Hong Kong University of Science of Technology

MAFS5130-Qnautitative Analysis of Financial Time Series

<u>Science or Myth:</u> Could Technical Indicators Predict Markets?

Ъy

CONG	Mingshu,	20006892
CHEN	Wanjun,	20001373
ZHAO	Jihong,	07627388
SHI	Luyao,	20005771
ZHANG	Yuting,	20005109

Instructor: Dr. Ling Shiqing

May 2012

Introduction	5
Technical Analysis Overview	5
Fundamental Analysis & Technical Analysis	5
Market efficiency	6
Technical Analysis & Behavioral Finance	7
Categories of Technical Analysis	8
Main Categories of Technical Indicators	10
Introduction of HSI	12
History & Components	12
HSI as a tradable asset	13
Data Description	13
Stationary checkingDickey-Fuller Unit Root Tests	14
Serial correlation checking	16
Fitting the ARMA model	17
On Balance Volume indicator(OBV)	17
Overview of OBV indicator	17
Data Checking	18
Model fitting	20
Findings	21
Moving Average Convergence/Divergence (MACD)	21
BIAS	26
Overview of the indicator	26
Data Checking	27
Model Specification - VARMA (1, 1)	27
Conclusion:	29
Other Unsuccessful Attempts	29
KDJ	29
PSY	32
AR-EGARCH Model	34
Mean Equation Determination	34
ARCH Test	35
Conditional Heteroscedastic Equation Determination	36
Model Checking	
Multifactor model	
Factor selection	
Model Specification	39
Models Fitting	40
Conclusion	46
Best Model	46
Weakness	46
Conclusion	47
Appendix	47

Contents

Appendix A	47
Appendix B	54
Appendix D	57

Figure Indexes

Figure 1: The basic candlestick	8
Figure 2: Wave illustration from R.N. Elliott's essay, "The Basic of Wave Principles"	9
Figure 3: Illustration of the pattern head and shoulders	10
Figure 4: Candlestick chart for Hang Seng Index for the past 8 months	12
Figure 5: the time series of dInHSI	19
Figure 6: the time series of dOBV	19
Figure 7 Plot of J Index	30
Figure 8 Plot of J Index and 10000 times HSI Log Return (A Cut Period)	32
Figure 9 Plot of PSY index	33
Figure 10 T Distribution QQ Plot of Standardized Residual	37

Table Indexes

Table 1: Trading details of HSI ETF offered by Hang Seng Bank	13							
Table 2: DF test for the InHSI14								
Table 3: DF test for the Δ InHSI	15							
Table 5: ACF of the Δ InHSI16								
Table 6: Q-test of the Δ InHSI16								
Table 7: DF test for the ΔOBV								
Table 8: variable used in the SAS test	20							
Table 9: Parameter Estimates of the VARMA(1,1) Model	20							
Table 10: DF Test for log transformation of MACD	23							
Table 11: DF Test for one-time difference of log MACD	23							
Table 12: Cross Correlation of Residuals for VARMA(1,1) Model	24							
Table 13: Parameter estimates for VARMA(1,1) Model	24							
Table 14: Covariances of Innovation for VARMA(1,1) Model	25							
Table 15: Information Criteria for VARMA(1,1) Model	25							
Table 16: DF Test for BIAS	27							
Table 17: Model Parameter Estimates for VARMA(1,1) Model	28							
Table 18: Information Criteria for VARMA (1,1) Model	28							
Table 19 Unit Root Test of J index								
Table 20Estimation of VAR(1) model of HSI log return and J index	31							
Table 21 Unit Root test of PSY index	33							
Table 22 Estimation of VAR(1) model of HSI log return and PSY index	34							
Table 23 Serial Correlation Check of HSI Log Return	34							
Table 24 Parameter Estimation of AR Model for the Mean Equation	35							
Table 25 ARCH Test for Residual	35							
Table 26 Parameter Estimation of AR(3)-EGARCH(3,3) Model of HSI Log Return	36							
Table 27 Check for Standardized Residual	37							
Table 28 Check for Square Standardized Residual	38							
Table 29: The VARMAX Procedure	39							
Table 30: The VARMAX Procedure	44							

Introduction

The view on technical analysis varies from person to person. Some claim it as a science while others blame it as myth. In this article, we try to examine the effect of those popular technical indicators based on the historical data of HSI. We try to answer the question: could technical indicators predict markets?

Technical Analysis Overview

Fundamental Analysis & Technical Analysis

While investors have hundreds of methods to predict the market and finally make investment decisions, those methods fall into two very broad categories: fundamental analysis and technical analysis. Fundamental analysis involves analyzing the characteristics of a company in order to estimate its value and it is the basic method used by researchers from investment banks in their research reports. On the other hand, technical analysis takes a completely different approach; it doesn't care one bit about the so called "intrinsic value" of a company or a commodity. Technicians are only interested in the price movements in the market.

Basically, technical analyst is trying to predict the market through historical trading data, among which closing prices and the trading volumes are of the most important. Stocks can be seen as a special commodity, whose price direction or trend in the near future can be determined by the relative strength of its demand to its supply. Technical analysis attempts to understand the emotions in the market by studying the market itself, as opposed to its components.

Technical analysis is widely used in Asia, especially by those individual investors,

called *Sanhu* in Mandarin. There are popular blogs online analyzing the market by technical analysis technique, and some Chinese investors believe in predictions in these blogs more than research reports from famous investment banks. Some analysis in these blogs is quite fancy. For example, one blogger believes there is some supernatural relationships between the market mood and the 24 seasonal segments in Chinese traditional lunar calendar. Notwithstanding tons of critics, all those bloggers allege their analysis is "totally scientific". Even in Hong Kong, the most important financial center in East Asia, technical analysis is popular. Even the articles on Mingpao, one of the most influential local newspapers, mention technical analysis techniques from time to time.

Despite notorious among professional bankers as unreasonable, technical analysis is still widely used by traders for short term price prediction. The common view on technical analysis among investment bankers is that while it cannot value a stock properly, it is useful for short term trading.

Market efficiency

The efficient-market hypothesis (EMH) may be the most important hypothesis in modern finance. Asserting that financial markets are "informationally efficient", one cannot consistently achieve returns in excess of average market returns on a risk-adjusted basis, given the information available at the time the investment is made.

There are three major versions of the hypothesis: "weak", "semi-strong", and "strong". The weak-form EMH claims that prices on traded assets (e.g., stocks, bonds, or property) already reflect all past publicly available information. The semi-strong-form EMH claims both that prices reflect all publicly available information and that prices instantly change to reflect new public information. The strong-form EMH additionally claims that prices instantly reflect even hidden or "insider" information. The market efficiency concept has lots to do with fundamental analysis and technical analysis. In fact, there is another way to define efficient market. A "weakly efficient market" is a market in which technical analysis will not work. A "semi-strong efficient market" is a market in which fundamental analysis will not work.

Since EMH is the cornerstone of almost all modern financial theories, testing the market efficiency has aroused lots of academic interests. One of the approaches for this purpose is to test the effectiveness of technical or fundamental analysis. This is also another purpose of this paper.

Technical Analysis & Behavioral Finance

Behavioral finance is a field of finance that proposes psychology-based theories to explain stock market anomalies. Within behavioral finance, it is assumed that the information structure and the characteristics of market participants systematically influence individuals' investment decisions as well as market outcomes.

In recent years, it has become more and more obvious that psychology plays an ever-more important role in financial markets and also drives back the influence on the rational actions of stock market participants. In broad terms, it argues that some financial phenomena can be better understood using models in which some agents are not fully rational. Behavioral Finance is showing that in an economy where rational and irrational traders interact, irrationality can have a substantial and long-lived impact on prices.

From this point of view, technical analysis may be effective in the sense that if every market participator believes in those well known technical techniques, those techniques will actually show its effect.

Categories of Technical Analysis

Candlestick Chart

Candlestick chart, also called K-chart in Asia, is a style of bar-chart used primarily to describe price movements of a security, derivative, or currency over time.

Candlesticks are usually composed of the body (black or white), and an upper and a lower shadow (wick): the area between the open and the close is called the real body, price excursions above and below the real body are called shadows. The wick illustrates the highest and lowest traded prices of a security during the time interval represented. The body illustrates the opening and closing trades. If the security closed higher than it opened, the body is white or unfilled, with the opening price at the bottom of the body and the closing price at the top. If the security closed lower than it opened, the body is black, with the opening price at the top and the closing price at the bottom. A candlestick need not have either a body or a wick.

Figure 1: The basic candlestick

There are popular candlestick patterns used for predicting the markets, such as *three white soldiers*, *three black crows*, *morning star*, etc.

Elliott Wave Theory

The Elliott Wave Principle is a form of technical analysis that some traders use to analyze financial market cycles and forecast market trends by identifying extremes in investor psychology, highs and lows in prices, and other collective factors. In Elliott's model, market prices alternate between an impulsive, or motive phase, and a corrective phase on all time scales of trend, as the illustration shows. Impulses are always subdivided into a set of 5 lower-degree waves, alternating again between motive and corrective character, so that waves 1, 3, and 5 are impulses, and waves 2 and 4 are smaller retraces of waves 1 and 3. Corrective waves subdivide into 3 smaller-degree waves starting with a five-wave counter-trend impulse, a retrace, and another impulse. In a bear market the dominant trend is downward, so the pattern is reversed—five waves down and three up. Motive waves always move with the trend, while corrective waves move against it.

Figure 2: Wave illustration from R.N. Elliott's essay, "The Basic of Wave Principles"

Chart Pattern Theory

A chart pattern is a pattern that is formed within a chart when prices are graphed. In stock and commodity markets trading, chart pattern studies play a large role during technical analysis. When data is plotted there is usually a pattern which naturally occurs and repeats over a period. Chart patterns are used as either reversal or continuation signals.

Examples of "classical" chart patterns widely by traders and investors include: Head and shoulders, trend lines, cup and handle, double top and double bottom, triple top and triple bottom, broadening top, price channels, wedge pattern, triangle, flag and pennant patterns, etc.

Figure 3: Illustration of the pattern head and shoulders

Technical Indicators

The above three methods are mainly based on the patterns of the stock price chart. Technical Indicator is a result of mathematical calculations based on indications of price and/or volume. The values obtained are used to forecast probable price changes. Because these indicators have exact values for any given time, they are more suitable for quantitative analysis and computational trading.

Therefore, technical Indicators are the main focus of this paper.

Main Categories of Technical Indicators

According to the underlying trading data involved, the technical indicators can be divided into three main categories.

Price-based indicators

- > Average Directional Index a widely used indicator of trend strength
- > Commodity Channel Index identifies cyclical trends
- > MACD moving average convergence/divergence
- > BIAS the departure against the moving average

- \triangleright *PSY* the market mood indicator
- > Momentum the rate of price change
- > Relative Strength Index (RSI) oscillator showing price strength
- Stochastic oscillator close position within recent trading range
- Trix an oscillator showing the slope of a triple-smoothed exponential moving average
- %C denotes current market environment as range expansion or contraction plus highlights ta extremes when the condition should be changing.

Volume-based indicators

- > Accumulation/distribution index based on the close within the day's range
- > Money Flow the amount of stock traded on days the price went up
- > On-balance volume (OBV) the momentum of buying and selling stocks

Breadth Indicators

These indicators are based on statistics derived from the broad market.

- > Advance Decline Line a popular indicator of market breadth
- > McClellan Oscillator a popular closed-form indicator of breadth
- McClellan Summation Index a popular open-form indicator of breadthData Set
 Selection & Description

Considering their popularity in China, we choose three price-based indictors (MACD, BIAS, PSY) and one volume-based indicators (OBV) in our study.

Introduction of HSI

History & Components

The Hang Seng Index (HSI) is a free float-adjusted market capitalization-weighted stock market index in Hong Kong. It is used to record and monitor daily changes of the largest companies of the Hong Kong stock market and is the main indicator of the overall market performance in Hong Kong. These 48 constituent companies represent about 60% of capitalisation of the Hong Kong Stock Exchange.

HSI was started on November 24, 1969, and is currently compiled and maintained by Hang Seng Indexes Company Limited, which is a wholly owned subsidiary of Hang Seng Bank, one of the largest banks registered and listed in Hong Kong in terms of market capitalization. It is responsible for compiling, publishing and managing the Hang Seng Index and a range of other stock indexes, such as Hang Seng China Enterprises Index, Hang Seng China AH Index Series, Hang Seng China H-Financials Index, Hang Seng Composite Index Series, Hang Seng China A Industry Top Index, Hang Seng Corporate Sustainability Index Series and Hang Seng Total Return Index Series. Hang Seng in turn, despite being a public company, is held in majority by British financial firm HSBC

Figure 4: Candlestick chart for Hang Seng Index for the past 8 months

In our following study, we use the daily closing prices of HSI from Jan 1st, 2005 to Dec 31st, 2011.

HSI as a tradable asset

Unlike ordinary stocks, HSI cannot be traded directly. However, it can also be a tradable asset through the financial product HSI ETF. Basically, this is a fund tracking the movement of HSI by holding the component stocks. Therefore, if we can predict HSI correctly, we can make profit by trading HSI ETFs.

Unit Price of HSI ETF	Determined by the forces of market supply and demand (Not applicable to in-kind transactions conducted through Participating Dealers)				
Trading Channel	rade through stock brokers or banks on the SEHK				
Trading Hours	Traded during SEHK trading hours				
Minimum Trading Size	100 Units				
Fees for acquisition and disposal of Units	- Brokerage# - SFC Transaction Levy - SFC Investor Compensation Levy - SEHK Trading Fee - Stamp Duty - Purchase Order Handling Fee#(if any)				
Fund Operating Cost	Management Fee, Trustee Fee and Other Expenses*				

Table 1: Trading details of HSI ETF offered by Hang Seng Bank

Data Description

Now we analyses the data of the HSI index from 2005 to 2011, as a preparation for the further study of the relationship between the HSI and the technical indicator. Frist we check if the In(HSI) are stationary through the DF test, and make some differentiation if the data is not stationary. Then we check if the data is serial correlated through the ACF and Q-test. At last we check if the ARMA model is fitted for the transformed data. The detail SAS result can see in the appendix A.

Stationary checking---Dickey-Fuller Unit Root Tests

Dickey-Fuller Unit Root Test is conducted to confirm two series are stationary and the results are listed in Table bellowed. The second column of Table specifies three types of models, namely Zero Mean, Single Mean, and Trend. The third column (Rho) and the fifth column (Tau) are the test statistics for the unit root tests. The remaining columns (column 2 and column 6) are the p-values for corresponding models.

Augmented Dickey-Fuller Unit Root Tests							
Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F
Zero Mean	0	0.0273	0.6894	0.36	0.7887		
	1	0.0270	0.6893	0.37	0.7907		
	2	0.0279	0.6895	0.38	0.7927		
	3	0.0286	0.6897	0.40	0.7999		
Single Mean	0	-7.9263	0.2214	-2.19	0.2114	2.47	0.4366
	1	-7.4898	0.2455	-2.13	0.2330	2.35	0.4676
	2	-7.7317	0.2319	-2.17	0.2183	2.44	0.4454
	3	-7.2252	0.2613	-2.12	0.2376	2.34	0.4701
Trend	0	-8.4065	0.5527	-2.02	0.5909	2.42	0.6924
	1	-7.8546	0.5958	-1.94	0.6320	2.28	0.7195
	2	-8.1162	0.5752	-1.98	0.6123	2.37	0.7025
	3	-7.4187	0.6304	-1.89	0.6594	2.24	0.7269

Table 2: DF test for the lnHSI

From the result of the DF-test of the ln(HSI), we can see that the p values of the Tau are all larger than 0.1, that mean the data is not stationary and we should take a differentiation of the data. The first order of the differentiation of the data is showed bellowed. Actually Δ InHSI is the log return of the Heng seng index, and we believed it is more practical.

Augmented Dickey-Fuller Unit Root Tests							
Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F
Zero Mean	0 -	1774.14	0.0001	-42.83	<.0001		
	1 -	1734.94	0.0001	-29.44	<.0001		
	2 -	2004.37	0.0001	-25.13	<.0001		
	3 -	2390.45	0.0001	-22.32	<.0001		
Single Mean	0 -	1774.30	0.0001	-42.82	<.0001	916.71	0.0010
	1 -	1735.45	0.0001	-29.43	<.0001	433.11	0.0010
	2 -	2005.72	0.0001	-25.13	<.0001	315.67	0.0010
	3 -	2393.59	0.0001	-22.32	<.0001	249.00	0.0010
Trend	0 -	1775.08	0.0001	-42.83	<.0001	917.01	0.0010
	1 -	1737.78	0.0001	-29.44	<.0001	433.43	0.0010
	2 -	2011.63	0.0001	-25.14	<.0001	316.09	0.0010
	3 -	2407.77	0.0001	-22.34	<.0001	249.49	0.0010

Table 3: DF test for the $\Delta lnHSI$

From the Table 4, we can see that all the p-values of the log return of the HIS are less than 0.05, that mean the Δ InHSI series is stationary (no drift and trend component) at the significant level of 5%.

Serial correlation checking

			Α	utocorrelation	5	
Lag	Covariance	Correlation	-1 9	987654321	012345678	91 Std Error
0	3.257820	1.00000	Ι	****	* * * * * * * * * * * * * * * *	*** 0
1	-0.108728	03337	Ι	* .	I	0.024126
2	0.038679	0.01187	I	. .	I	0.024153
3	-0.155472	04772	Ι	* .	I	0.024156
4	-0.115761	03553	I	* .	I	0.024211
5	-0.011145	00342	I	. .	I	0.024242
6	-0.025084	00770	Ι	. .	I	0.024242
7	0.060837	0.01867	Ι	. .	I	0.024243
8	0.115599	0.03548	Ι	. *	I	0.024252
9	-0.169436	05201	I	* .	I	0.024282
10	-0.217853	06687	I	* .	I	0.024347
11	0.073055	0.02242	Ι	. .		0.024453
12	0.090969	0.02792	Ι	. *		0.024465

Table 5: ACF of the Δ lnHSI

	Autocorrelation Check for White Noise								
To Lag	Chi-Square	DF	Pr > ChiSq		ļ	Autocor	relatio	ıs	
6	8.38	6	0.2114	-0.033	0.012	-0.048	-0.036	-0.003	-0.008
12	25.80	12	0.0115	0.019	0.035	-0.052	-0.067	0.022	0.028

Table 6: Q-test of the $\Delta lnHSI$

From the ACF, we can see that the sample has no serial correlations. But the Ljung-Box statistics give that Q(12)=25.80 with a p-value 0.0115, suggesting that we can reject the H0 that the first 12 lags of ACF are zero. That mean the data is serial correlated and we can try to fit an ARMA model for the percentage log return of the HSI.

Fitting the ARMA model.

We try many model, the AR(1), AR(2), MA(1), MA(2), ARMA(1,1), ARMA(2,2), etc. But the results are all not fitted as the p-value of the corresponding parameters are all larger than 0.1, which mean at the significant level of 10%, the parameters are all not significantly different from zero. As a conclusion, we cannot model the HSI with the ARMA model.

On Balance Volume indicator(OBV)

Overview of OBV indicator

On Balance Volume (OBV) measures buying and selling pressure as a cumulative indicator that adds volume on up days and subtracts volume on down days. OBV was developed by Joe Granville and introduced in his 1963 book, Granville's New Key to Stock Market Profits. It was one of the first indicators to measure positive and negative volume flow. We can look for divergences between OBV and price to predict price movements or use OBV to confirm price trends.

The On Balance Volume (OBV) line is simply a running total of positive and negative volume. A period's volume is positive when the close is above the prior close. A period's volume is negative when the close is below the prior close.

$$OBV(t) = \begin{cases} OBV(t) = OBV(t-1) + Volume(t), when \Delta lnHSI(t) > 0\\ OBV(t) = OBV(t-1) - Volume(t), when \Delta lnHSI(t) < 0\\ OBV(t) = OBV(t-1), when \Delta lnHSI(t) = 0 \end{cases}$$

OBV rises when volume on up days outpaces volume on down days. OBV falls when volume on down days is stronger. A rising OBV reflects positive volume pressure that can lead to higher prices. Conversely, falling OBV reflects negative volume pressure that can foreshadow lower prices. OBV would often move before price. Expect prices to move higher if OBV is rising while prices are either flat or moving down. Expect prices to move lower if OBV is falling while prices are either flat or moving up.

On Balance Volume (OBV) is a simple indicator that uses volume and price to measure buying pressure and selling pressure. Buying pressure is evident when positive volume exceeds negative volume and the OBV line rises. Selling pressure is present when negative volume exceeds positive volume and the OBV line falls. We can use OBV to confirm the underlying trend or look for divergences that may foreshadow a price change.

Data Checking

Obviously the OBV is a serial correlated and unstationary time series, so when we study the relationship of the HSI and OBV indicator, we use the transformed OBV as:

$$\Delta OBV(t) = OBV(t) - OBV(t-1) = sgn(OBV(t) - OBV(t-1)) \times Volume(t)$$

As the order of magnitude between the Δ InHSI and Δ OBV is quite a big different, we transformed the dOBV further as:

$$\Delta OBV'(t) = \Delta OBV(t)/10^8$$

Next we check if the data of $\Delta OBV'(t)$ is stationary through the DF-test is SAS:

	Dickey-Fuller Unit Root Tests							
Variable	е Туре	Rho	Pr < Rho	Tau	Pr < Tau			
dlnHSI	Zero Mean	-1743.0	0.0001	-29.51	<.0001			
	Single Mean	-1743.4	0.0001	-29.50	<.0001			
	Trend	-1745.2	0.0001	-29.51	<.0001			
dOBV	Zero Mean	-1671.2	0.0001	-28.89	<.0001			
	Single Mean	-1676.5	0.0001	-28.93	<.0001			
	Trend	-1677.5	0.0001	-28.93	<.0001			

Table 7: DF test for the ΔOBV

From the Table6, we can see that all the p-values of the dOBV' are less than 0.05, that mean the Δ OBV series is stationary (no drift and trend component) at the significant

level of 5%.

Figure 5: the time series of dlnHSI

Model fitting

SAS Variable Name	Description
dlnHSI	The number of holidays in Spain taken by U.K. residents
d_OBV	U.K. real personal disposable income

Table 8: variable used in the SAS test

We tried different parameters in VARMA model to fit our log return of HSI and ΔOBV . We tried VAR(1), VAR(2), VAR(3), VARMA(1,1), VARMA(2,2), models and found that VARMA(1,1) is the best one. VARMA(11,) shows that there is significant relationship between log return of HSI and ΔOBV .

The VARMAX Procedure

Type of Model	VARMA(1,1)
Estimation Method	Maximum Likelihood Estimation

Model Parameter Estimates								
Equation	Parameter	Estimate	Standard	t Value	Pr > t	Variable		
			Error					
dlnHSI	CONST1	1.09004	0.64374	1.69	0.0906	1		
	AR1_1_1	3.69917	0.47270	7.83	0.0001	dlnHSI (t-1)		
	AR1_1_2	-1.83658	0.13425	-13.68	0.0001	dOBV(t-1)		
	MA1_1_1	3.78239	0.47464	7.97	0.0001	e1(t-1)		
	MA1_1_2	-1.84108	0.13419	-13.72	0.0001	e2(t-1)		
dOBV	CONST2	2.66670	1.57101	1.70	0.0898	1		
	AR1_2_1	6.83499	1.76920	3.86	0.0001	dlnHSI (t-1)		
	AR1_2_2	-3.49872	0.41650	-8.40	0.0001	dOBV (t-1)		
	MA1_2_1	7.00441	1.79618	3.90	0.0001	e1(t-1)		
	MA1_2_2	-3.50858	0.41773	-8.40	0.0001	e2(t-1)		

From the above result, we see that the VARMA(1,1) model for Δ InHIS(percentage) and the transformed indicator Δ OBV is

$$\Delta \ln HSI(t) = 1.09 + 3.70 \Delta \ln HIS\%(t - 1)$$

$$-1.84 \times \Delta OBV(t-1) + 3.78a_1(t-1) - 1.84a_2(t-1)$$

Since the p-values for all coefficients in the above equation are less than 0.1, which confirm that the coefficients are significant at the level of 10%. The result shows that when the trading volume of stocks of the HSI increase, the Heng Seng Index tend to has a smaller log return.

Findings

As a normal sense, if the OBV is down means money is drawing out from that market, and if OBV is up means money is pumping into that market. So the log return of the HSI should increase or decrease along with the return of the OBV in a common sense. Also we know that price follows the money flow. But what we get from the VARMA model is against our common sense, which suggests that When the OBV increases, it leads to a decrease in the log return of the HSI.

Moving Average Convergence/Divergence (MACD)

Overview of the indicator

The standard setting for MACD is the difference between the 12 and 26-period EMAs. Mathematically,

$$MACD_t = EMA_t (12) - EMA_t (26)$$

where EMA is a type of moving average that is similar to a simple moving average, except

that more weight is given to the latest data. In terms of formula,

$$EMA_t(n) = EMA_{t-1}(n) + \frac{2}{n+1} \times (HSI_t - EMA_{t-1}(n))$$

By taking difference of the longer moving average from the shorter moving average, the MACD actually turns two trend-following indicators into a momentum oscillator, which measures the rate of change of our HSI Index. Positive values of it increase as EMA_t (12) diverges further from EMA_t (26), meaning an increasing upside momentum.

Since MACD is calculated from HSI, its value should be a good reflection of HSI itself. Meanwhile due to its own popularity in technical analysis for stock trading, we have good reasons to believe that it actually reversely affect the level of HSI, thus forming a two-way interaction between the two.

Data Checking

Before performing any specific modeling for the purpose of analysis, we ran a Dickey-Fuller Test on the log transformation of MACD to see if it is stationary.

We choose a log transformation of MACD instead of MACD itself only to make it better compatible with the log transformation we made to our HSI data. Yet unfortunately, as suggested by a p-value greater than 0.05 in the following table, the null hypothesis that the log transformation of MACD is non-stationary can hardly be rejected.

Dickey-Fuller Unit Root Tests								
Variable	Туре	Rho	Pr < Rho	Tau	Pr < Tau			
Ln(MACD)	Zero Mean	-0.05	0.6712	-0.15	0.6333			
	Single Mean	-78.32	0.0019	-6.26	<.0001			
	Trend	-79.53	0.0008	-6.31	<.0001			

Table 10: DF Test for log transformation of MACD

A natural way to address the problem is to take a one-time difference of the log MACD, which is what we did in our case.

Similarly Dickey-Fuller Unit Root Test is performed to test for the stationarity of this new series. With all the p-values smaller than 0.05, the stationarity of the one-time difference of log transformation of MACD is guaranteed.

Dickey-Fuller Unit Root Tests								
Variable	Туре	Rho	Pr < Rho	Tau	Pr < Tau			
Dif(Ln(MACD))	Zero Mean	-618.89	0.0001	-17.58	<.0001			
	Single Mean	-618.89	0.0001	-17.58	<.0001			
	Trend	-618.91	0.0001	-17.57	<.0001			

Table 11: DF Test for one-time difference of log MACD

Model Specification - VARMA (1, 1)

As explained earlier, we expect a mutual interaction between HSI and MACD, or at least we are here to test about such correlation. So a simple regression model of HSI return on the one time difference of log MACD and other terms will not be likely to capture the general picture due to its hidden assumption of causality of the dependent and independent variables. A general VARMA model on the other hand, will be more relevant in the literature. It is able to capture the two-way effect of HSI and MACD level on each other, if such effect actually exists.

The cross correlations of residuals are presented as following. Notice that the correlations are only significant up to first lag, suggesting a model specification of VARMA (1, 1)

Schematic Representation of Cross Correlations													
of Residuals													
Variable/Lag	0	1	2	3	4	5	6	7	8	9	10	11	12
R	++	++	••	••	••	••	••	••	••			••	••
Dif(Ln(MACD))	++	++	••		••	••	••	••	++			•+	••
+ is > 2^* std error, - is < -2^* std error, . is between													

Table 12: Cross Correlation of Residuals for VARMA(1,1) Model

Different specifications are still performed and VARMA(1, 1) Model indeed has a best fit to our data. Main results of the estimation using this model are presented in the following tables, which include Model Parameter Estimates, Covariances of Innovations and Information Criteria.

P-values for all parameter estimates are less than 0.05, suggesting significance of the estimates at 5% significance level.

Model Parameter Estimates								
Equation	Parameter	Estimate	Standard	t Value	$\mathbf{Pr} > \mathbf{t} $	Variable		
			Error					
R	AR1_1_1	-0.30710	0.08485	-3.62	0.0003	R(t-1)		
	AR1_1_2	-6.88926	1.54814	-4.45	0.0001	Dif(Ln(MACD)) (t-1)		
	MA1_1_1	-0.39308	0.10144	-3.8 7	0.0001	e1(t-1)		
	MA1_1_2	10.88581	2.60234	4.18	0.0001	e2(t-1)		
Dif(Ln(MACD))	AR1_2_1	-0.02488	0.00536	-4.64	0.0001	R(t-1)		
	AR1_2_2	0.35097	0.07800	4.50	0.0001	Dif(Ln(MACD)) (t-1)		
	MA1_2_1	-0.02548	0.00513	-4.97	0.0001	e1(t-1)		
	MA1_2_2	-0.23914	0.09496	-2.52	0.0119	e2(t-1)		

Table 13: Parameter estimates for VARMA(1,1) Model

Covariances of Innovations						
Variable R		dlnmacd				
R	3.22425	0.03452				
dlnmacd	0.03452	0.00047				

Table 14: Covariances of Innovation for VARMA(1,1) Model

Information Criteria					
AICC	-8.04577				
HQC	-8.0364				
AIC	-8.04579				
SBC	-8.02041				
FPEC	0.00032				

Table 15: Information Criteria for VARMA(1,1) Model

Model checking: (undecided yet)

Findings:

(Fitted model, financial intuition, possible application)

With the above analysis, we are able to obtain the following fitted model for HSI return and one time difference of log MACD:

 $R_{t} = -0.30710 R_{t-1} - 6.88926 \operatorname{dif}(\operatorname{Ln}(\operatorname{macd}))_{t-1} + a_{t}^{1} - 0.39308 a_{t-1}^{1} + 10.88581 a_{t-1}^{2}$

Coefficient before $Dif(Ln(MACD))_{t-1}$ is significantly different from 0, suggesting

that **Dif(Ln(MACD))** in the previous period does make an impact on the HSI return at the current time. This coincides with our prediction that the collateral use of MACD for technical analysis in the market place actually creates a reversal impact on the stock price itself.

The negative sign of coefficient appears to be controversial against financial intuition.

From intuition when **Dif(Ln(MACD))** takes a positive value, MACD is increasing and we should expect to see an increase in Rt as well. However the negative coefficient before **Dif(Ln(MACD))** right gives an opposite direction.

A possible explanation could be that since MACD is a relatively long-term indicator, it is somehow lagging behind the stock price movement. Thus in market place the traders may take an opposite move to capture such arbitrage opportunity. Again, it suggests that the use of financial indicator for technical analysis, although make full sense, can be very complicated and subjective with individuals in real practice.

BIAS

Overview of the indicator

BIAS, or Y Value, measures the divergence of current stock price (in our case, the HSI) from an N-day simple moving average of the stock prices. Mathematically,

$$BIAS_t = \left(HSI_t - \frac{1}{N}\sum_{i=t-N+1}^{t}HSI_i\right) \div \frac{1}{N}\sum_{i=t-N+1}^{t}HSI_i \times 100\%$$

where N is chosen to be 6 days in our case.

Technical analysis using BIAS is based on the assumption that stock price (in our case the log HSI), may it being above or below the moving average, if happens to be too far away from that average, will always tend to converge back from a longer perspective. This therefore can provide useful inferences for trading strategies of the stock.

Again since BIAS is calculated from HSI, its value should be a good reflection of HSI itself. Meanwhile given its popularity in technical analysis for stock trading, we have good reasons to believe that it actually reversely influence the level of HSI, thus forming a two-way interaction between the two.

Data Checking

Before performing any specific modeling for the purpose of analysis, we ran a Dickey-Fuller Test on BIAS to see if it is stationary. Relevant results are provided in the following table. With all the p-values smaller than 0.05, we can assume stationarity of the data.

Dickey-Fuller Unit Root Tests								
Variable	Туре	Rho	Pr <	Tau	Pr <			
			Rho		Tau			
BIAS	Zero Mean	-649.29	0.0001	-18.01	<.0001			
	Single Mean	-649.79	0.0001	-18.01	<.0001			
	Trend	-651.67	0.0001	-18.03	<.0001			

Table 16: DF Test for BIAS

Model Specification - VARMA (1, 1)

As explained, we expect mutual interaction between HSI and BIAS. So for similar reason as that in the case of MACD, a simple regression model of HSI return on BIAS and other variables will not give an accurate estimate. A general VARMA model is instead adopted to capture the two-way effect of HSI and BIAS, if it really exists.

Different specifications are performed before we find a best fitted model, the VARMA(1, 1) Model. Main results of the estimation using this model are presented in the following tables, which include Model Parameter Estimates, Covariances of Innovations and Information Criteria.

P-values for all parameter estimates are less than 0.1, suggesting significance of the estimates at 10% significance level.

Model Parameter Estimates							
Equation	Parameter	Estimate	Standard	t Value	Pr > t	Variable	
			Error				
R	AR1_1_1	0.31229	0.07005	4.46	0.0001	R(t-1)	
	AR1_1_2	-0.06859	0.01970	-3.48	0.0005	BIAS(t-1)	
	MA1_1_1	0.28023	0.05043	5.56	0.0001	e1(t-1)	
	MA1_1_2	-0.04069	0.02321	-1.75	0.0797	e2(t-1)	
BIAS	AR1_2_1	2.28695	0.40050	5.71	0.0001	R(t-1)	
	AR1_2_2	0.70266	0.04961	14.16	0.0001	BIAS(t-1)	
	MA1_2_1	1.61577	0.40686	3.97	0.0001	e1(t-1)	
	MA1_2_2	0.70853	0.05386	13.16	0.0001	e2(t-1)	

Table 17: Model Parameter Estimates for VARMA(1,1) Model

Covariances of Innovations						
Variable	R	BIAS				
R	0.00033	0.00027				
BIAS	0.00027	0.00022				

Table 17:	Covariances of Innovatio	ons for VARMA(1,1)	Model
-----------	--------------------------	--------------------	-------

Γ		
Informa	tion Criteria	
AICC	-21.1231	
HQC	-21.1137	
AIC	-21.1231	
SBC	-21.0976	
FPEC	6.7E-10	

Table 188: Information Criteria for VARMA (1,1) Model

Conclusion:

(Fitted model, financial intuition, possible application)

With the above analysis, we are able to obtain the following fitted model for HSI return and BIAS:

 $R_t = 0.31229 R_{t-1} - 0.06859 BIAS_{t-1} + a_t^{1} + 0.28023 a_{t-1}^{1} - 0.04069 a_{t-1}^{2}$

Notice that the coefficient before $BIAS_{t-1}$ is significantly different from 0, suggesting that BIAS in the previous period does make an impact on the HSI return at the current time. This coincides with our prediction that the collateral use of BIAS for technical analysis in the market place actually create a reversal impact on the stock price itself.

In addition, this coefficient is estimated to be negative, which is greatly in line with the theory of mean-reversing, suggesting that when the stock price is sufficiently lower than average, the negative BIAS will serve to push the price up in the next period, so as to make it gradually converge to average.

Other Unsuccessful Attempts

Besides above three indicators, we have tried many other technical indexes to find a good shot; however the others' performances are not satisfying. In another way, choice of an appropriate index is the key in technical analysis. The failed ones include KDJ and PSY, of which the similar analysis procedures are shown.

KDJ

The Chinese name of KDJ index is random index, was first proposed by George Lane. KDJ is most often used in short-term analysis by calculating Raw Stochastic Value (RSV), K line, D line and J line. J line comprehends the K line and D line, thus, is the index we choose to use.

(1) Computation Formulae:

(2) Stationary Test

Figure 7 obviously shows that J line fluctuate steady around a mean greater than zero. So, we have an intuition that j line is stationary.

Figure 7 Plot of J Index

Also, referring to Table 19, all p-values are significantly smaller than 0.05. By the Dickey-Fuller test, all the three tests on equations respectively with trend term, single mean term or zero mean reject the null hypothesis that the time series has a unit root. Hence, we can consider the J index is a stationary series.

Dickey-Fuller Unit Root Tests							
Variable	Туре	Rho	Pr < Rho	Tau	Pr < Tau		
J	Zero Mean	-730.88	0.0001	-19.13	<.0001		
Single Mean -1383.3 0.0001 -26.26 <.000							
	Trend	-1390.3	0.0001	-26.32	<.0001		

Table 19 Unit Root Test of J index

(3) Parameters Estimation

After extensive trials, we still cannot find a good enough model of HSI log return and J index. One result of them is like Table 20. The estimators in equation 1 which HSI log return is the dependent variable in are not as significant as the ones in the equation 2 where J index as the dependent variable.

Model Parameter Estimates							
Equation	Parameter	Estimate	Standard Error	t Value	Pr > t	Variable	
r	AR1_1_1	-0.03814	0.02472	-1.54	0.1231	r(t-1)	
	AR1_1_2	0.00000	0.00000	0.90	0.3668	J(t-1)	
J	AR1_2_1	1801.67572	69.42511	25.95	0.0001	r(t-1)	
	AR1_2_2	0.69148	0.01341	51.55	0.0001	J(t-1)	

Table 20Estimation of VAR(1) model of HSI log return and J index

It should be understood in the way that J index is calculated from HSI log return through some straight forward transforms while the return cannot be expressed by the simple way.

Figure 8 Plot of J Index and 10000 times HSI Log Return (A Cut Period)

Also, from Figure 8, it is observed that J line almost follows the volatility of the log return in some lagged time periods. Under this circumstance, lagged return fits the J line very well, while having the two exchanged is not the case.

PSY

The Psychological Line is a "sentiment indicator". As for indicators of this type, an attempt is made to look behind the obvious mood of the market and to detect undertones for a trend change. PSY is the ratio of the number of rising periods over the total number of periods. It reflects the buying power in relation to the selling power.

(1) Computation Formulae

PSY (N) =A÷N×100

The parameter N describes the observation period. It can assume any value between 1 and 500. The standard setting in china is N = 12. A is the number of rising periods over the total number of periods.

Although, similar with the study of KDJ, we cannot get an adequate VAR model for the PSY index to HSI log return, we would like to show the simplified procedure below.

(2) Stationary Test

Looking through Figure 9 and Table 21, both of the plot of PSY index and the unit root test indicate that the series of PSY is stationary, so we can take it into the VAR model building.

Figure 9 Plot of PSY index

Dickey-Fuller Unit Root Tests							
Variable	Variable Type Rho Pr < Rho Tau Pr < Tau						
PSY	Zero Mean	-9.96	0.0284	-2.24	0.0242		
	Single Mean	-154.68	0.0001	-8.77	<.0001		
Trend -161.69 0.0001 -8.99 <.0001							

Table 21 Unit Root test of PSY index

(3) Parameters Estimation

Realizing that significance of the estimators in Table 22 is alike with those of J line. Estimators in equation 1 are insignificant while in equation 2 are significant.

Model Parameter Estimates								
Equation	Parameter	Estimate	Standard Error	t Value	Pr > t	Variable		
R	AR1_1_1	-0.03338	0.02412	-1.38	0.1667	R(t-1)		
	AR1_1_2	0.00031	0.00079	0.39	0.6962	PSY(t-1)		
PSY	AR1_2_1	1.53075	0.06870	22.28	0.0001	R(t-1)		
	AR1_2_2	0.99397	0.00224	443.19	0.0001	PSY(t-1)		

Table 22 Estimation of VAR(1) model of HSI log return and PSY index

AR-EGARCH Model

Since having introduced earlier, the log return of HSI series has different density over different periods, which is a clear Conditional heteroscedastic effect, we should further try a GARCH model to fit the log return of HSI. Then we see how the GARCH is.

Mean Equation Determination

Firstly, we detect whether the mean equation has some components besides zero mean.

Autocorrelation Check for White Noise									
To Lag Chi-Square DF Pr > ChiSq Autocorrelations									
6	8.38	6	0.2114	-0.033 0.012 -0.048 -0.036 -0.003 -0.008					-0.008
12	12 25.80 12 0.0115 0.019 0.035 -0.052 -0.067 0.022 0.028								0.028

Table 23 Serial Correlation Check of HSI Log Return

In above table, the none zero autocorrelation can be found from the small enough p-value of Q(12) statistics. Then we get the best fitted one for the mean Equation--AR(3). The estimation results are shown in the Table 24.

Conditional Least Squares Estimation							
Parameter	Estimate	e Standard Error t Value Approx La Pr > t					
AR1,1	-0.04762	0.02411	-1.98	0.0484	3		

Table 24 Parameter Estimation of AR Model for the Mean Equation

ARCH Test

Next, we check for the ARCH effect in the residual series. The Q statistics and Lagrange Multiplier (LM) test are applied, and both of them significantly indicate that there is ARCH effect in the residual.

Q and LM Tests for ARCH Disturbances							
Order	Q	Pr > Q	LM	Pr > LM			
1	277.3571	<.0001	276.9538	<.0001			
2	535.8133	<.0001	381.8590	<.0001			
3	744.9837	<.0001	417.2769	<.0001			
4	837.5226	<.0001	417.3712	<.0001			
5	907.5929	<.0001	417.4302	<.0001			
6	955.5060	<.0001	417.6084	<.0001			
7	1011.5380	<.0001	424.3382	<.0001			
8	1121.0869	<.0001	457.5337	<.0001			
9	1178.1687	<.0001	457.5963	<.0001			
10	1310.6641	<.0001	478.3504	<.0001			
11	1455.0924	<.0001	490.9698	<.0001			
12	1515.1186	<.0001	494.9347	<.0001			

Table 25 ARCH Test for Residual

Conditional Heteroscedastic Equation Determination

As we known, the return in stock market does not observe normal distribution, and the convention assumes innovations observe student's t distribution or generalized error distribution. In this case, we found that standardized residual pass the T distribution test, which will be presented later. On another hand, having tried GARCH, IGARCH, TGARCH, and EGARCH, we found that EGARCH(3,3) model could fit the series to a relatively good extent. The estimation result is shown in Table 26.

Variable	DF	Estimate	Standard Error	t Value	Approx Pr > t
AR3	1	-0.0408	0.009439	-4.32	<.0001
EARCH0	1	-0.5125	0.1244	-4.12	<.0001
EARCH1	1	0.1713	0.0249	6.88	<.0001
EARCH2	1	0.2629	0.0324	8.11	<.0001
EARCH3	1	0.1743	0.0217	8.05	<.0001
EGARCH1	1	-0.4068	0.005728	-71.02	<.0001
EGARCH2	1	0.3649	0.006055	60.27	<.0001
EGARCH3	1	0.9800	0.004481	218.70	<.0001
THETA	1	-0.3498	0.1065	-3.28	0.0010

Table 26 Parameter Estimation of AR(3)-EGARCH(3,3) Model of HSI Log Return

Finally, we get the complicated EGARCH model as following:

$$HSIlgr_t = -0.0408 HSIlgr_{t-3} + a_t, a_t = \sigma_t \epsilon_t,$$

$$\begin{split} \ln(\sigma_t^2) &= -0.5125 + 0.1713g(\epsilon_{t-1}) + 0.2629g(\epsilon_{t-2}) + 0.1743g(\epsilon_{t-3}) \\ &\quad -0.4068\ln(\sigma_{t-1}^2) + 0.3649\ln(\sigma_{t-2}^2) + 0.9800\ln(\sigma_{t-3}^2), \end{split}$$

$$g(\epsilon_t) = -0.3498\epsilon_t + [|\epsilon_t| - E|\epsilon_t|]$$
Model Checking

Figure 10 T Distribution QQ Plot of Standardized Residual

Figure 10 is t distribution QQ plot of Standardized Residual (ϵ_t), which is almost a straight line, verifying our assumption about the T distribution of standardized residual.

Looking through Table 27 and Table 28, the p-value of Q(12) is smaller than 5% significant level, thus, we can say that the AR(3)-EGARCH(3,3) model is adequate.

Autocorrelation Check for White Noise									
To Lag	Chi-Square	DF	Pr > ChiSq		Autocorrelations				
6	3.22	6	0.7808	0.011	0.002	0.004	-0.017	-0.003	-0.038
12	8.34	12	0.7582	0.027	-0.024	-0.005	-0.016	-0.018	0.032

Table 27 Check for Standardized Residual

Autocorrelation Check for White Noise									
To Lag	Chi-Square	DF	Pr > ChiSq		Autocorrelations				
6	15.72	6	0.0154	-0.049	0.015	0.061	0.010	-0.010	0.051
12	20.44	12	0.0593	-0.030	0.005	0.011	0.019	-0.032	0.017

Table 28 Check for Square Standardized Residual

Multifactor model

Factor selection

Previous study given us pretty good models, for a further step, we want to build a financial time series multi factor model employs more than only one index parameter, a multifactor model. However, when constructing a multi-factor model, it is difficult to decide how many and which factors to include. As we state before, various technical indicators obtain various properties and therefore reflect totally different but highly related aspects of the stock market. OBV is indicators to measure positive and negative volume flow. MACD returns rate of change of our HSI, just as a good reflection of HSI itself. BIAS measures the divergence of current HIS. KDJ calculates Raw Stochastic Value. PSY is a ratio reflecting the buying power in relation to the selling power. OBV, MACD and BIAS are three effective factors out of the five as we analyzed before, so it is seems to be optimal for us to consider three factors BIAS, MACD and OBV and thus we shall try 4 possible models showing below:

log return of the Heng Seng Index with BIAS, OBV and InMACD; log return of the Heng Seng Index with BIAS and InMACD; log return of the Heng Seng Index withOBV and InMACD; log return of the Heng Seng Index with BIAS and OBV Intuitively, I feel the model of three indicators and the model with OBV and InMACD may be the best two among these four possible models. That is because OBV and InMACD represent two different aspects of the stock markets, say the volume flow and return of HSI.

Model Specification

In the previous section, we decide to use three factors to calibrate the log return of HIS, and just one step left for model fitting is which model shall we use. It is able to capture the two-way effect of HSI and various indicators level on each other, if such effect actually exists. In this section, we will look into the statistical performance of the cross correlations of these three indicators

The VARMAX Procedure

	Schematic Representation of Cross Correlations													
Variable,	/													
Lag	0	1	2	3	4	5	6	7	8	9	10	11	12	
r	++++	.+	.+.	.+.	+								+	
BIAS	++++	.+.	.+.	+.									+	
d_0BV	++++	.+.	+.	+.	+	·								
lnMACD	++++	-+.	- ++.	+-	·· .·	+				++			+	
	+	· is >	≥ 2*st	d err	or,	- is <	< -2*s	td er	ror,	. is	betwe	en		

Table 29: The VARMAX Procedure

According to this SAS output of Schematic Representation of Cross Correlations, noticing the correlations are only significant up to fourth lag, suggesting a series of models specification. Here, we list four models with lag one.

 $\log r_t = \alpha \log r_{t-1} + \beta BIAS(t-1) + \gamma OBV(t-1) + \delta \ln MACD (t-1)$

 $\log r_t = \alpha \log r_{t-1} + \beta BIAS(t-1) + \gamma OBV(t-1)$

 $\log r_t = \alpha \log r_{t-1} + \beta BIAS(t-1) + \gamma \ln MACD (t-1)$

 $\log r_t = \alpha \log r_{t-1} + \beta \ln MACD (t-1) + \gamma OBV(t-1)$

Models Fitting

Thanks to the previous analysis, there is no need for data checking, and we directly go to the Parameter Estimates in SAS Output.

Model with three factors

For the model with three different factors, $\log r_t = \alpha \log r_{t-1} + \beta BIAS + \gamma OBV + \delta \ln MACD$ we tried VAR models up to fourth lag, we find the VAR(1) is the best among all, and the result of VAR(1) is below:

		Model Para	ameter Est	imates		
Equation	Parameter	Estimate	Standard	t Value	Pr > t	Variable
			Error			
r	AR1_1_1	0.12272	0.07389	1.66	0.0969	r(t-1)
	AR1_1_2	-7.65374	3.16370	-2.42	0.0157	BIAS(t-1)
	AR1_1_3	0.00192	0.00339	0.57	0.5716	d_OBV(t-1)
	AR1_1_4	-9.80087	3.82987	-2.56	0.0106	InMACD(t-1)
BIAS	AR1_2_1	0.00158	0.00062	2.55	0.0108	r(t-1)
	AR1_2_2	0.62517	0.02654	23.55	0.0001	BIAS(t-1)
	AR1_2_3	0.00002	0.00003	0.62	0.5344	d_OBV(t-1)
	AR1_2_4	-0.04368	0.03213	-1.36	0.1742	InMACD(t-1)
d_OBV	AR1_3_1	0.81405	0.81481	1.00	0.3179	r(t-1)
	AR1_3_2	-29.56235	34.88819	-0.85	0.3969	BIAS(t-1)
	AR1_3_3	0.01504	0.03733	0.40	0.6870	d_OBV(t-1)
	AR1_3_4	-55.48351	42.23441	-1.31	0.1891	InMACD(t-1)
InMACD	AR1_4_1	0.00313	0.00095	3.30	0.0010	r(t-1)
	AR1_4_2	-0.48224	0.04053	-11.90	0.0001	BIAS(t-1)
	AR1_4_3	0.00006	0.00004	1.28	0.2008	d_OBV(t-1)
	AR1_4_4	-0.22948	0.04907	-4.68	0.0001	InMACD(t-1)

Table 31: The VARMAX Procedure

Based on the significant level of 0.1, the P-value of index OBV is 0.5456, quite large, thus we can not reject the null hypothesis, and conclude the coefficient of index OBV is not significant, which means the OBV parameter vanishes in the model. If we neglect the insignificance, we get the model with three factors as below:

$$log r_t = 0.12272 * log r_{t-1} - 7.65374 * BIAS(t-1) + 0.00192 * d_OBV(t-1) - 9.80087 \\ * ln MACD(t-1)$$

Model with two factors

Due to the cross correlation, we may have to testify each model up to fourth lag. Actually, when P becomes larger in the VAR model, the Parameter Estimates perform insignificance. In other words, the VAR(1) model is adequate. Thus, we tried models in the following form:

$$\log r_t = \alpha \log r_{t-1} + \beta BIAS(t-1) + \gamma OBV(t-1)$$

$$\log r_t = \alpha \log r_{t-1} + \beta OBV(t-1) + \gamma LnMACD(t-1)$$

$$\log r_{t} = \alpha \log r_{t-1} + \beta IAS(t-1) + \gamma LnMACD(t-1)$$

According to the statistical performance of each model, we find the VAR(1) model with respect to BIAS and MACD is the best among all. In fact, we tried VAR(2) model, $\log r_t = \alpha \log r_{t-2} + \beta BIAS(t-2) + \gamma LnMACD(t-2)$, for BIAS and MACD, while it turns to be make nonsense, which corresponds to our statement at the beginning of this section. The SAS output of VAR(1) shows below.

	Dickey-Fuller Unit Root Tests									
Variable	Туре	Rho	Pr < Rho	Tau	Pr < Tau					
r	Zero Mean	-1734.9	0.0001	-29.44	<.0001					
	Single Mean	-1735.4	0.0001	-29.43	<.0001					
	Trend	-1737.8	0.0001	-29.44	<.0001					
BIAS	Zero Mean	-655.31	0.0001	-18.09	<.0001					
	Single Mean	-655.85	0.0001	-18.09	<.0001					
	Trend	-657.55	0.0001	-18.11	<.0001					
InMACD	Zero Mean	-1936.7	0.0001	-31.10	<.0001					
	Single Mean	-1936.7	0.0001	-31.09	<.0001					
	Trend	-1936.7	0.0001	-31.08	<.0001					

Model Parameter Estimates								
Equation	Parameter	Estimate	Standard	t Value	Pr > t	Variable		
			Error					
r	AR1_1_1	0.14324	0.06436	2.23	0.0262	r(t-1)		
	AR1_1_2	-7.71461	3.16124	-2.44	0.0148	BIAS(t-1)		
	AR1_1_3	-10.16665	3.77415	-2.69	0.0071	InMACD(t-1)		
BIAS	AR1_2_1	0.00177	0.00054	3.28	0.0011	r(t-1)		
	AR1_2_2	0.62461	0.02652	23.55	0.0001	BIAS(t-1)		
	AR1_2_3	-0.04705	0.03166	-1.49	0.1375	InMACD(t-1)		
InMACD	AR1_3_1	0.00372	0.00082	4.51	0.0001	r(t-1)		
	AR1_3_2	-0.48400	0.04051	-11.95	0.0001	BIAS(t-1)		
	AR1_3_3	-0.24008	0.04837	-4.96	0.0001	InMACD(t-1)		

Cointegration Rank Test Using Trace									
H0: Rank=r	H1: Rank>r	Eigenvalue	Trace	5% Critical Value	Drift in ECM	Drift in Process			
0	0	0.9678	7588.1384	24.08	NOINT	Constant			
1	1	0.5591	1690.1700	12.21					
2	2	0.1524	283.9763	4.14					

Long-Run Parameter Beta Estimates								
Variable	1	2	3					
r	1.00000	1.00000	1.00000					
BIAS	-34.32319	-31.55515	-338.67190					
InMACD	8.16656	-64.86788	32.97914					

Adjustment Coefficient Alpha Estimates							
Variable	1	2	3				
r	-1.06460	0.08510	0.12274				
BIAS	-0.00047	0.00120	0.00104				
InMACD	-0.01546	0.01785	0.00133				

Table 302: The VARMAX Procedure

The output of Cointegration Rank Test Using Trace indicates that the series are not cointegrated with rank 0,1 and2, because the trace statistics are greater than the critical values.

Till now, we tried all the possible combination of two factor models, and we can see that only the model with respect to the indexes of MACD and BIAS can we get the P-values of parameter estimates to be small (0.0262, 0.0148, 0.0071 correspond to r_t-1, BIAS, LnMACD). Therefore, we can conclude at the significant level of 0.05, the coefficients of the VAR model with respect to BIAS and MACD are significant. The corresponding model is:

 $\log r_t = 0.14324 * \log r_{t-1} - 7.71461 * BIAS(t-1) - 10.16665 * LnMACD(t-1)$

Two factors model & three factors model

Our model construction is based on the statistical performance of return to the combination of different indexes. We tried a lot models to find an optimal model employs multi index factor. Up to now, we get two models with different numbers of factors:

 $log r_t = 0.12272 * log r_{t-1} - 7.65374 * BIAS(t-1) + 0.00192 * d_OBV(t-1) - 9.80087 \\ * ln MACD(t-1)$

 $\log r_t = 0.14324 * \log r_{t-1} - 7.71461 * BIAS(t-1) - 10.16665 * LnMACD(t-1)$

	Three factor model	Two factor model
AIC	-14.6506	-19.7589
SBC	-14.5998	-19.7304
AIC+ SBC	-29.2504	-39.4893

According to the AIC and BIC of each model, we choose the.

Table33: AIC and BIC of multi factor models

According to the criteria of AIC and BIC, we pick the least AIC and BIC, and therefore conclude the two factor model obtains better statistic performance. Although we expect the model with respect to OBV and MACD to be better fitted one, the OBV parameter seems to be very insignificant. I think it is because the OBV index is based on volume flow, which is quite large. However, numerically the log return is a tiny number. In order to fit a model of the log return employing OBV, the corresponding coefficient becomes quite small.

To sum up, in this section, we picked effective factors to construct multifactor models, and after all, we find an optimal multifactor model:

$$\log r_t = 0.14324 * \log r_{t-1} - 7.71461 * BIAS(t-1) - 10.16665 * LnMACD(t-1)$$

Conclusion

Best Model

Till now, we construct both single factor models with multi factors models. Comparing their AIC and BIC below, we can see which one is the model we are looking for.

	Two Factor	MACD	BIAS	OBV	EGARCH
AIC	-19.7589	-8.04597	-21.1231	6.317855	-9854.3675
SBC	-19.7304	-8.04021	-21.0976	6.349421	-9805.3272

Table33: AIC and BIC of all the models

So apparently, the EGARCH model is the best one among all the models we tried before.

Weakness

For the data, we only focus on model construction and analysis, but without data pre-processing. Because we downloaded our data from the internet via Bloomberg directly, it may result in out-of-range values, impossible data combinations, missing values, etc. Although we double checked the data to be reasonable, we did not process normalization and data cleaning to exclude the outliers, which resulted from some specific scenarios. Thus, for later study, one may look forward to extracting unknown interesting patterns such as groups of data records (cluster analysis), unusual records (anomaly detection) and dependencies (association rule mining).

Model is judged on historical numbers, which might not accurately predict future values.

In our model construction and factor selection, we only considered five technical indicators. While, indicated by the result of GARCH model, one may interested in models involving volatilities and other parameters for later development.

Conclusion

In this paper, we tried to examine the effect of five popular technical indicators based on the historical data of HIS. We constructed optimal time series models for every single technical indicator and HIS, and also EGARCH model. Picked three effective indicators from five technical indicators, we considered to find out a multifactor model then. Among all the models we examined, the model of BIAS and two-factor-model are of well performance. This coincides with our motivation that the technical analysis in the market place actually creates a reversal impact on the stock price itself, and also the behavior finance theory.

Appendix

Appendix A

The SAS System

The ARIMA Procedure

Name of Variable = InPRICE

Mean of Working Series 9.857491

Standard Deviation 0.206085

Number of Observations 1718

Autocorrelations Lag Covariance Correlation -198765432101234567891 Std Error 0 0.042471 1.00000 | |****************** 0

	Autocorrelations								
Lag	Covariance	Correlation -19	08765432101234567891	Std Error					
1	0.042274	0.99537	. ****************	0.024126					
2	0.042089	0.99101	. ****************	0.041659					
3	0.041899	0.98652	. ****************	0.053654					
4	0.041723	0.98238	. ****************	0.063338					
5	0.041557	0.97847	. ****************	0.071661					
6	0.041395	0.97466	. **************	0.079056					
7	0.041235	0.97091	. **************	0.085765					
8	0.041070	0.96701	. **************	0.091941					
9	0.040894	0.96286	. **************	0.097682					
10	0.040735	0.95912	. **************	0.103058					
11	0.040596	0.95585	. ****************	0.108129					
12	0.040450	0.95241	· ************************************	0.112940					

"." marks two standard errors

Inverse Autocorrelations										
Lag (Correlation -19	8765432101	234567891							
1	-0.47483	******** .	I							
2	-0.05358	* .								
3	0.03340	. *								
4	0.00278	. .								
5	-0.00830	. .								
6	0.01447	. .								

Inverse Autocorrelations

Lag Correlation -198765432101234567891

7	-0.00655	. .		
8	-0.04661	* .		
9	0.03709	. *		
10	0.03935	. *		
11	-0.04838	* .		
12	0.01116	. .		

	Partial Autocorrelations										
Lag	Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1										
1	0.99537	. ****************									
2	0.02792	. *									
3	-0.01585	. .									
4	0.03444	. *									
5	0.02552	. *									
6	0.00879	. .									
7	0.00619	. .									
8	-0.01521	. .									
9	-0.02977	* .									
10	0.04281	. *									
11	0.05235	. *									
12	-0.02180	. .									

Autocorrelation Check for White Noise

To Lag	Chi-Square	DF	Pr > ChiSq		Au	itocor	relatio	ns	
6	9999.99	6	<.0001	0.995	0.991	0.987	0.982	0.978	0.975
12	9999.99	12	<.0001	0.971	0.967	0.963	0.959	0.956	0.952

Augmented Dickey-Fuller Unit Root Tests									
Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F Pr > F			
Zero Mean	0	0.0273	0.6894	0.36	0.7887				
	1	0.0270	0.6893	0.37	0.7907				
	2	0.0279	0.6895	0.38	0.7927				
	3	0.0286	0.6897	0.40	0.7999				
Single Mean	0	-7.9263	0.2214	-2.19	0.2114	2.47 0.4366			
	1	-7.4898	0.2455	-2.13	0.2330	2.35 0.4676			
	2	-7.7317	0.2319	-2.17	0.2183	2.44 0.4454			
	3	-7.2252	0.2613	-2.12	0.2376	2.34 0.4701			
Trend	0	-8.4065	0.5527	-2.02	0.5909	2.42 0.6924			
	1	-7.8546	0.5958	-1.94	0.6320	2.28 0.7195			
	2	-8.1162	0.5752	-1.98	0.6123	2.37 0.7025			

The ARIMA Procedure

Name of Variable = dln	PRICE
Mean of Working Series	0.017611
Standard Deviation	1.804943
Number of Observations	1718

			Autoco	rrelations		
Lag	Covariance	Correlation	-1987	654321	012345678	891 Std Error
0	3.257820	1.00000		****	***********	*** 0
1	-0.108728	03337		* .		0.024126
2	0.038679	0.01187		. .	I	0.024153
3	-0.155472	04772		* .		0.024156
4	-0.115761	03553		* .		0.024211
5	-0.011145	00342		. .	I	0.024242
6	-0.025084	00770		. .		0.024242
7	0.060837	0.01867		. .	I	0.024243
8	0.115599	0.03548		. *		0.024252
9	-0.169436	05201		* .	I	0.024282
10	-0.217853	06687		* .		0.024347
11	0.073055	0.02242		. .	I	0.024453
12	0.090969	0.02792		. *		0.024465

"." marks two standard errors

	Inverse Autocorrelations										
Lag	Correlation -1	98765432	1012345678	91							
1	0.03713	$\cdot ^*$									
2	-0.02088	. .									
3	0.04604	. *	I								
4	0.03926	. *									

Inverse Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

5	0.00752	. .		
6	0.01831	. .		
7	-0.01378	. .		
8	-0.03728	* .		
9	0.05329	. *		
10	0.06876	. *		
11	-0.02527	* .		
12	-0.02879	* .		

	Partial Autocorrelations									
Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1										
1	-0.03337	* .	I							
2	0.01077	. .	I							
3	-0.04703	* .	I							
4	-0.03890	* .	I							
5	-0.00493	. .	I							
6	-0.00954	. .								
7	0.01467	. .	I							
8	0.03520	. *								
9	-0.05136	* .								
10	-0.07075	* .								
11	0.02360	. .								
12	0.02925	. *								

Autocorrelation Check for White Noise										
To Lag Ch	ii-Square	DF	Pr > ChiSq		A	utocor	relatio	ns		
6	8.38	6	0.2114	-0.033	0.012	-0.048	-0.036	-0.003	-0.008	
12	25.80	12	0.0115	0.019	0.035	-0.052	-0.067	0.022	0.028	

Augmented Dickey-Fuller Unit Root Tests									
Туре	Lags	Rho F	r < Rho	Tau	Pr < Tau	F	Pr > F		
Zero Mean	0 -1'	774.14	0.0001	-42.83	<.0001				
	1 -1'	734.94	0.0001	-29.44	<.0001				
	2 -20	004.37	0.0001	-25.13	<.0001				
	3 -2.	390.45	0.0001	-22.32	<.0001				
Single Mean	0 -1'	774.30	0.0001	-42.82	<.0001	916.71	0.0010		
	1 -1'	735.45	0.0001	-29.43	<.0001	433.11	0.0010		
	2 -20	005.72	0.0001	-25.13	<.0001	315.67	0.0010		
	3 -2.	393.59	0.0001	-22.32	<.0001	249.00	0.0010		
Trend	0 -1'	775.08	0.0001	-42.83	<.0001	917.01	0.0010		
	1 -1'	737.78	0.0001	-29.44	<.0001	433.43	0.0010		
	2 -20	011.63	0.0001	-25.14	<.0001	316.09	0.0010		
	3 -24	407.77	0.0001	-22.34	<.0001	249.49	0.0010		

Appendix B

The SAS System

The VARMAX Procedure

Number of Observations 1729

Number of Pairwise Missing 0

Simple Summary Statistics							
Variable	Туре	N	Mean	Standard	Min	Max	
				Deviation			
return	Dependent	1729	0.01497	1.80112	-13.58202	13.40681	
index	Dependent	1729	0.64973	19.78895	-204.33285	153.76688	

	Dickey-Fuller Unit Root Tests						
Variable	Туре	Rho	Pr < Rho	Tau	Pr < Tau		
return	Zero Mean	-1743.0	0.0001	-29.51	<.0001		
	Single Mean	-1743.4	0.0001	-29.50	<.0001		
	Trend	-1745.2	0.0001	-29.51	<.0001		
index	Zero Mean	-1671.2	0.0001	-28.89	<.0001		
	Single Mean	-1676.5	0.0001	-28.93	<.0001		
	Trend	-1677.5	0.0001	-28.93	<.0001		

The SAS System

The VARMAX Procedure

Type of Model

VARMA(1,1)

Estimation Method Maximum Likelihood Estimation

Model Parameter Estimates							
Equation	Parameter	Estimate	Standard	t Value	Pr > t	Variable	
			Error				
return	CONST1	1.09004	0.64374	1.69	0.0906	1	
	AR1_1_1	3.69917	0.47270	7.83	0.0001	return(t-1)	
	AR1_1_2	-1.83658	0.13425	-13.68	0.0001	index(t-1)	
	MA1_1_1	3.78239	0.47464	7.97	0.0001	e1(t-1)	
	MA1_1_2	-1.84108	0.13419	-13.72	0.0001	e2(t-1)	
index	CONST2	2.66670	1.57101	1.70	0.0898	1	
	AR1_2_1	6.83499	1.76920	3.86	0.0001	return(t-1)	
	AR1_2_2	-3.49872	0.41650	-8.40	0.0001	index(t-1)	
	MA1_2_1	7.00441	1.79618	3.90	0.0001	e1(t-1)	
	MA1_2_2	-3.50858	0.41773	-8.40	0.0001	e2(t-1)	

Covariances of Innovations				
Variable	return	index		
return	3.23642	26.88117		
index	26.88117	392.59404		

Information Criteria

Informat	ion Criteria	
AICC	6.317888	
HQC	6.329531	
AIC	6.317855	
SBC	6.349421	
FPEC	554.3823	

Appendix D

VAR1 MODEL with all the three index

The SAS System

The VARMAX Procedure

Number of Observations 1718

Number of Pairwise Missing 0

Simple Summary Statistics							
Variable	Туре	Ν	Mean	Standard	Min	Мах	
				Deviation			
r	Dependent	1718	0.01761	1.80547	-13.58202	13.40681	
BIAS	Dependent	1718	0.00053	0.02140	-0.19421	0.11628	
d_OBV	Dependent	1718	0.66501	19.84924	-204.33285	153.76688	
InMACD	Dependent	1718	0.00000	0.02456	-0.26575	0.41128	

The VARMAX Procedure

Type of Model

VAR(1)

Estimation Method Least Squares Estimation

Model Parameter Estimates							
Equation	Parameter	Estimate	Standard	t Value	Pr > t	Variable	
			Error				
r	CONST1	0.01839	0.04354	0.42	0.6728	1	
	AR1_1_1	0.12337	0.07392	1.67	0.0953	r(t-1)	
	AR1_1_2	-7.68188	3.16516	-2.43	0.0153	BIAS(t-1)	
	AR1_1_3	0.00186	0.00339	0.55	0.5830	d_OBV(t-1)	
	AR1_1_4	-9.80716	3.83081	-2.56	0.0106	InMACD(t-1)	
BIAS	CONST2	0.00016	0.00037	0.43	0.6671	1	
	AR1_2_1	0.00159	0.00062	2.56	0.0106	r(t-1)	
	AR1_2_2	0.62493	0.02655	23.53	0.0001	BIAS(t-1)	
	AR1_2_3	0.00002	0.00003	0.60	0.5456	d_OBV(t-1)	
	AR1_2_4	-0.04373	0.03214	-1.36	0.1738	InMACD(t-1)	
d_OBV	CONST3	0.66006	0.47993	1.38	0.1692	1	
	AR1_3_1	0.83727	0.81477	1.03	0.3043	r(t-1)	
	AR1_3_2	-30.57203	34.88684	-0.88	0.3810	BIAS(t-1)	

Model Parameter Estimates								
Equation	Parameter	Estimate	Standard	t Value	Pr > t	Variable		
			Error					
	AR1_3_3	0.01308	0.03735	0.35	0.7262	d_OBV(t-1)		
	AR1_3_4	-55.70910	42.22374	-1.32	0.1872	InMACD(t-1)		
InMACD	CONST4	0.00016	0.00056	0.29	0.7690	1		
	AR1_4_1	0.00313	0.00095	3.31	0.0010	r(t-1)		
	AR1_4_2	-0.48249	0.04055	-11.90	0.0001	BIAS(t-1)		
	AR1_4_3	0.00006	0.00004	1.27	0.2052	d_OBV(t-1)		
	AR1_4_4	-0.22953	0.04908	-4.68	0.0001	InMACD(t-1)		

Covariances of Innovations						
Variable	r	BIAS	d_OBV	InMACD		
r	3.24833	0.02687	27.00423	0.03627		
BIAS	0.02687	0.00023	0.22489	0.00030		
d_OBV	27.00423	0.22489	394.63094	0.27585		
InMACD	0.03627	0.00030	0.27585	0.00053		

Informat	ion Criteria
AICC	-14.6475
HQC	-14.6241
AIC	-14.6476
SBC	-14.5841

Informat	ion Criteria
FPEC	4.351E-7

So we drop intercept term to run VAR

The SAS System

The VARMAX Procedure

Number of Observations	1718
------------------------	------

Number of Pairwise Missing 0

Simple Summary Statistics								
Variable	Туре	Ν	Mean	Standard	Min	Мах		
				Deviation				
r	Dependent	1718	0.01761	1.80547	-13.58202	13.40681		
BIAS	Dependent	1718	0.00053	0.02140	-0.19421	0.11628		
d_OBV	Dependent	1718	0.66501	19.84924	-204.33285	153.76688		
InMACD	Dependent	1718	0.00000	0.02456	-0.26575	0.41128		

The VARMAX Procedure

Type of Model

VAR(1)

Estimation Method Least Squares Estimation

	Model Parameter Estimates								
Equation	Parameter	Estimate	Standard	t Value	Pr > t	Variable			
			Error						
r	AR1_1_1	0.12272	0.07389	1.66	0.0969	r(t-1)			
	AR1_1_2	-7.65374	3.16370	-2.42	0.0157	BIAS(t-1)			
	AR1_1_3	0.00192	0.00339	0.57	0.5716	d_OBV(t-1)			
	AR1_1_4	-9.80087	3.82987	-2.56	0.0106	InMACD(t-1)			
BIAS	AR1_2_1	0.00158	0.00062	2.55	0.0108	r(t-1)			
	AR1_2_2	0.62517	0.02654	23.55	0.0001	BIAS(t-1)			
	AR1_2_3	0.00002	0.00003	0.62	0.5344	d_OBV(t-1)			
	AR1_2_4	-0.04368	0.03213	-1.36	0.1742	InMACD(t-1)			
d_OBV	AR1_3_1	0.81405	0.81481	1.00	0.3179	r(t-1)			
	AR1_3_2	-29.56235	34.88819	-0.85	0.3969	BIAS(t-1)			
	AR1_3_3	0.01504	0.03733	0.40	0.6870	d_OBV(t-1)			
	AR1_3_4	-55.48351	42.23441	-1.31	0.1891	InMACD(t-1)			
InMACD	AR1_4_1	0.00313	0.00095	3.30	0.0010	r(t-1)			

	Model Parameter Estimates								
Equation	Parameter	Estimate	Standard	Pr > t	Variable				
	AR1_4_2	-0.48224	0.04053	-11.90	0.0001	BIAS(t-1)			
	AR1_4_3	0.00006	0.00004	1.28	0.2008	d_OBV(t-1)			
	AR1_4_4	-0.22948	0.04907	-4.68	0.0001	InMACD(t-1)			

Covariances of Innovations							
Variable	r	BIAS	d_OBV	InMACD			
r	3.24677	0.02686	27.00061	0.03625			
BIAS	0.02686	0.00023	0.22486	0.00030			
d_OBV	27.00061	0.22486	394.83631	0.27579			
InMACD	0.03625	0.00030	0.27579	0.00053			

Information Criteria			
AICC	-14.6506		
HQC	-14.6318		
AIC	-14.6506		
SBC	-14.5998		
FPEC	4.338E-7		

Next step, we try two of the index with the return So we drop MACD, using OBV and BIAS to run VAR(1)

The VARMAX Procedure

Number	of Observations	1718

Number of Pairwise Missing

0

Simple Summary Statistics							
Variable	Туре	Ν	Mean	Standard	Min	Мах	
	Deviation						
r	Dependent	1718	0.01761	1.80547	-13.58202	13.40681	
BIAS	Dependent	1718	0.00053	0.02140	-0.19421	0.11628	
d_OBV	Dependent	1718	0.66501	19.84924	-204.33285	153.76688	

The VARMAX Procedure

Type of Model

VAR(1)

Estimation Method Least Squares Estimation

Model Parameter Estimates							
Equation	Parameter	Estimate	Standard	t Value	Pr > t	Variable	
			Error				
r	AR1_1_1	-0.03355	0.04166	-0.81	0.4207	r(t-1)	
	AR1_1_2	-3.52284	2.72530	-1.29	0.1963	BIAS(t-1)	
	AR1_1_3	0.00338	0.00334	1.01	0.3123	d_OBV(t-1)	
BIAS	AR1_2_1	0.00088	0.00035	2.53	0.0113	r(t-1)	
	AR1_2_2	0.64358	0.02283	28.19	0.0001	BIAS(t-1)	
	AR1_2_3	0.00002	0.00003	0.86	0.3882	d_OBV(t-1)	
d_OBV	AR1_3_1	-0.07065	0.45878	-0.15	0.8776	r(t-1)	
	AR1_3_2	-6.17697	30.01146	-0.21	0.8370	BIAS(t-1)	
	AR1_3_3	0.02332	0.03680	0.63	0.5264	d_OBV(t-1)	

Covariances of Innovations						
Variable	r	BIAS	d_OBV			
r	3.25728	0.02690	27.05508			
BIAS	0.02690	0.00023	0.22504			

Covariances of Innovations							
Variable	r	BIAS	d_OBV				
d_OBV	27.05508	0.22504	395.00351				

Information Criteria			
AICC	-5.62945		
HQC	-5.61891		
AIC	-5.62947		
SBC	-5.60091		
FPEC	0.00359		

The VARMAX Procedure

Number of Observations1718Number of Pairwise Missing0

Simple Summary Statistics							
Variable	Туре	Ν	Mean	Standard	Min	Max	
				Deviation			
r	Dependent	1718	0.01761	1.80547	-13.58202	13.40681	
BIAS	Dependent	1718	0.00053	0.02140	-0.19421	0.11628	
InMACD	Dependent	1718	0.00000	0.02456	-0.26575	0.41128	

The VARMAX Procedure

Type of Model

VAR(1)

Estimation Method Least Squares Estimation

Model Parameter Estimates						
Equation	Parameter	Estimate	Standard	t Value	Pr > t	Variable
			Error			
r	AR1_1_1	0.14324	0.06436	2.23	0.0262	r(t-1)
	AR1_1_2	-7.71461	3.16124	-2.44	0.0148	BIAS(t-1)
	AR1_1_3	-10.16665	3.77415	-2.69	0.0071	InMACD(t-1)
BIAS	AR1_2_1	0.00177	0.00054	3.28	0.0011	r(t-1)
	AR1_2_2	0.62461	0.02652	23.55	0.0001	BIAS(t-1)
	AR1_2_3	-0.04705	0.03166	-1.49	0.1375	InMACD(t-1)
InMACD	AR1_3_1	0.00372	0.00082	4.51	0.0001	r(t-1)
	AR1_3_2	-0.48400	0.04051	-11.95	0.0001	BIAS(t-1)
	AR1_3_3	-0.24008	0.04837	-4.96	0.0001	InMACD(t-1)

Covariances of Innovations					
Variable	r	BIAS	InMACD		
r	3.24548	0.02685	0.03625		
BIAS	0.02685	0.00023	0.00030		

Covariances of Innovations					
Variable	r	BIAS	InMACD		
InMACD	0.03625	0.00030	0.00053		

Informat	Information Criteria		
AICC	-19.7589		
HQC	-19.7484		
AIC	-19.7589		
SBC	-19.7304		
FPEC	2.623E-9		

OBV and MACD

The SAS System

The VARMAX Procedure

Type of ModelVAR(1)Estimation MethodLeast Squares Estimation

Model Parameter Estimates						
Equation	Parameter	Estimate	Standard	t Value	Pr > t	Variable
			Error			
r	AR1_1_1	0.00634	0.05616	0.11	0.9101	r(t-1)
	AR1_1_2	0.00219	0.00339	0.65	0.5174	d_OBV(t-1)
	AR1_1_3	-5.07338	3.29848	-1.54	0.1242	InMACD(t-1)

Model Parameter Estimates						
Equation	Parameter	Estimate	Standard	t Value	Pr > t	Variable
			Error			
d_OBV	AR1_2_1	0.36454	0.61840	0.59	0.5556	r(t-1)
	AR1_2_2	0.01612	0.03731	0.43	0.6657	d_OBV(t-1)
	AR1_2_3	-37.22373	36.32014	-1.02	0.3056	InMACD(t-1)
InMACD	AR1_3_1	-0.00421	0.00075	-5.63	0.0001	r(t-1)
	AR1_3_2	0.00007	0.00005	1.62	0.1054	d_OBV(t-1)
	AR1_3_3	0.06839	0.04389	1.56	0.1194	InMACD(t-1)

Covariances of Innovations						
Variable	r	d_OBV	InMACD			
r	3.25596	27.02767	0.03693			
d_OBV	27.02767	394.77135	0.27833			
InMACD	0.03693	0.27833	0.00058			

Informat	Information Criteria			
AICC	-2.46049			
HQC	-2.44994			
AIC	-2.46051			
SBC	-2.43195			
FPEC	0.085391			

One step further, I try a VAR(2) model with index OBV and MACD

The SAS System

The VARMAX Procedure

Number of Observations 1718

Number of Pairwise Missing 0

Simple Summary Statistics							
Variable	Туре	Ν	Mean	Standard	Min	Мах	
				Deviation			
r	Dependent	1718	0.01761	1.80547	-13.58202	13.40681	
BIAS	Dependent	1718	0.00053	0.02140	-0.19421	0.11628	
InMACD	Dependent	1718	0.00000	0.02456	-0.26575	0.41128	

The VARMAX Procedure

Type of Model

VAR(2)

Estimation Method Least Squares Estimation

Model Parameter Estimates						
Equation	Parameter	Estimate	Standard	t Value	Pr > t	Variable
			Error			
r	AR2_1_1	-0.07380	0.06436	-1.15	0.2517	r(t-2)
	AR2_1_2	-2.43753	3.16126	-0.77	0.4408	BIAS(t-2)
	AR2_1_3	9.21170	3.77408	2.44	0.0148	InMACD(t-2)
BIAS	AR2_2_1	0.00153	0.00068	2.26	0.0240	r(t-2)
	AR2_2_2	0.32111	0.03337	9.62	0.0001	BIAS(t-2)
	AR2_2_3	0.06403	0.03983	1.61	0.1081	InMACD(t-2)
InMACD	AR2_3_1	-0.00106	0.00084	-1.26	0.2095	r(t-2)
	AR2_3_2	-0.30328	0.04138	-7.33	0.0001	BIAS(t-2)
	AR2_3_3	0.19373	0.04940	3.92	0.0001	InMACD(t-2)

Covariances of Innovations					
Variable	r	BIAS	InMACD		
r	3.24521	0.02592	0.03640		
BIAS	0.02592	0.00036	0.00023		

Covariances of Innovations					
Variable	r	BIAS	InMACD		
InMACD	0.03640	0.00023	0.00056		

Informat	Information Criteria			
AICC	-16.5934			
HQC	-16.5829			
AIC	-16.5935			
SBC	-16.5649			
FPEC	6.217E-8			

To check this model, we add some options in the SAS statement to get the output below:

proc varmax data=test;

model r BIAS InMACD / p=1 noint

print=(corry) minic=(p=5 q=5)

dftest cointtest=(johansen=(normalize=r))

ecm=(rank=1 normalize=r);

output lead=8;

run;

The SAS System

The VARMAX Procedure

Number of Observations 1718

Number of Pairwise Missing 0

Simple Summary Statistics									
Variable	Туре	Ν	Mean	Standard	Min	Мах			
				Deviation					
r	Dependent	1718	0.01761	1.80547	-13.58202	13.40681			
BIAS	Dependent	1718	0.00053	0.02140	-0.19421	0.11628			
InMACD	Dependent	1718	0.00000	0.02456	-0.26575	0.41128			

Dickey-Fuller Unit Root Tests							
Variable	Туре	Rho	Pr < Rho	Tau	Pr < Tau		
r	Zero Mean	-1734.9	0.0001	-29.44	<.0001		
	Single Mean	-1735.4	0.0001	-29.43	<.0001		
	Trend	-1737.8	0.0001	-29.44	<.0001		
BIAS	Zero Mean	-655.31	0.0001	-18.09	<.0001		
	Single Mean	-655.85	0.0001	-18.09	<.0001		
	Trend	-657.55	0.0001	-18.11	<.0001		
InMACD	Zero Mean	-1936.7	0.0001	-31.10	<.0001		
	Single Mean	-1936.7	0.0001	-31.09	<.0001		
	Trend	-1936.7	0.0001	-31.08	<.0001		

Cross Correlations of Dependent Series
Lag	Variable	r	BIAS	InMACD
0	r	1.00000	0.66360	0.83772
	BIAS	0.66360	1.00000	0.34675
	InMACD	0.83772	0.34675	1.00000
1	r	-0.03337	0.51856	-0.20759
	BIAS	-0.04459	0.70481	-0.32370
	InMACD	-0.04999	0.28772	-0.15722
2	r	0.01187	0.40394	-0.09092
	BIAS	-0.03469	0.43212	-0.24888
	InMACD	0.05344	0.29327	0.03694
3	r	-0.04772	0.23485	-0.22859
	BIAS	-0.05057	0.18385	-0.23528
	InMACD	-0.09280	0.14928	-0.27657
4	r	-0.03553	0.08341	-0.09485
	BIAS	-0.01968	0.02190	-0.10550
	InMACD	0.00217	0.07528	-0.02758
5	r	-0.00342	-0.04391	-0.06543
	BIAS	0.00378	-0.04726	-0.06504
	InMACD	-0.03065	-0.05033	-0.06890
6	r	-0.00770	-0.03581	-0.01003
	BIAS	-0.00319	-0.02893	-0.04538
	InMACD	0.01186	-0.02804	0.03469

Cro	oss Correl	ations of	Dependen	t Series
Lag	Variable	r	BIAS	InMACD
7	r	0.01867	-0.01117	0.00133
	BIAS	-0.00289	-0.01510	-0.05257
	InMACD	0.01575	-0.00949	0.02002
8	r	0.03548	0.02644	0.01644
	BIAS	-0.02422	-0.02040	-0.06627
	InMACD	0.05949	0.04727	0.06010
9	r	-0.05201	-0.00970	-0.12538
	BIAS	-0.05088	-0.04987	-0.07845
	InMACD	-0.05350	0.00371	-0.13998
10	r	-0.06687	-0.05518	-0.07100
	BIAS	-0.01211	-0.04934	0.01571
	InMACD	-0.11026	-0.07312	-0.11151
11	r	0.02242	-0.03323	0.06925
	BIAS	0.04563	-0.00626	0.08036
	InMACD	0.03100	-0.04544	0.08568
12	r	0.02792	-0.00551	0.03670
	BIAS	0.04479	0.03229	0.03720
	InMACD	0.02659	-0.01628	0.04772

Schematic Representation of Cross Correlations

Variable/Lag	0	1	2	3	4	5	6	7	8	9	10	11	12
r	+++	.+-	.+-	.+-	.+-							+	
BIAS	+++	.+-	.+-	-+-								+	
InMACD	+++	-+-	++.	-+-	.+.				+.+			+	
+ is >	2*sto	l err	or, -	is <	-2*s	td e	erro	r, .	is be	etwe	en		

	Mini	mum Inforn	nation Crite	erion Based	l on AICC	
Lag	MA 0	MA 1	MA 2	MA 3	MA 4	MA 5
AR 0	-16.0162	-16.78822	-17.64968	-18.77797	-19.47009	-19.92062
AR 1	-19.7589	-19.86948	-20.21459	-20.74225	-20.75814	-22.51578
AR 2	-20.62184	-20.76311	-20.84758	-21.60711	-21.96659	-23.08732
AR 3	-21.28509	-21.47607	-21.59555	-21.79298	-22.56885	-23.31807
AR 4	-23.52613	-23.70278	-23.71868	-23.94437	-23.96019	-23.9878
AR 5	-23.6479	-23.73176	-23.79204	-23.97993	-23.99847	-24.06152

		Cointe	egration Rar	ık Test Using Tr	ace			
H0:	H1:	Eigenvalue	Trace	5% Critical	Drift	in	Drift	in
Rank=r	Rank>r			Value	ECM		Process	
0	0	0.9678	7588.1384	24.08	NOINT		Constant	
1	1	0.5591	1690.1700	12.21				
2	2	0.1524	283.9763	4.14				

Long-Run Parameter Beta Estimates

Variable	1	2	3
r	1.00000	1.00000	1.00000
BIAS	-34.32319	-31.55515	-338.67190
InMACD	8.16656	-64.86788	32.97914

Adjustme	nt Coefficie	nt Alpha E	stimates
Variable	1	2	3
r	-1.06460	0.08510	0.12274
BIAS	-0.00047	0.00120	0.00104
InMACD	-0.01546	0.01785	0.00133

The SAS System

The VARMAX Procedure

Type of Model	VECM(1)
Estimation Method	Maximum Likelihood Estimation
Cointegrated Rank	1

	I	Model Para	imeter Esti	mates		
Equation	Parameter	Estimate	Standard	t Value	Pr > t	Variable
			Error			
D_r	AR1_1_1	-1.06460	0.02930			r(t-1)
	AR1_1_2	36.54062	1.00564			BIAS(t-1)
	AR1_1_3	-8.69415	0.23927			InMACD(t-1)
D_BIAS	AR1_2_1	-0.00047	0.00025			r(t-1)
	AR1_2_2	0.01618	0.00846			BIAS(t-1)
	AR1_2_3	-0.00385	0.00201			InMACD(t-1)
D_InMACD	AR1_3_1	-0.01546	0.00042			r(t-1)
	AR1_3_2	0.53069	0.01437			BIAS(t-1)
	AR1_3_3	-0.12627	0.00342			InMACD(t-1)

Cova	ariances o	of Innovat	ions
Variable	r	BIAS	InMACD
r	3.80846	0.03167	0.04317

Covariances of Innovations					
Variable	r	BIAS	InMACD		
BIAS	0.03167	0.00027	0.00036		
InMACD	0.04317	0.00036	0.00078		

Information Criteria		
AICC	-18.7815	
HQC	-18.778	
AIC	-18.7815	
SBC	-18.772	
FPEC	6.971E-9	

Forecasts									
Variable	Obs	Forecast	Standard	95% Confidence Limits					
			Error						
r	1719	-0.08276	1.95153	-3.90768	3.74217				
	1720	-0.03370	1.97755	-3.90964	3.84223				
	1721	-0.04227	2.06181	-4.08335	3.99881				
	1722	-0.04078	2.13011	-4.21571	4.13415				
	1723	-0.04104	2.19834	-4.34970	4.26763				
	1724	-0.04099	2.26416	-4.47867	4.39669				
	1725	-0.04100	2.32819	-4.60417	4.52217				
	1726	-0.04100	2.39049	-4.72627	4.64427				

Forecasts									
Variable	Obs	Forecast	Standard	95% Confidence Limits					
			Error						
BIAS	1719	-0.00165	0.01642	-0.03384	0.03054				
	1720	-0.00162	0.02272	-0.04615	0.04290				
	1721	-0.00163	0.02768	-0.05589	0.05263				
	1722	-0.00163	0.03188	-0.06410	0.06085				
	1723	-0.00163	0.03558	-0.07136	0.06811				
	1724	-0.00163	0.03893	-0.07793	0.07468				
	1725	-0.00163	0.04202	-0.08398	0.08072				
	1726	-0.00163	0.04489	-0.08961	0.08636				
InMACD	1719	-0.00242	0.02789	-0.05709	0.05224				
	1720	-0.00171	0.03178	-0.06400	0.06058				
	1721	-0.00184	0.03537	-0.07117	0.06750				
	1722	-0.00181	0.03858	-0.07743	0.07380				
	1723	-0.00182	0.04155	-0.08325	0.07961				
	1724	-0.00182	0.04431	-0.08867	0.08503				
	1725	-0.00182	0.04692	-0.09377	0.09014				
	1726	-0.00182	0.04938	-0.09861	0.09497				