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T his report studies log return time series for
16 commodities, including energy, agricul-
ture and metals. Basic time series analy-

sis, i.e. statistics and correlation analysis, are con-
ducted for all commodity series. Binomial tree
method, Monte Carlo simulations with log-normal
assumptions and Monte Carlo simulations with
GJR-GARCH model are introduced to price Asian
options on crude oil, ethanol, natural gas, gold and
silver. Multiple conclusions are derived based on
the pricing results. Future work is also discussed
at the end of this report.

1 Introduction

Asian option, also called average value option, is es-
sentially an exotic option, whose payoff depends on
the path of the underlying price. As presented in equa-
tion 1, the payoff is determined by the strike price
and the average underlying price (either arithmetic
or geometric) during the option’s life at the maturity.
This averaging feature makes it popular among deriva-
tive traders, because the payoff will not be affected
dramatically from unpredictable oscillations caused by
the underlying’s market performance close to maturity,
and these kinds of options also provide a nice hedging
choice to companies exposed to average prices, say
oil production firms and farm producers. Most com-
mon underlying for Asian option are commodities and
foreign exchange rate. In this report, Asian options
on commodities with high liquidity will be utilized to
construct numerical examples and examine proposed
pricing methods.

CT = (AT (t, T )−K)+

PT = (K −AT (t, T ))+
(1)

Since their invention in late seventies, several pric-
ing methods have been proposed, and generally speak-
ing, they can be classified into three categories: semi-
analytical, approximation and Monte Carlo. The semi-
analytical pricing approach assumes the underlying
price following a geometric Brownian motion (GBM).
Taking logarithms, the average value of the GBM can
be expressed in terms of the sum of normal random
variables. Using fast Fourier transform (FFT) and con-
volutions, the final payoff can be calculated in an ana-
lytical way. (Carverhill and Clewlow, 1990) Benhamou
applied the same method for discrete Asian options
on underlying with non-normal returns in 2000. (Ben-
hamou, 2000) Approximation methods approximate
the real distribution of the average underlying price at
the maturity with tractable ones, such as Edgeworth
series expansion (Turnbull and Wakeman, 1991) and
lognormal distributions (Levy, 1992). The Monte Carlo
approach is a combination of stochastic models and
Monte Carlo simulations. Kemna and Vorst proposed
a Monte Carlo simulation scheme for the arithmetic
average, as well as a variance reduction technique in
their paper (Kemna and Vorst, 1990).
This report introduces an innovative Monte Carlo

scheme to price a discretely monitored Asian options
(average value options) on commodities by assuming
that log returns of the underlying price follow GJR-
GARCH model. Other non-GARCH models, i.e. bino-
mial tree model and Monte Carlo simulations with con-
stant volatility, are also implemented as a comparison
to the proposed pricing method.
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2 Theory

2.1 Commodities

A commodity, such as crude oil or wheat, is a basic
good used in commerce that is interchangeable with
other commodities of the same type. Commodities can
be classified into a few categories according to their
usages and values, say raw materials, basic resources,
agricultural, and mining products, etc. The price of a
commodity good is typically determined as a function
of its market as a whole: established physical com-
modities possess actively traded spot and derivative
markets.
Commodity futures are agreements to buy or sell

a raw material at a specific date in the future at a
particular price. The intrinsic value of one commodity
future, at any time t during its life, can be expressed by
equation 2. Since its intrinsic value is a linear function
of its underlying price and the value of the contract is
zero, we assume that the future price is also a linear
function of the underlying price with a coefficient close
to 1 and it contains all the volatility and underlying
price information for us to price their options. Due
to data source limitations, prices of commodities are
not available to us, hence we study their future prices
as an alternative data source for underlying prices,
regardless of its minor delays.

Ft = St − ft (2)

In this project, 16 commodities from 3 broad cat-
egories, namely energy, agriculture and metals, are
selected for analysis. For each of them, price data of
the most liquid/major future contract is collected for
analysis. Details as follow:
Energy:

• Crude Oil: WTI Financial Futures
• Natural Gas: Henry Hub Natural Gas Futures
• Refined Products: RBOB Gasonline Futures
• Biofuels: Chicago Ethanol (Platts) Futures
• Coal: Coal (API2) CIF ARA (ARGUS-McCloskey)

Futures

Agriculture:

• Corns: Corns Futures
• Wheats: Chicago SRW Wheat Futures
• Soybean: Soybean Futures
• Soybean Meal: Soybean Meal Futures
• Soybean Oil: Soybean Oil Futures
• Livestock: Live Cattle Futures
• Livestock: Lean Hog Futures

Metals:

• Gold: Gold Futures
• Silver: Silver Futures
• Platinum: Platinum Futures
• Copper: Copper Futures

2.2 Asian Options

Asian option, also named average value option, is one
of the most popular path dependent options among
derivative traders. Its payoff is determined by the aver-
age underlying price over some pre-set period of time.
The average price of the underlying asset can either
determine the underlying settlement price or the op-
tion strike price. This is different from the case of usual
European options and American options, whose pay-
off depends on underlying price at the exercise date.
Hence Asian option is a typical form of exotic options.
These exotic features provide risk reduction of market
manipulation of the underlying instrument close to
maturity (Kemna and Vorst, 1990). On top of that,
the cost of Asian options is usually much lower than
European or American options with same strike and
maturity.
Suppose St is the underlying price at time t,AT (0, T )

is the arithmetic average underlying price at maturity
T , then we have

AT (0, T ) =
1

T

T∑
t=0

St

in discrete form, or in continuous form like this

AT (0, T ) =
1

T

∫ T

0

Stdt

For geometric average underlying price, say
ÃT (0, T ), can be expressed as

ÃT (0, T ) = (

T∏
t=0

St)
1
T

in discrete form, or in continuous form like this

ÃT (0, T ) = exp(
1

T

∫ T

0

logStdt)

For a European Asian call or put option with strike
price K, its payoff becomes

CT = (AT (0, T )−K)+

or

PT = (K −AT (0, T ))+

In this report, only arithmetic average underlying
price in discrete form is taken into considerations for
final payoff. We use strike prices and maturities from
5 commodity option contracts to construct numerical
examples, say European Asian call/put options, for
proposed pricing models. Considering different specifi-
cations, there are 319 option contracts in total, with
maturity varying from 5 days to 5 years. Their contract
specifications, together with latest settlement prices,
are collected as reference. Here is the list:

• WTI Crude Oil Asian Option
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• Chicago Ethanol (Platts) Asian Option
• Gold American Option
• Silver American Option
• Natural Gas European Option

2.3 Forward Risk Free Interest Rates

In any pricing model based on numerical methods, the
risk free rate always plays an important part and will
affect the final pricing results significantly. Since all
of the interested options as well as their underlyings
are traded in US exchanges, US treasury yield curve on
the day we collect price data will be regarded as risk
free rate in numerical models. To implement risk free
rate and simulate movements of underlying prices, the
forward curve can be constructed as the following:

f(ti, ti+1) =
log(erti+1

ti+1/erti ti)

ti+1 − ti

=
rti+1

ti+1 − rtiti
ti+1 − ti

(3)

In equation 3, rti is the yield of a treasury instru-
ment maturing at ti, and it can be regarded as the
risk free rate for (0, ti). f(ti, ti+1) is the forward rate
in (ti, ti+1) derived by two treasury instruments with
adjacent maturity dates.

2.4 Asian Option Pricing Models

2.4.1 Binomial Tree Model

The binomial tree model uses tree structure to simu-
late the path of the underlying asset over the whole
life of Asian option and applies the forward shooting
grid method to avoid the exponential growth of aver-
age price. In this case, we add extra grids to record
the possible average price and restrict the number of
possible average price to be linear growth. To update
the average value when the asset value jumps, we use
gird function to determine the updated average price.
Under Black-Scholes world, we assume that the

volatility of asset value is constant. For the binomial
tree, let the jump factor u, d to be u = exp(σ

√
∆t), d =

exp(−σ
√

∆t) where σ is constant volatility, and ∆t is
the time step.
Denote Snj and Ank to be the asset value jumping

upward j times and average price with index k at n-th
time level, respectively. To restrict the possible values
for F to a certain set of predetermined values, we limit
the number of averaging values to some multiple of the
number of values assumed by the asset price: Assume
the coefficient to be 1/ρ ∈ N. For a given time step ∆t,
we let the asset value Snj and the average value Ank to
be:

Snj = S0e
j∆W , Ank = S0e

k∆Y ,

∆W = σ
√

∆t, ∆Y = ρ∆Wj, k ∈ N
(4)

Then consider at (n, j) node, for a upward jump
from (n, j) to (n+ 1, j+ 1), the asset price will change
from Snj to Sn+1

j+1 . Let A
n+1
k+(j) to be the updated value

changing from Ank by the upward move. Then by usual
computation of updating average value, we have:

An+1
k±(j) =

(n+ 1)Ank + Sn+1
j±1

n+ 2
(5)

Note thatAn+1
k±(j) do not coincide withA

n+1
k′ = S0e

k′∆Y

for some k′ ∈ N in general, indicating that k±(j)

may not be integer. Recall An+1
k±(j) = S0e

k±(j)∆Y and
Sn+1
j±1 = S0e

(j pm1)∆W , by (5), we equate the two parts
and have the grid function:

k±(j) =
ln (n+1) exp(k∆Y )+exp((j±1)∆W )

n+2

∆Y
(6)

LetK ′ denote a subset of integer s.t. An+1
k′ ≤ A

n+1
k±(j)

Define k±floor s.t. A
n+1

k±floor

= maxk′∈K′ S
n+1
k′ . In other

words, k±floor = bk±(j)c, then k±ceil = k±floor+1. Define
kfloor = bkc and kceil = kfloor + 1. At nth step, we
have At ∈ [−Snn , Snn ] and thus −n/ρ ≤ k ≤ n/ρ. This
helps us to restrict the size of k. For a k ≤ |Snn |, we have
Ank ∈ [Anfloor, A

n
ceil] and −n/ρ ≤ kfloor < kceil ≤ n/ρ

at nth time step.
To solve the problem that that k±(j) may not be

integer, we define the linear interpolation formula that
will be used in our FSG method.
Let cnj,l denote the numerical approximation to the

Asian call value at (n, j) node with the averaging state
variable assuming the value Anl . Similar notations for
cnj,lfloor

and cnj,lceil . For j ∈ R/N, the cnj,l will be ap-
proximated by linear interpolation:

cnj,l = cnj,lfloor
+ εl(c

n
j,lceil

− cnj,lfloor
) (7)

where εl is the fraction of one step∆Y between lnAnlceil
and Anlfloor

:

εl =
ln

An
l

An
lfloor

∆Y
,Anl = Anlfloor

eεl∆Y (8)

Finally we have the pricing formula under a binomial
tree schemes is given by:

cnj,k =
1

R

[
pcn+1
j+1,k+(j) + (1− p)cn+1

j−1,k−(j)

]
≈ 1

R
{p
[
εk+(j)c

n+1

j+1,k+ceil
+ (1− εk+(j))c

n+1

j+1,k+floor

]
+ (1− p)

[
εk−(j)c

n+1

j−1,k−ceil
+ (1− εk−(j))c

n+1

j−1,k−floor

]
}

n = N − 1, · · · , 0, j = −n,−n+ 2, · · · , n,

k ∈ N ∩ [−n
p
,
n

p
]

(9)

where the risk neutral probability of jump upward is :

p =
R− d
u− d

, R = ert(T−t) (10)
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where rt is the forward rate at time t, Finally, the ter-
minal payoff of put and call are:

pNj,k = max(K − S0e
k∆Y , 0)

cNj,k = max(S0e
k∆Y −K, 0),

j = −N,−N + 2, · · · , N
(11)

2.4.2 Monte Carlo Simulations with Constant
Volatility

In this method, the underlying commodity price St is
assumed to follow the stochastic process below:

dSt = (rt −
1

2
σ2)Stdt+ σStdWt (12)

whereWt is a standard Wiener process, rt is the risk
free interest rate at time t, σ is a constant, representing
the volatility of the underlying price’s log return.
With US treasury yield curve, the forward the rate at

time t can be used to represent rt for simulations, and
its calculation method is covered in section 2.3 already.
With historical future prices of the commodity’s major
future contract, the volatility σ can be calculated as

ri = logSti − logSti−1

σ =

√√√√ 1

N − 1

N∑
i=1

(ri − r̄)2
(13)

Given a commodity start price S0, the underlying
price movements can be simulated by the dynamics of
its log returns {ri}:

dSt = (rt −
1

2
σ2)Stdt+ σStdWt

d logSt = (rt −
1

2
σ2)dt+ σdWt

ri = ri−1 + (rt −
1

2
σ2)dt+ σdWt

Sti = Sti−1
exp(ri∆t) = S0 exp(

i∑
k=0

rk∆t)

(14)

The average price AT (0, T ) at the maturity is essen-
tially

AT (0, T ) =
1

N

N∑
i=0

Sti

where t0 = 0, tN = T .
Without loss of generality, Asian call option is used to

illustrate the Monte Carlo scheme, and the put option
can be easily derived thereafter. The Asian call option
payoff becomes

VT = (AT (0, T )−K)+

With n paths of simulated underling prices, the fair
payoff at the maturity can be expressed as an average
of the payoff generated from each path.

V̄T =
1

n

n∑
i=1

V iT

Multiplying with corresponding discount factor, the
value of the contract at present can be derived.

df(0, T ) = exp(−
N−1∑
i=0

rti∆t)

V̄0 = df(0, T )V̄T

(15)

where rti is the forward risk free interest rate at ti,
and ∆t = 1/252.
Since the underlying is only traded on business days,

BUS/BUS date convention is implemented in the simu-
lation scheme.

2.4.3 Monte Carlo Simulations with GJR-
GARCH model

As a comparison to the constant volatility MC scheme,
GJR-GARCHmodel defines the log return of underlying
price as a GARCH process. For a given time series {St},

rt = logSt − logSt−1

rt = µ+ εt

εt = σtZt

(16)

where Zt follows a standard normal distribution and

σ2
t = ω +

∑
i

αiε
2
t−i +

∑
j

βjσ
2
t−j

+
∑
k

γkε
2
t−kIεt−k<0

(17)

This model will illustrate the volatility behavior of
the time series, and since the volatility is the source
engine to generate simulated price paths, we assume
that a more subtle volatility model will contribute to
more accurate pricing results.
In this report, for each commodity, the best model

configuration, say the number of α, β, γ and whether
using zero mean, is selected based on the following
steps.

Step one: zero mean vs constant mean
Constant mean model will be considered at the first

place. If the p-value of µ is larger than 0.05, then
the mean is considered as insignificant, and it will be
removed to refit the model again as a consequence.

Step two: Ljung-Box test
The fitted model will be plugged into historical data,

and the series of {Zt} is derived. If {Zt} passes Ljung-
Box test at a significance level of 0.05, then it proves
that the model well explains the historical time series.
Otherwise, the model will be rejected.

Step three: BIC
Bayesian information criterion (BIC) is implemented

as a criterion for model selection, instead of Akaike
information criterion (AIC). This is because BIC has
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more punishments on number of parameters when the
data set is large comparing AIC.

AIC = 2k − 2 ln(L̂)

BIC = ln(n)k − 2 ln(L̂)
(18)

where L̂ is the maximized value of the likelihood
function of the model, k is the number of parameters
of the model to estimate, and n is the sample size.
If one model has a less BIC and less number of param-

eters than the other one, it will be selected as the tem-
porary best model. Alternatively, if BIC of one model is
5% less than the other one, it will also win the selection.
With the best fitted GJR-GARCHmodel, the volatility

of future log returns will be predicted. A series of
{σ0(t)} can be derived, since

σ0(t) = E0[σ(t)]

and then a path of underlying price can be derived
from the generated log return series rt, where

rt = µ+ σ0(t)Zt

The rest pricing procedure is the same as the constant
volatility scheme.

3 Process

3.1 Data Source

There are two types of data involved in this project, say
commodity future price and option specifications. All
of commodity future price data are retrieved from in-
vesting.com, a global financial portal owned by Fusion
Media Limited. The time span starts from 2000-01-03
and ends at 2019-03-22. However, some futures, like
silver and corn, may not have such a long price history.
In this case, we take as earlier as we can, and all the
future prices are available after year 2009. On the
other hand, the option contract specifications and cor-
responding latest settle prices are recorded manually
from CME group website, and there are 319*2=638
options in total (319 call put pairs).

3.2 Data Preprocess

The commodity prices are retrieved one by one, hence
to further analyze or utilize them, one must concat
price series into one data table with respect to dates.
The concatenation generates plenty of missing values
due to the difference in trading day conventions. For
example, futures of silver, platinum and US soybean
oil can be traded on Sundays, and all other future con-
tracts will have missing prices on those days. Besides,
the time span also varies from one commodity to an-
other, which produces missing values for those with
shorter time span before their first date point.

Two preprocessing rules are developed, one for time
series analysis while the other for pricing.

Preprocessing for time series analysis:
When two time series are selected for correlation

analysis or collinearity analysis, only date points when
both have data will be kept and all the date points with
missing values will be removed.

Preprocessing for pricing:
Since Asian options only have one underlying, every

historical time series will be handled independently.
Thus date points with missing values will be dropped
in this case.
For option specification data, the currency unit for

strike price is different from each other, some are using
USD cent, some are 0.001 USD. A currency divisor
dictionary is specially created, and the strike price will
all be converted to USD before pricing.

3.3 Correlation Analysis

Correlation analysis is a method of statistical evalua-
tion used to study the strength of a relationship be-
tween two, numerically measured, continuous vari-
ables. In this step, the correlation coefficients among
future prices and price log returns are calculated re-
spectively by equation 19. Heat maps are used to reflect
their relationships. The results are shown in section
4.1.

ρxy =

∑n
i=1(xi − x̄)(yi − ȳ)

(n− 1)sxsy

=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n
i=1(yi − ȳ)2

(19)

3.4 Non-GARCH Model Pricing

This part illustrates the process of Non-GARCH model
pricing.

3.4.1 Binomial Tree Method

We use binomial tree model to price the current Asian
option value. We first calculate the historical volatility
of log return. Then we compute the forward rate based
the U.S. treasury yield curve. We will use the historical
volatility and forward rate as the volatility and risk
free rate of the model. For choosing the time step, we
consider the total number of business days from the
spot date to maturity date. If the time length reaches
over 1 year, we restrict the time steps to 252, so that
the computational speed could be faster. Since the
underlying asset is futures and each futures contract
contains more than one unit of goods, hence we choose
the price the option that the underlying asset contains
1 unit good.
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3.4.2 Monte Carlo Simulations

After data preprocessing, the option specifications are
stored in one data table, and the underlying table is
stored in the other. To price one option with Monte
Carlo simulations, the option specifications are re-
trieved as strike price K, start date t, maturity date T ,
and underlying name.
Using the underlying name, the fixed volatility σ

can be derived from historical underlying price data,
as mentioned in section 2. The forward risk free inter-
est rates are also calculated from treasury yield curve
before simulations. The step size of Monte Carlo simu-
lation is one business date, so the number of steps can
be derived from Julian date difference of t and T .
For every simulation, the underlying price path can

be generated by following equation 14. Then the av-
erage price at the maturity, say AT (0, T ) can be calcu-
lated based on the prices along the path. And the final
discounted final payoff can be derived correspondingly,
the average value of which will be the value priced by
Monte Carlo simulation method.

3.5 GARCH Model Pricing

Before pricing the option, the best GARCHmodel needs
to be selected from 2000 possible models (2 × 10 ×
10× 10). There are 10 possible values, say from 0 to
9, for each of α, β and γ, and the model can be either
zero mean or constant mean. The details about model
selection criterion is mentioned in section 2.4.3. With
the best fitted GARCH model, predictions for mean of
volatilities can be derived from the model. Since the
step size is one business day, the number of predictions
equal to the number of business days from commercing
date and the maturity of the option.
The rest pricing procedure are the same as those

of Monte Carlo simulations mentioned in last section,
except for the simulation scheme for underlying prices,
which follows in section 2.4.3.

4 Results

4.1 Correlation Results

The heap maps are shown in the appendices.
Figure 1 is the correlation coefficient heat map of

future prices. It is clear that there are many strong
positive linear relationships between some contracts,
such as crude oil and gasoline or silver and platinum or
soybean products. There is almost no strong negative
linear relationships, but two commodities, say natural
gas and live cattle, are less correlated to all other com-
modities. Except for those commodities made from
same materials and those with competitive relation-
ships, most of correlation coefficients are very high,
say close to right color in heat map. These present
randomness of correlations in commodity prices.

By contrast, figure 2 shows the correlation coefficient
heat map of future log returns. Strong correlations are
only presented between commodities within the same
category, especially in agriculture or metals, and the
log returns in same category are positively correlated.

4.2 Model results

Underlying (p, o, q) Q(20) p-value BIC

Crude Oil WTI (1,1,1) 13.69 0.84 21129
Ethanol (1,1,1) 39.91 0.005 13715
Gold (1,0,1) 27.53 0.12 14403

Natural gas (1,0,1) 23.48 0.2 24608
Silver (1,0,5) 29.42 0.07 12151

Table 1: Model result: GJR model for each underlying futures

Table 1 shows the model we fit based on BIC cri-
teria. The p-value of Ljung-Box test shows that the
GJR-GARCH model for Crude Oil, Gold, Natural gas
and Silver is adequate but the model for Ethanol is not.
The order of first four GJR-GARCH models are all lest
than 1, indicates that the selected model is simple. The
order of the last model(Silver) is (1, 0, 5), indicating
that the volatility of Silver contract has long memory
compared to other underlying futures.

Convergence of the Monte Carlo simulation Fig-
ure 3, 4, 6, 5 shows the sample mean of the call option
payoff on Monte-Carlo simulation, The x-axis shows
the simulation times and y-axis shows the estimated
option value. These figures shows that the option value
convergences to a single value and hence the option
value from the Monte-Carlo simulation is rational. The
prediction of the volatility is shown in appendix.
For the three pricing model(GARCH-MC, MC, BT),

we use the following criterion to evaluate the perfor-
mance of the model:

ARE We use ARE to evaluate the difference between
market price and fair price derived from the model.
The formula of ARE is:

ARE =
1

N

N∑
j=1

|V modelj − V marketj |
V marketj

× 100 (20)

where N is the total number of the samples, V modelj

and V marketj are the fair price from the model and
the market price of the j-th sample, respectively. The
results are shown in table 3 (Zhu and Ling, 2015).
Compared to market price, GARCH-MC model out-

performs to other model when the underlying assets
are Ethanol and Silver, and call option on Gold, put
option on Crude Oil. The MC model outperform on call
option on Crude Oil, put option on Natural gas. The
BT model outperforms only on call option on Natural
gas. Therefore, the fair price form GARCH-MC model
is the closets price to the market price.
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Fair price of European option Instead of market
price, the European option price calculated from BS
model can also be used as criterion. The analytical
value calculated from the BS formula is also a fair
price under BS world. Since Asian option uses the
average price of the whole path to compute the payoff
while European option only consider the asset price
on maturity, the risk of holding one unit of European
option should be larger than holding one unit of Asian
option. Hence the fair price of the Asian option should
be smaller than the European option value with the
same specification of options.
Denote Ns as the total number that the fair price

of Asian option is smaller then the corresponding Eu-
ropean option with the same specification and N as
the total number of samples. We use the proportion
PS = Ns/N as the statistic to evaluate the model, the
result is:

Models PScall PSput

GARCH-MC 1 1
MC 1 1
BT 1 1

Table 2: Proportion of number of Asian option value smaller
than European option value with same specification

From table 2, we can conclude that all the value from
our model are rational.

5 Discussions

5.1 Data Limitations

Commodity futures are the assessment of rawmaterials
trading in open market. Future prices are essentially es-
timates for the value of future commodities, instead of
the spot price. The difference between two prices, say
future price and spot price, will be affected by delivery
time, risk-free rate, storage cost and convenience yield.
Therefore, it will bring inaccuracies into the pricing
process when using futures price not the commodity
spot prices.
Besides, only WTI Crude Oil Asian option and

Chicago Ethanol (Platts) Asian option are Asian op-
tions and all the rest options are either American or
European options, specifications of which are used to
construct numerical examples for the proposed pricing
models. In future studies, more traded Asian options
settings should be collected to examine these models.

5.2 Model Limitations

Chicago Ethanol (Platinum) futures has many duplicate
prices on adjacent dates in the early stage, resulting
in zero log returns. Moreover, there is no fitted GJR-
GARCHmodel for it, and GJR-GARCH(1,1,1) is used to
fit its time series of log returns. However, ARIMA(0,0,1)

can sufficiently explain the time series, we may con-
sider applying ARIMA GARCH to fit the historical data
and embedding into Monte Carlo scheme in further
studies.

5.3 Monte Carlo Limitations

In Monte Carlo GARCH method, although Monte Carlo
simulations are executed 10000 times, the standard
deviation of payoffs generated is relatively large com-
pared to constant volatility Monte Carlo method. This
indicates that the number of paths might not be enough.
Hence in GARCH Monte Carlo simulations, the final
payoff could be a partial solution, and it may take mil-
lion paths to obtain an output with lower variance.
On top of that, the payoff variance from the proposed
GARCH Monte Carlo simulation might underestimate
the real variance, especially when the number of sim-
ulated path is insufficient. In this case, probability
bounds analysis (PBA) can be implemented as an ex-
amination for partial information. Using PBA, the
sparse simulations will provide far-apart upper and
lower bounds, and this will well estimate the risk in
pricing results.

5.4 Advanced GARCH Models

Affine GARCH model is described as the following:

rt = r − 1

2
σ2
t + σtZt

σ2
t = ω + α1(Zt−1 − λσt−1)2 + β1σ

2
t−1

(21)

According to Lorenzo, a semi-analytical formula for
geometric Asian options can be provided when the
underlying follows an affine GARCH process and the
extreme asymmetry of this kind of models with non-
normal innovations will price more accurately for op-
tions with very short time to maturity(Lorenzo, 2011).
Hence, affine GARCH might provides a better pricing
result if it is implemented to Monte Carlo simulation
scheme.

6 Conclusions

In this report, 16 commodity future prices are studied,
and 5 options of them are priced by three pricing meth-
ods, say binomial tree model, Monte Carlo simulations
with constant volatility, and Monte Carlo simulations
with GJR-GARCH volatility. Strong sector correlations
are discovered in the 16 time series of commodity log
returns. According to pricing result analysis, the ARE
criterion shows that GJR-GARCH model is the most ap-
propriate pricing model in three models implemented
in this report. However, there are also a few limitations
in this report, say the data limitations and Monte Carlo
convergence limitations. There are also other advanced
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GARCH models, say affine GARCH, to examine in the
future studies.
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7 Appendices

7.1 Figures

Figure 1: Correlation Analysis of Commodity Prices
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Figure 2: Correlation Analysis of Commodity Log Returns
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Figure 3: Convergence Plot for a Crude Oil Asian Option

Figure 4: Convergence Plot for an Ethanol Option
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Figure 5: Convergence Plot for a Natural Gas Asian Option

Figure 6: Convergence Plot for a Silver Asian Option
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Figure 7: Volatility Prediction on Crude Oil

Figure 8: Volatility Prediction on Ethanol
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Figure 9: Volatility Prediction on Gold

Figure 10: Volatility Prediction on Natural Gas
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Figure 11: Volatility Prediction on Silver
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7.2 Tables

Models Crude Oil WTI Ethanol Gold Silver Natural gas
put call put call put call put call put call

GARCH-MC 46.679 304.798 10.757 25.258 72.799 84.586 17.455 26.597 215.232 324.858
MC 83.121 122.238 56.035 73.732 52.874 91.129 64.379 89.397 64.891 84.962
BT 402.088 819.106 45.110 62.466 106.801 149.124 83.969 107.557 264.242 72.697

Table 3: ARE for the Asian put ans call option for each underlying futures.
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7.3 Scripts

7.3.1 corr.py

1 #!/usr/bin/env python3
2 # -*- coding: utf -8 -*-
3 """
4 Created on Sun April 12 15:53:00 2019
5
6 @author: jingqian
7 """
8
9 import pandas as pd

10 import numpy as np
11 import seaborn as sns
12 import matplotlib.pyplot as plt
13
14 data = pd.read_csv("../Cleaned Data/Cleaned Underlying Data.csv", index_col = 0)
15 newCols = [’Crude Oil WTI’,’Natural Gas’,’Gasoline RBOB’,’Ethanol ’,’Coal’,
16 ’US Corn’,’US Wheat’, ’US Soybean Meal’,’US Soybean Oil’,’US Soybeans ’,
17 ’Lean Hogs’,’Live Cattle ’, ’Gold’,’Silver ’,’Platinum ’,’Copper ’]
18
19
20 price = data[newCols]
21
22 corr_price = price.corr()
23 corr_logRt = price.corr()
24
25 for col1 in newCols:
26 for col2 in newCols:
27 tmpdf = data[[col1 ,col2 ]]. dropna ()
28 corr_price[col1][col2] = tmpdf [[col1 ]]. corrwith(tmpdf[col2]).values [0]
29 logdf = data[[col1 ,col2 ]]. dropna ()
30 logdf[col1] = (np.log(logdf[col1]) - np.log(logdf[col1].shift (1))) * 100
31 logdf[col2] = (np.log(logdf[col2]) - np.log(logdf[col2].shift (1))) * 100
32 logdf = logdf.dropna ()
33 corr_logRt[col1][col2] = logdf [[col1 ]]. corrwith(logdf[col2]).values [0]
34
35
36 plt.subplots(figsize = (12, 12))
37 sns_plot = sns.heatmap(corr_price , annot=True , vmin= -1, vmax= 1, square=True , cmap="RdBu_r")
38 fig = sns_plot.get_figure ()
39 fig.savefig(’corr_price.jpg’)
40
41 plt.subplots(figsize =(12, 12))
42 sns_plot = sns.heatmap(corr_logRt , annot=True , vmin= -1, vmax= 1, square=True , cmap="RdBu_r")
43 fig = sns_plot.get_figure ()
44 fig.savefig(’corr.jpg’)

corr.py

7.3.2 binomialTreePrice.py

1 # -*- coding: utf -8 -*-
2 """
3 Created on Thu April 14 10:23:02 2019
4
5 @author: Leheng Chen
6 """
7
8 import numpy as np
9

10 class asianOptionBinomialTree:
11
12 def __init__(self , num_steps , volatility , time_period , oneOverRho , interest_rate):
13 self.num_steps = num_steps
14 self.volatility = volatility
15 self.time_period = time_period
16 self.oneOverRho = oneOverRho
17 self.interest = np.array(interest_rate)
18 self.discount_factor = np.exp(-1 * self.interest * self.time_period)
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19 self.half_len_grid = self.num_steps * self.oneOverRho
20
21 self.averagePriceTree = np.zeros(2 * self.num_steps * oneOverRho + 1)
22 self.assetPriceTree = np.zeros ((self.num_steps + 1, self.num_steps + 1))
23 self.optionPriceTree = np.zeros ((self.num_steps + 1, 2 * self.num_steps * self.

oneOverRho + 1))
24
25 def forwardInduction(self):
26 self.up_factor = np.exp(self.volatility * np.sqrt(self.time_period))
27
28 for i in range(self.num_steps + 1):
29 lower_bound = -i
30 for j in range(i + 1):
31 self.assetPriceTree[i, j] = self.init_price * (self.up_factor ** lower_bound)
32 lower_bound += 2
33
34 for j in range(2 * self.num_steps * self.oneOverRho + 1):
35 jump = j - self.half_len_grid
36 self.averagePriceTree[j] = self.init_price * (self.up_factor ** (jump / self.

oneOverRho))
37 for s in range(self.num_steps + 1):
38 for k in range(2 * self.num_steps * self.oneOverRho + 1):
39 self.optionPriceTree[s, k] = max(self.averagePriceTree[k] - self.strike , 0)
40
41 def grid(self , n, k, j, plus):
42 numerator = np.zeros((len(j), len(k)))
43 denominator = self.volatility * np.sqrt(self.time_period) / self.oneOverRho
44 for jj in j:
45 numerator[jj] = (n + 1) * self.up_factor ** (k / self.oneOverRho) + self.up_

factor ** (jj + plus)
46 numerator[jj] = np.log(numerator[jj] / (n + 2))
47
48 return numerator / denominator
49
50 def backwardInduction(self):
51 delta_y = self.volatility * np.sqrt(self.time_period)/ self.oneOverRho
52 proba_up = (1 / self.discount_factor - 1 / self.up_factor) / (self.up_factor - 1 /

self.up_factor)
53 # print(np.round(self.optionPriceTree))
54 for n in reversed(range(self.num_steps)):
55 k_idx = np.array([k for k in range(- n * self.oneOverRho , n * self.oneOverRho + 1)

])
56 j_idx = np.array([j for j in range(n + 1)])
57 k_up = self.grid(n, k_idx , j_idx , 1)
58 k_down = self.grid(n, k_idx , j_idx , -1)
59
60 j_idx_ext = np.repeat(j_idx[:, np.newaxis], len(k_idx), axis =1)
61
62 k_up_floor = np.maximum(np.floor(k_up + self.half_len_grid).astype(int), 0)
63 k_up_ceil = np.minimum(k_up_floor + 1, self.half_len_grid * 2)
64
65 # average_price_up = ((n + 1) * self.averagePriceTree[n, k] + self.assetPriceTree[

n + 1, i + 1]) / (n + 2)
66 average_price_up = self.init_price * self.up_factor ** (k_up / self.oneOverRho)
67 factor_interpolation_up = np.log(average_price_up / self.averagePriceTree[k_up_

floor ]) / delta_y
68
69 option_price_up = factor_interpolation_up[0:] * self.optionPriceTree[j_idx_ext

[0:], k_up_ceil [0:]] + \
70 (1 - factor_interpolation_up[0:]) * self.optionPriceTree[j_idx_ext[0:], k_up_

floor [0:]]
71
72 k_down_floor = np.maximum(np.floor(k_down + self.half_len_grid).astype(int), 0)
73 k_down_ceil = np.minimum(k_down_floor + 1, self.half_len_grid * 2)
74
75 # average_price_down = ((n + 1) * self.averagePriceTree[n, k] + self.

assetPriceTree[n + 1, i - 1]) / (n + 2)
76 average_price_down = self.init_price * self.up_factor ** (k_down / self.oneOverRho

)
77 factor_interpolation_down = np.log(average_price_down / self.averagePriceTree[k_

down_floor]) / delta_y
78
79 # assert self.averagePriceTree[n + 1, k_down_floor] != 0
80
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81 option_price_down = factor_interpolation_down [:(n + 1)] * self.optionPriceTree[j_
idx_ext [:(n + 1)], k_down_ceil [:(n + 1)]] + \

82 (1 - factor_interpolation_down [:(n + 1)]) * self.optionPriceTree[j_idx_ext[:(n
+ 1)], k_down_floor [:(n + 1)]]

83
84 self.optionPriceTree[j_idx_ext[:(n + 1)], k_idx + self.half_len_grid] = proba_up[n

] * option_price_up + (1 - proba_up[n]) * option_price_down
85 self.optionPriceTree[j_idx_ext[:(n + 1)], k_idx + self.half_len_grid] *= self.

discount_factor[n]
86 # print(np.round(self.optionPriceTree[j_idx_ext[:(n + 1)], k_idx + self.half_len_

grid]))
87
88
89
90 def getOptionPrice(self , init_price , strike):
91 self.init_price = init_price
92 self.strike = strike
93 self.forwardInduction ()
94 self.backwardInduction ()
95 return self.optionPriceTree [0, self.half_len_grid]

binomialTreePricer.py

7.3.3 biTreePriceSimulation.py

1 # -*- coding: utf -8 -*-
2 """
3 Created on Thu May 9 13:46:08 2019
4
5 @author: Leheng Chen
6 """
7
8 from binomialTreePricer import asianOptionBinomialTree
9 import pandas as pd

10 import numpy as np
11 from datetime import datetime , timedelta
12
13 uly_names = [’Crude Oil WTI’, ’Ethanol ’, ’Gold’, ’Silver ’, ’Natural Gas’]
14 uly_init = df_uly[uly_names].tail (1)
15 df_opt[’bdays’] = 1 + np.busday_count(df_opt[’Start Date’]. values.astype(’datetime64[D]’), df_

opt[’Maturity Date’]. values.astype(’datetime64[D]’))
16
17 df_uly_vol = df_uly[uly_names].std(skipna=True)
18
19 oneOverRho = 3
20 df_vols = pd.DataFrame ([[0.3 , 0.01, 0.4, 0.1, 0.001]] , columns = uly_names)
21 df_units = pd.DataFrame ([[0.01 , 0.0001 , 1, 0.001, 0.01]] , columns = uly_names)
22 bdays_year = 252
23
24 # =============================================================================
25 # Define risk free rate , reference to US treasury yield curve as of 20190322
26 # https://www.treasury.gov/resource -center/data -chart -center/interest -rates/pages/TextView.

aspx?data=yieldYear&year =2019
27 # 1m, 2m, 3m, 6m, 1y, 2y, 3y, 5y, 7y, 10y, 20y, 30y
28 # =============================================================================
29 # Define risk free rate according to US
30 yieldCurveDict = {
31 ’2019 -04 -22’: 2.49,
32 ’2019 -05 -22’: 2.48,
33 ’2019 -06 -22’: 2.46,
34 ’2019 -09 -22’: 2.48,
35 ’2020 -03 -22’: 2.45,
36 ’2021 -03 -22’: 2.31,
37 ’2022 -03 -22’: 2.24,
38 ’2024 -03 -22’: 2.24,
39 ’2026 -03 -22’: 2.34,
40 ’2029 -03 -22’: 2.44,
41 ’2039 -03 -22’: 2.69,
42 ’2049 -03 -22’: 2.88
43 }
44
45 # Derive forward rates from US treasury yield curve
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46 curvePoints = [’2019 -03 -22’] + list(yieldCurveDict.keys())
47
48 forwardCurveDict = {}
49 for i in range(len(yieldCurveDict)):
50 datePoint1 = curvePoints[i]
51 datePoint2 = curvePoints[i + 1]
52 if (datePoint1 == curvePoints [0]):
53 forwardCurveDict[datePoint2] = yieldCurveDict[datePoint2]
54 else:
55 yieldAtDate1 = yieldCurveDict[datePoint1]
56 yieldAtDate2 = yieldCurveDict[datePoint2]
57 busDateDiff1 = np.busday_count(curvePoints [0], datePoint1)
58 busDateDiff2 = np.busday_count(curvePoints [0], datePoint2)
59 forwardCurveDict[datePoint2] = float(( yieldAtDate2 * busDateDiff2 - yieldAtDate1 *

busDateDiff1) / (busDateDiff2 - busDateDiff1))
60
61 # Function to get risk free rate given a date (datetime.date object)
62 def getRiskFreeRate(inputDate):
63 input_date = inputDate.date()
64 for i in range(len(forwardCurveDict)):
65 datePoint1 = datetime.strptime(curvePoints[i],’%Y-%m-%d’).date()
66 datePoint2 = datetime.strptime(curvePoints[i + 1],’%Y-%m-%d’).date()
67 if (input_date >= datePoint1 and input_date < datePoint2):
68 return forwardCurveDict[curvePoints[i + 1]]
69 return 0
70
71
72 for row in df_opt.index:
73 # Retrieve the name of the underlying
74 tmp_uly = df_opt[’Underlying ’][row ][:-8]
75 tmp_strike = df_opt[’Strike ’][row]
76 tmp_maturity = df_opt[’Maturity Date’][row]
77 tmp_steps = df_opt[’bdays ’][row]
78 if tmp_steps > bdays_year:
79 tmp_steps = bdays_year
80 tmp_init = uly_init[tmp_uly ][0]
81 tmp_time_period = 1 / bdays_year
82 tmp_vol = df_uly_vol[tmp_uly]
83 tmp_ir = get_interest_rate(tmp_steps)
84 tmp_rates = [getRiskFreeRate(tmp_maturity - timedelta(d)) for d in range(tmp_steps)]
85
86 tmp_call = df_opt[’Call’][row]
87 tmp_unit = df_units[tmp_uly ][0]
88
89 pricer = asianOptionBinomialTree(tmp_steps , tmp_vol , tmp_time_period , oneOverRho , tmp_

rates)
90 sim = pricer.getOptionPrice(tmp_init , tmp_strike * tmp_unit)
91 print(’undeylying: %s; bdays: %d, strile: %6.3f, init: %6.3f --> simulate: %6.3f; actual

call: %6.3f’ \
92 % (tmp_uly , tmp_steps , tmp_strike* tmp_unit , tmp_init , sim , tmp_call))

biTreePriceSimulation.py

7.3.4 garchPricer.py

1 #!/usr/bin/env python3
2 # -*- coding: utf -8 -*-
3 """
4 Created on Fri Apr 5 17:22:55 2019
5
6 @author: lueshen
7
8 get_best_model function is based on a script from Chu Song
9 """

10
11 import pandas as pd
12 import numpy as np
13 import statistics
14 import progressbar
15 from datetime import datetime
16 from arch import arch_model
17 from statsmodels.stats.diagnostic import acorr_ljungbox
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18 import matplotlib.pyplot as plt
19 import warnings
20 warnings.filterwarnings(’ignore ’)
21 warnings.simplefilter("ignore")
22 # =============================================================================
23 # Define risk free rate , reference to US treasury yield curve as of 20190322
24 # https://www.treasury.gov/resource -center/data -chart -center/interest -rates/pages/TextView.

aspx?data=yieldYear&year =2019
25 # 1m, 2m, 3m, 6m, 1y, 2y, 3y, 5y, 7y, 10y, 20y, 30y
26 # =============================================================================
27 # Define risk free rate according to US
28 yieldCurveDict = {
29 ’2019 -04 -22’: 2.49,
30 ’2019 -05 -22’: 2.48,
31 ’2019 -06 -22’: 2.46,
32 ’2019 -09 -22’: 2.48,
33 ’2020 -03 -22’: 2.45,
34 ’2021 -03 -22’: 2.31,
35 ’2022 -03 -22’: 2.24,
36 ’2024 -03 -22’: 2.24,
37 ’2026 -03 -22’: 2.34,
38 ’2029 -03 -22’: 2.44,
39 ’2039 -03 -22’: 2.69,
40 ’2049 -03 -22’: 2.88
41 }
42
43 # Derive forward rates from US treasury yield curve
44 curvePoints = [’2019 -03 -22’] + list(yieldCurveDict.keys())
45
46 forwardCurveDict = {}
47 fwdCurveDict = {0:0}
48 for i in range(len(yieldCurveDict)):
49 datePoint1 = curvePoints[i]
50 datePoint2 = curvePoints[i + 1]
51 busDateDiff1 = np.busday_count(curvePoints [0], datePoint1)
52 busDateDiff2 = np.busday_count(curvePoints [0], datePoint2)
53 if (datePoint1 == curvePoints [0]):
54 forwardCurveDict[datePoint2] = yieldCurveDict[datePoint2]
55 fwdCurveDict[busDateDiff2] = yieldCurveDict[datePoint2]
56 else:
57 yieldAtDate1 = yieldCurveDict[datePoint1]
58 yieldAtDate2 = yieldCurveDict[datePoint2]
59 forwardCurveDict[datePoint2] = float(( yieldAtDate2 * busDateDiff2 - yieldAtDate1 *

busDateDiff1) / (busDateDiff2 - busDateDiff1))
60 fwdCurveDict[busDateDiff2] = float(( yieldAtDate2 * busDateDiff2 - yieldAtDate1 *

busDateDiff1) / (busDateDiff2 - busDateDiff1))
61
62 # Function to get risk free rate given a date (datetime.date object)
63 def getRiskFreeRateByDate(inputDate):
64 for i in range(len(forwardCurveDict)):
65 datePoint1 = datetime.strptime(curvePoints[i],’%Y-%m-%d’).date()
66 datePoint2 = datetime.strptime(curvePoints[i + 1],’%Y-%m-%d’).date()
67 if (inputDate >= datePoint1 and inputDate < datePoint2):
68 return forwardCurveDict[curvePoints[i + 1]]
69 return 0
70
71 # Function to get risk free rate given a business date count from 20190322
72 def getRiskFreeRate(dayCounts):
73 dayCountPoints = list(fwdCurveDict.keys())
74 for i in range(len(dayCountPoints) -1):
75 dayCount1 = dayCountPoints[i]
76 dayCount2 = dayCountPoints[i + 1]
77 if (dayCounts >= dayCount1 and dayCounts < dayCount2):
78 return fwdCurveDict[dayCount2]
79 return 0
80
81 # =============================================================================
82 # convenience yield - storage cost
83 # =============================================================================
84 commodityYieldDict = {
85 ’Crude Oil WTI’: 0.01,
86 ’Ethanol ’: 0.01,
87 ’Gold’: 0.01,
88 ’Natural Gas’: 0.01,
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89 ’Silver ’: 0.01
90 }
91
92 # =============================================================================
93 # Utility functions
94 # =============================================================================
95 commodityCurrDict = {
96 ’Crude Oil WTI’: 0.01,
97 ’Ethanol ’: 0.0001 ,
98 ’Gold’: 1,
99 ’Natural Gas’: 0.001 ,

100 ’Silver ’: 0.01
101 }
102
103 def get_currency_divisor(commodity):
104 return commodityCurrDict[commodity]
105
106 # Get best GJR GARCH model for the log return series
107 def get_best_model(logRtSeries , pLimit , oLimit , qLimit , predictDays):
108 best_bic = np.inf
109 best_order = None
110 best_mdl = None
111 best_numParams = np.inf
112 isZeroMean = False
113
114 for pValue in range(pLimit + 1):
115 for oValue in range(oLimit + 1):
116 for qValue in range(qLimit + 1):
117 isZeroMean = False
118 try:
119 tmp_mdl = arch_model(y = logRtSeries ,
120 p = pValue ,
121 o = oValue ,
122 q = qValue ,
123 dist = ’Normal ’)
124 tmp_res = tmp_mdl.fit(update_freq=5, disp=’off’)
125
126 # Remove mean if it’s not significant
127 if tmp_res.pvalues[’mu’] > 0.05:
128 isZeroMean = True
129 tmp_mdl = arch_model(y = logRtSeries ,
130 mean = ’Zero’,
131 p = pValue ,
132 o = oValue ,
133 q = qValue ,
134 dist = ’Normal ’)
135 tmp_res = tmp_mdl.fit(update_freq=5, disp=’off’)
136
137 tmp_bic = tmp_res.bic
138 tmp_numParams = tmp_res.num_params
139 tmp_wn_test = tmp_res.resid / tmp_res._volatility
140 [lbvalue , pvalue] = acorr_ljungbox(tmp_wn_test , lags = 20)
141
142 # Make sure the model pass Ljunbox Test , and fit the time series
143 if pvalue [19] >= 0.05:
144 if best_bic / tmp_bic > 1.05:
145 best_bic = tmp_bic
146 best_order = [pValue , oValue , qValue]
147 best_mdl = tmp_res
148 # Choose simpler model
149 elif tmp_bic <= best_bic and tmp_numParams <= best_numParams:
150 best_bic = tmp_bic
151 best_order = [pValue , oValue , qValue]
152 best_mdl = tmp_res
153 except:
154 continue
155
156 # Handle situations when all models don ’t pass Ljunbox Test
157 if (best_mdl == None):
158 tmp_mdl = arch_model(y = logRtSeries ,
159 p = 1,
160 o = 1,
161 q = 1,
162 dist = ’Normal ’)
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163 best_mdl = tmp_mdl.fit(update_freq=5, disp=’off’)
164
165 # Remove mean if it’s not significant
166 if best_mdl.pvalues[’mu’] > 0.05:
167 isZeroMean = True
168 tmp_mdl = arch_model(y = logRtSeries ,
169 mean = ’Zero’,
170 p = 1,
171 o = 1,
172 q = 1,
173 dist = ’Normal ’)
174 best_mdl = tmp_mdl.fit(update_freq=5, disp=’off’)
175
176 best_bic = best_mdl.bic
177 best_order = [1, 1, 1]
178
179
180 # Test for first 20-lag
181 wn_test = best_mdl.resid / best_mdl._volatility
182 [lbvalue , pvalue] = acorr_ljungbox(wn_test , lags = 20)
183
184 output = {}
185 output[’Zero Mean Model ’] = isZeroMean
186 output[’Best BIC’] = best_bic
187 output[’Best Order’] = best_order
188 output[’Best Model’] = best_mdl
189 volForecasts = best_mdl.forecast(horizon=predictDays)
190 output[’Vol Predictions ’] = np.sqrt(volForecasts.residual_variance.iloc [-1]. values)
191 output[’Ljunbox Test Statistics ’] = lbvalue [19]
192 output[’Ljunbox Test pvalue ’] = pvalue [19]
193
194 return output
195
196 # Get affine garch model [not implemented yet]
197 def get_affine_garch(logRtSeries):
198 tmp_mdl = arch_model(y = logRtSeries ,p = 1,q = 1,dist = ’Normal ’)
199 tmp_res = tmp_mdl.fit(update_freq=5, disp=’off’)
200 tmp_bic = tmp_res.aic
201
202 output = {}
203 output[’Best AIC’] = tmp_bic
204 output[’Best Model’] = tmp_res
205
206 return output
207
208 # Use GARCH vol to price Asian option (Monte Carlo)
209 def garchPricer(startPrice , strikePrice , garchModel , expBusDays , numPath):
210 sumCallPrice = 0
211 sumPutPrice = 0
212 res = garchModel[’Best Model’]
213 mu = 0
214 if garchModel[’Zero Mean Model ’] == False:
215 mu = res.params[’mu’]
216 vol = garchModel[’Vol Predictions ’]
217 simulatedUlyPrices = []
218 callPrices = []
219 putPrices = []
220
221 for i in range(numPath):
222 simulatedUlyPrice = [startPrice]
223 ulyPrice = startPrice
224 sumUlyPrice = 0
225 dt = 1 / 252
226 randomGenerator = np.random.normal(0, 1, expBusDays)
227 discountRate = 0
228
229 # Simulated one path of underlying price
230 for j in range(expBusDays):
231 zt = randomGenerator[j]
232 rt = getRiskFreeRate(j) / 100
233 dLogSt = mu + vol[j] / 100 * zt
234 discountRate += rt
235 ulyPrice *= np.exp(dLogSt)
236 simulatedUlyPrice.append(ulyPrice)
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237 sumUlyPrice += ulyPrice
238
239 avgUlyPrice = sumUlyPrice / expBusDays
240 simulatedUlyPrices.append(simulatedUlyPrice)
241
242 # True for call , false for put
243 callPrice = max(avgUlyPrice - strikePrice , 0) * np.exp(-discountRate * dt)
244 putPrice = max(strikePrice - avgUlyPrice , 0) * np.exp(-discountRate * dt)
245 callPrices.append(callPrice)
246 putPrices.append(putPrice)
247 sumCallPrice += callPrice
248 sumPutPrice += putPrice
249
250 output = {
251 ’Call’: sumCallPrice / numPath ,
252 ’Put’: sumPutPrice / numPath ,
253 ’Call Prices ’: callPrices ,
254 ’Put Prices ’: putPrices ,
255 ’Call STD’: statistics.stdev(callPrices),
256 ’Put STD’: statistics.stdev(putPrices),
257 ’Simulated Price’: simulatedUlyPrices
258 }
259
260 return output
261
262 # Pricing Asian Option with fixed vol (Monte Carlo)
263 def nonGarchPricer(startPrice , strikePrice , vol , costYield , expBusDays , numPath):
264 sumCallPrice = 0
265 sumPutPrice = 0
266 simulatedUlyPrices = []
267 callPrices = []
268 putPrices = []
269
270 for i in range(numPath):
271 simulatedUlyPrice = [startPrice]
272 ulyPrice = startPrice
273 sumUlyPrice = 0
274 dt = 1 / 252
275 randomGenerator = np.random.normal(0, np.sqrt(dt), expBusDays)
276 discountRate = 0
277
278 # Simulated one path of underlying price
279 for j in range(expBusDays):
280 dWt = randomGenerator[j]
281 rt = getRiskFreeRate(j) / 100
282 dLogSt = (rt - costYield - (vol / 100)**2 / 2) * dt + vol / 100 * dWt
283 discountRate += rt
284 ulyPrice *= np.exp(dLogSt)
285 simulatedUlyPrice.append(ulyPrice)
286 sumUlyPrice += ulyPrice
287
288 avgUlyPrice = sumUlyPrice / expBusDays
289 simulatedUlyPrices.append(simulatedUlyPrice)
290
291 callPrice = max(avgUlyPrice - strikePrice , 0) * np.exp(-discountRate * dt)
292 putPrice = max(strikePrice - avgUlyPrice , 0) * np.exp(-discountRate * dt)
293 callPrices.append(callPrice)
294 putPrices.append(putPrice)
295 sumCallPrice += callPrice
296 sumPutPrice += putPrice
297
298 output = {
299 ’Call’: sumCallPrice / numPath ,
300 ’Put’: sumPutPrice / numPath ,
301 ’Call Prices ’: callPrices ,
302 ’Put Prices ’: putPrices ,
303 ’Call STD’: statistics.stdev(callPrices),
304 ’Put STD’: statistics.stdev(putPrices),
305 ’Simulated Price’: simulatedUlyPrices
306 }
307
308 return output
309
310 # =============================================================================
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311 # Data Preprocessing
312 # =============================================================================
313
314 # Load underlying data from git
315 df_uly = pd.read_csv("../Underlying Data/Underlying Data.csv", sep=’,’)
316
317 # Preprocess dataframe , set up index , fill nan with latest previous values
318 df_uly.index = pd.to_datetime(df_uly[’Date’]).dt.date
319 df_uly = df_uly.drop(’Date’, axis = 1)
320
321 # Load option data from git
322 df_opt = pd.read_csv("../Option Price Data/Option Data.csv", sep=’,’)
323
324 # Preprocess dataframe , convert dates , calculate days to maturity
325 df_opt.columns = [’Start Date’,’Maturity Date’,’Strike ’,’Put’,’Call’,’Underlying ’]
326 df_opt[’Maturity Date’] = pd.to_datetime(df_opt[’Maturity Date’]).dt.date
327 df_opt[’Start Date’] = ’2019 -3 -25’
328 df_opt[’Start Date’] = pd.to_datetime(df_opt[’Start Date’]).dt.date
329 try:
330 df_opt[’Exp BusDays ’] = np.busday_count(df_opt[’Start Date’], df_opt[’Maturity Date’]) + 1
331 except:
332 # Sometimes line above may not work , use method below as an alternative
333 tmp_list = []
334 for i in range(len(df_opt[’Start Date’])):
335 tmp_list.append(np.busday_count(df_opt[’Start Date’][i], df_opt[’Maturity Date’][i]) +

1)
336 df_opt[’Exp BusDays ’] = tmp_list
337
338 # =============================================================================
339 # Get best GARCH model and other info for underlyings whose options we will price later
340 # =============================================================================
341 masterObj = {}
342
343 ulyList = list(np.unique(df_opt[’Underlying ’]))
344 for underlying in progressbar.progressbar(ulyList):
345 tmp_uly = underlying [:-8]
346 TS_uly = df_uly[tmp_uly]. dropna ()
347 TS_logRt = (np.log(TS_uly) - np.log(TS_uly.shift (1))).dropna () * 100
348 TS_logRt = TS_logRt[TS_logRt!=0]
349 max_expDays = max(df_opt[df_opt[’Underlying ’]== underlying ][’Exp BusDays ’])
350 masterObj[tmp_uly] = {
351 ’Start Price’: TS_uly[-1],
352 ’Volatility ’: statistics.stdev(TS_logRt),
353 ’Garch Model’: get_best_model(TS_logRt , 10, 10, 10, max_expDays)
354 }
355
356 # =============================================================================
357 # Execute garchPricer and collect results
358 # =============================================================================
359 nonGarchFairPriceCall = []
360 nonGarchFairPricePut = []
361 garchFairPriceCall = []
362 garchFairPricePut = []
363 nonGarchCallStd = []
364 nonGarchPutStd = []
365 garchCallStd = []
366 garchPutStd = []
367 resultsObj = {}
368
369
370 # Number of Monte Carlo simulated paths
371 numPath = 10000
372
373 # Loop through options
374 for row in progressbar.progressbar(df_opt.index):
375 # Retrieve the name of the underlying
376 tmp_uly = df_opt[’Underlying ’][row ][:-8]
377 tmp_strike = df_opt[’Strike ’][row] * get_currency_divisor(tmp_uly)
378 tmp_maturity = df_opt[’Maturity Date’][row]
379 tmp_expBusDays = df_opt[’Exp BusDays ’][row]
380
381 # Retrieve the underlying historical data
382 tmp_s0 = masterObj[tmp_uly][’Start Price’]
383 tmp_vol = masterObj[tmp_uly][’Volatility ’]
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384 tmp_model = masterObj[tmp_uly][’Garch Model’]
385
386 nonGarchResults = nonGarchPricer(tmp_s0, tmp_strike , tmp_vol , commodityYieldDict[tmp_uly],

tmp_expBusDays , numPath)
387 nonGarchFairPriceCall.append(nonGarchResults[’Call’])
388 nonGarchFairPricePut.append(nonGarchResults[’Put’])
389 nonGarchCallStd.append(nonGarchResults[’Call STD’])
390 nonGarchPutStd.append(nonGarchResults[’Put STD’])
391
392 garchResults = garchPricer(tmp_s0 , tmp_strike , tmp_model , tmp_expBusDays , numPath)
393 garchFairPriceCall.append(garchResults[’Call’])
394 garchFairPricePut.append(garchResults[’Put’])
395 garchCallStd.append(garchResults[’Call STD’])
396 garchPutStd.append(garchResults[’Put STD’])
397
398 resultsObj[row] = {
399 ’GARCH MC’: garchResults ,
400 ’Non -GARCH MC’: nonGarchResults
401 }
402
403 df_opt[’Put (MC non -GARCH)’] = nonGarchFairPricePut
404 df_opt[’Put (MC non -GARCH) STD’] = nonGarchPutStd
405 df_opt[’Call (MC non -GARCH)’] = nonGarchFairPriceCall
406 df_opt[’Call (MC non -GARCH) STD’] = nonGarchCallStd
407 df_opt[’Put (MC GARCH)’] = garchFairPricePut
408 df_opt[’Put (MC GARCH) STD’] = garchPutStd
409 df_opt[’Call (MC GARCH)’] = garchFairPriceCall
410 df_opt[’Call (MC GARCH) STD’] = garchCallStd

garchPricer.py
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