)

t=[n1]

2 L)
<ZE +ZE
n

2
—1(5—q = x2)}

=2/t — Bl E{IZ|P1¢E—a < x1)}
F2LE{Z P (2 < &g < X))}
< 2ENZ )t — ol + 1G(xy) — G},

where G(x) = E{||Z,||*I(&_q < x)}/(E||Z,||*). This implies that un-
der the pseudo-metric

d((x1, 1), (02, @) = V2ENZ1 |2 {|71 — | +1G(x) — G} 2,
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the brackets number N(e, F, L,), that is, the minimum number of &-
brackets to cover F (see van der Vaart 1998, p. 270), is of order £ ~*.
Thus, for any finite 6 > 0, we have that the integral of the bracketing
entropy

B s
/ V9ogN(e, F, Ly)de < C/ V1og(l/e)de < oo.
0 0

Fixed go such that 4§ <27% <85. Let P, ={Iyr :(x,7) €
B,i. 1 <i < N}, g > qo, be a nested sequence of finite partitions of
JF such that

o 8
> 27 /logN, < / VIog N(e, F, Ly) ds,
0

9=40

1 n
EAX(B,) := fEZ sup

n T @) m)eBy

UZ NPT E g < ) (x

<t/n =1}

—|—1Ei sup

N T )., 0)eBy;

NZP 1 < )1/

n < Dx; <&_q < x)l}
< 27, (A2)

This can be obtained as in Lemma 19.34 of van der Vaart (1998, p.
286). For each ¢, we choose a fixed element (x,;, 7,;) € B,; and set

(myx, myT) = (x4i, Tyi) and  (Byx, B;1) = By, if (x, 1) € By;.

Then, using the Bernstein-type inequality (2.3) in Merlevede, Peligrad,
and Rio (2009) and truncating Z, by +/n/(log n)? instead of \/n in the
proof of Theorem 2.5.6 in van der Vaart and Wellner (1996), the proof
is concluded.

A.2 Proof of Theorem 1

Under the conditions of Theorem 1, it is not hard to get
1 - D 7y /
NG Z 1D:(0,) D;(8,) — D;(00)D;(00)ll = 0p(1).
n =1

Using this equality, we then have

sup | Z,c — Bl < sup [ E@)] + 0,(1),
xeR xeR
where
l n ,
E(x) == > Di(00)D;00)] (yi—a < x) — Z,.
n t=1
By Theorem 2 in Pollard (1984, p. 8), we can get sup, g [[E(x)| =
op,(1). Thus,

sup [ e — Zill = 0,(1). (A3)
xeR

By the Taylor expansion and (A.3), it follows that

sup
xeR

e -
T,x.8,) — —= D U DO (v < x)
t=1

+U'E,V/n(@, — 8,)

=0,(1),

where U = diag{I,;, +/0.5(xs — DI 41}. Thus, T, (x, ’0\,,)has the same
asymptotical behavior as

£ YL U0 (i < %) = Um0, — 00)

= 5 2 (U D00 1 (i-a < 1) = 2.2 52 Y70, [U7' D,(60)]
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since £, X! and U™ are block diagonal and commutative. Let Z, =
U~'D;(@) and &_; = y,_g. Applying Theorem 8 with v = 1, then
Theorem 1 holds.

APPENDIX B: PROOFS OF THEOREMS 3-5

B.1 Proof of Theorem 3

Let 8(0) = E{¢,(0) — ¢,(8y)}. For any given open neighborhood V
of p € ® and any § € V° N O, a conditional argument yields that

—280) = E{K 1 (yi—qa < 10) + Ko I(ro < yi—q <1)
+K3:1(yi—aq > 1)},

where
Ky = log °‘/’|er1 “Q{oXH 1 {(d10 —’¢1)'Yz71}2,
o) X a X, a X,
K, =log a//lX’_' “/Z/OX"] 14 {(¢20 —/¢1)/Y,_1}2,
a5 X, a X, a' X,
/X _ ’ X _ _ ,Y _ 2
Ky = log "‘/zxf ! "‘2,0 gy {(¢20 /¢2) -1} '
0onAs—] ar X, o)X,

Observe that all K;, > 0 a.s. by an elementary inequality log(1/x) +
x — 1> 0forx > Ounless x = 1. Hence, 8(#) < 0. The remainder is
similar to that of Theorem 2.1 in Li, Ling, and Li (2013) and hence it
is omitted.

B.2 Proof of Theorem 4

(1) We only prove the case p = 1. When p > 1, using the technique
in Chan (1993, p. 529), the proof would go through with a minor
modification. Since @, is strongly consistent, we restrict the parameter
space to a neighborhood Vs = {0 € © : |A — A¢|| < 8, |r —ro| < &}
of 0, for some 0 < § < 1 to be determined later. Then, it suffices to
prove that there exist constants B > 0 and y > 0 such that, for any
e >0,

P( Lo ) = Ly(h, o)
e nG(r — rol)

B/n<lr—rol<s
feVy

< —y) >1—¢, (Al

as n is large enough, where G(u) = P(ro < yo < ro + u). Writing r =
ro + u for some u > 0. By a calculation, it follows that

(L, X, r)—L,(Ar0)}  —1 n
nGu) " nG) ;Q’I(“ <y Sro+u)

+0,(V5)

G(u) Do &d(ro <y < rog+u)
4 + Ks
G(u) nG(u)
1K Z:’:l(th — DI(ro < yi—1 < ro+u)

nG(u)

=-K

+ 0,(V9),

where G, (u) = L Y1_ I(ro < y,—1 < ro+u),

X | ayX {(d20 — P10) Y)Y
’ + ’ - 1 + ’ ?
a,X o)X aj X

K4 =log

2{(¢10 — ¢20)' Y}/ ey X (10 — a9)'X
K5 = 7 s and K(, =
ajX aoX
with Y = (1, 7o) and X = (1, r3)’. Similar to Claim 2 in Chan (1993),

for any ¢ > 0 and n > 0, there exists a positive constant B such that as
n is large enough

( Gu(u)
P sup
B/n<u<é$ G(”)

—1'<T]>>1—8,
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(=1 4o < Y1 =ToT U

P| sup L I( <rotu) <n)>1-¢
B/n<u<é nG(u) ’

P su Z:'=1(8¢2—1)I(r0<)71—1 <ro+u) <n)>1-¢
B/n<lu)§z‘i I’lG(M) .

Note that K, > 0 by Assumption 5. Choosing § small enough and
y = K4/4, (B.1) holds and so does (i).

The proof of (ii) is similar to that of Theorem 2.2 in Li, Ling, and
Li (2013). It is trivial and hence it is omitted.

B.3 Proof of Theorem 5

Without loss of generality, we assume that ¢;,, defined in (3.3), is
bounded. Otherwise, we can truncate it using the technique in Li, Ling,
and Li (2013) and consider a new process made up of the truncated
random variables. Consider the weak convergence of the process §,,(z)
on the interval [0, T]. The tightness of g,(z) can be easily shown
by Theorem 5 in Kushner (1984, p. 32). The key step is to describe
convergence of finite-dimensional distributions. To this end, for any
0 <z <z <z3 <z4 < T and for any constants ¢; and c,, the linear
combination of the increments of g, (z) is

Sn = Cl{K‘)n(ZZ) - Af’n(Zl)} + CZ{pn(Zét) - @n(23)} = 2;1:1 JIE’

where Jf = {o{eili(z1, 22) + 21i(z3, 24)}, € = 1/, and [,(u,v) =
I(ro +ue < y,_; < rop—+ ve). We first verify Assumptions A.1-A.3 in
Li, Ling, and Li (2013) for J¢. By Assumption 3, it follows that

lim P #£0) =10z —2) + (s — ). (A2)
By Assumption 3 again, for any Borel set B, it follows that
Q" (B) = lim P(J; € BlJ; #0) = wQi(B) + (1 —w)Q3(B),
(A3)

where w = (2o — 21)/{(z2 — z1) + (24 — 23)} and QT(BA) = P(cigy €
B), i = 1,2. By a conditional argument, for any f € C¢, a space of
functions with compact support and continuous second derivative, and
a scalar x,

E{f(x+ 00 — fOly # 0} = E{f(x + J)) — f(0)lJ; # 0}
- /{f(x +u) — f(x)}Q"(du), (A.4)

as n — 00. By (A.2)-(A.4), Assumptions A.1-A.3 in Li, Ling, and
Li (2013) hold. Furthermore, by their Theorem A.1, we have that
S, converges weakly to a compound Poisson random variable J
with jump rate 7w (r9){(z2 — z1) + (z4 — z3)} and the jump distribu-
tion Q. The characteristic function f;(t) of J is equal to that of
ci{p(zz) — 921} + c2{p(24) — 9(23)}, where p(z) is defined in (3.4).
Thus, L,(z), defined in (3.2), converges weakly to ¢(z) as n — oo.
The remainder of the proof is similar to that of Theorem 2 in
Chan (1993).
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