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Abstract

This paper considers the short- and long-memory linear processes with GARCH (1,1) noises. The
functional limit distributions of the partial sum and the sample autocovariances are derived when the
tail index α is in (0, 2), equal to 2, and in (2,∞), respectively. The partial sum weakly converges to a
functional of α-stable process when α < 2 and converges to a functional of Brownian motion when α ≥ 2.
When the process is of short-memory and α < 4, the autocovariances converge to functionals of α/2-
stable processes; and if α ≥ 4, they converge to functionals of Brownian motions. In contrast, when the
process is of long-memory, depending on α and β (the parameter that characterizes the long-memory),
the autocovariances converge to either (i) functionals of α/2-stable processes; (ii) Rosenblatt processes
(indexed by β, 1/2 < β < 3/4); or (iii) functionals of Brownian motions. The rates of convergence in
these limits depend on both the tail index α and whether or not the linear process is short- or long-memory.
Our weak convergence is established on the space of càdlàg functions on [0, 1] with either (i) the J1 or the
M1 topology (Skorokhod, 1956); or (ii) the weaker form S topology (Jakubowski, 1997). Some statistical
applications are also discussed.
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1. Introduction

A large number of empirical studies show that many financial data series, such as exchange
rate returns and stock indices, often exhibit the following non-standard features (see, for instance
[40,5]):

(1) Non-gaussianity: the frequency of large and small values (relative to the range of the data)
is rather high, suggesting that the data do not come from a normal, but from a heavy-tailed
distribution;

(2) Stochastic or time varying volatility: variance changes over time, with alternating phases of
high and low volatility;

(3) Long-memory dependence: a slow decay of the autocorrelation function.1

Amongst the various models proposed, the generalized autoregressive conditional
heteroscedasticity (GARCH) model is one of the most popular ones. Specifically, consider

εt = σtηt , σ 2
t = ω +

r
i=1

aiε
2
t−i +

s
j=1

b jσ
2
t− j , (1)

where ω > 0 and {ηt } is a sequence of i.i.d. symmetric random variables with unit variance.
Under some regularity conditions {εt } has a regularly-varying tail probability, which can be used
to capture the heavy-tail properties of {εt }. See, for instance, [40,8].

The GARCH process {εt } given by (1) is often β-mixing (see [16]), which is inadequate
to account for the strong dependence of the data. To capture the long-memory feature, Baillie
et al. [5] proposed a fractional autoregressive integrated moving average (ARFIMA)–GARCH
model. This model has been extensively studied. For instance, Baillie et al. [5] used it to model
the monthly post-Word War II consumer price index inflation series of 10 different countries.
Ling and Li [37] considered the asymptotic properties of the maximum likelihood estimate.
Beran and Feng [11] considered a local polynomial estimation of semiparametric models with
ARFIMA–GARCH noises. Ling [36] studied the adaptive estimation and applied this model
to analyze the US consumer price index inflation series. See [36] and the references therein.
However, all these papers only study the long-memory feature but not the heavy-tail feature. A
more general model that captures both long-memory and the heavy-tail feature is a linear process
with GARCH noises given by

ut =

∞
l=0

dlεt−l , (2)

where d0 = 1 and {εt } is a GARCH(r,s) process defined in (1). This paper focuses on the
prevalent special case of GARCH(1,1) with ω > 0, a ≥ 0, b ≥ 0, such that

εt = σtηt and σ 2
t = ω + aσ 2

t−1 + bε2
t−1. (3)

This paper is to study the short- and long-memory linear processes in (3) with GARCH(1,1)
noises generated by model (4). The functional limit distributions (FLD) of the partial sum and
the sample autocovariances are derived when the tail index α is in (0, 2), equal to 2, and in

1 Mikosch and Stărică [40] also suggested the long-memory dependence of the absolute or squared values.
Unfortunately, this phenomenon is not considered in this paper.
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(2,∞), respectively. The partial sum weakly converges to a functional of α-stable process when
α < 2 and converges to a functional of Brownian motion when α ≥ 2. When the process is of
short-memory and α < 4, the autocovariances converge to functionals of α/2-stable processes;
and if α ≥ 4, they converge to functionals of Brownian motions. In contrast, when the process
is of long-memory, depending on α and β (the parameter that characterizes the long-memory),
the autocovariances converge to either (i) functionals of α/2-stable processes; (ii) Rosenblatt
processes (indexed by β, 1/2 < β < 3/4); or (iii) functionals of Brownian motions. The rates
of convergence in these limits depend on both the tail index α and whether or not the linear
process is short- or long-memory. Our weak convergence is established on the space of càdlàg
functions on [0, 1], D[0, 1], with either (i) the J1 or the M1 topology [46]; or (ii) the weaker form
S topology [31].

The limit distributions of heavy-tailed linear processes generated by i.i.d. noises have
been extensively studied. See, for instance, [1,20,21,32,3,29,27,48,6,43]. To the best of our
knowledge, the FLD for heavy-tailed linear processes with GARCH noise are new. Due to the
dependence among the GARCH noises, the techniques we use are somewhat different from that
for i.i.d. noises, and the cross product terms related to εtεt− j , j > 0 do not vanish asymptotically.
As one can see below, our limit distributions, when α < 2, depend on an infinite number of
point processes, and they somewhat differ from those in the previous studies, which confine the
attention to i.i.d. noises.

This paper is organized as follows. Section 2 gives model assumptions. The main results are
given in Section 3 while Section 4 gives the proofs. Some statistical applications are discussed in
Section 5. Throughout the paper, ν+

= max (ν, 0) , ν−
= max (−ν, 0) , o(1) (oP (1)) denotes a

series of numbers (random numbers) converging to zero (in probability); O(1) (OP (1)) denotes
a series of numbers (random numbers) that are bounded (in probability); when two sequences an

and bn are of the same order, we denote an ∼ bn ;
P

−→ and
L

−→ denote convergence in probability

and in distribution, respectively; and
f.d.d.
−→ denotes convergence of finite-dimension distribution.

A
H⇒ denotes the weak convergence under A topology, where A = J1,M1, S. W (·) stands for
a standard Brownian motion. C < ∞ denotes a positive constant that takes different values in
different places.

2. Model assumptions and preliminaries

Throughout, we impose the following 3 assumptions on model (3):

Assumption 2.1. E log(a + bη2
1) < 0. �

Assumption 2.2. There exists a k0 > 0 such that E(a +bη2
1)

k0 ≥ 1 and E

(a +bη2

1)
k0 log+(a +

bη2
1)

< ∞, where log+(x) = max{log(x), 0}. �

Assumption 2.3. The density of η1 is positive in a neighborhood of zero.2 �

Under these assumptions, there exists a constant α > 0 such that

E


a + bη2
1

α/2
= 1. (4)

2 Assumption 2.3 can be weakened as the distribution of F of η1 is a mixture of an absolutely continuous component
with respect to the Lebesgue measure λ on R and Dirac masses at some points µi ∈ R, i = 1, . . . , N . See [23].
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See, for instance, [34]. Further, when α ∈ (2,∞), the GARCH process {εt } has a finite variance.
When α = 2, {εt } is called the IGARCH process and it has an infinite variance. The IGARCH
process is particularly interesting as, in fitting the log return of asset price to a GARCH(1,1)
model, it is often reported that the estimated a + b is close to unity. On the other hand, when
α ∈ (0, 2], {εt } also has an infinite variance. Goldie [25] shows there exists a positive constant
c(α)0 such that as x → ∞,

P

σ 2

1 > x


= c(α)0 x−α/2
{1 + o(1)}, which gives that (5)

P (|ε1| > x) = P (|σ1η1| > x) =

E |η1|

α


P

σ 2

1 > x2


=

E |η1|

α


c(α)0 x−α
{1 + o(1)}, (6)

provided E |η1|
α < ∞. See also [14]. Hence P (|ε1| > x) is regularly varying with

index α, that is, limt→∞ P (|ε1| > t x) /P (|ε1| > t) = x−α for x > 0. It follows that

limn→∞ n P

|ε1| > a(α)n


= 1, where

a(α)n :=


c(α)0 E |η1|

αn
1/α

. (7)

When no ambiguity arises, write c0 = c(α)0 , an = a(α)n . By Theorem 4.1 in [25],

c(α)0 :=

E

ω +


a + bη2

1


σ 2

1

α/2
−


a + bη2
1


σ 2

1

α/2
α/2E


(a + bη2

1)
α/2 log+(a + bη2

1)
 . (8)

For α = 2, since Eη2
1 = 1, we may write a(2)n =


c(2)0 n.

The α-stable limits derived in the next section are expressed as infinite series of the points
of Poisson processes. Following [18,19], for any positive integers (l, H), define an (H + 1)-
dimensional random vector:

Xt,l,H := (εt−l , εt−l−1, . . . , εt−l−H ) =:


X (0)t,l , X (1)t,l , . . . , X (H)t,l


. (9)

By Theorem 2.8 in [19],3 there exists a Poisson process


∞

i=1 δPi :=


∞

i=1 δPi (α) defined
on R+ with mean measure v(dy) = Υαy−α−1 dy, and a sequence of i.i.d. point processes
{


∞

j=1 δQi j,H } := {


∞

j=1 δQi j,H (α)} which is independent of {Pi },

n
t=1

δXt,l,H /an

L
−→

∞
i=1

∞
j=1

δPi Qi j,H , (10)

where Qi j,H =


Q(0)

i j , Q(1)
i j , . . . , Q(H)

i j


with a common distribution equal to:

lim
k→∞

lim
n→∞

P


|t |≤k

δXt,l,H /( sup
|t |≤k

|Xt,l,H |) ∈ ·

 sup
1≤t≤k

|Xt,l,H | ≤ an ≤ |X0,l,H |


, (11)

3 See also Theorem 3.1 in [40].
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in which the norm
Xt,l,H

 = max0≤h≤H

X (h)t,l

. Further, the extremal index,4

Υ = lim
k→∞

lim
n→∞

P


k

t=1

Xt,l,H
 ≤ an,

|X0,l,H | > an


. (12)

As pointed out by a referee, using the same assumptions as ours and considering α ∈ (0, 2) or
α ∈ (0, 2) ∪ (2, 4), Proposition 5 in [7] expressed the limiting results in terms of characteristic
functions (contrast to Lemmas 4.1(a) and 4.3(a)). The major advantage of their classical blocking
and mixing techniques over the point process approach is, by controlling clustering of big
values, one may calculate the parameters of the stable limit in terms of quantities of the finite-
dimensional distributions of the underlying process. The advantages of Bartkiewicz et al.’s [7]
approach will be exploited in the future research.

3. Main results

3.1. Partial sum of the short- and long-memory processes

In this subsection, we give the weak convergence of the partial sum of {ut } in (2) when it is a
short- or long-memory linear process with a GARCH(1,1) noise {εt } in (3).

Theorem 3.1. Suppose Assumptions 2.1–2.3 hold and


∞

l=0 |dl |
γ < ∞ for some γ ≤ 1, γ <

α, α is given by (4).

(a)
1
an

⌊nτ⌋
t=1

ut
S

H⇒


∞

l=0

dl


ξα(τ ), 0 < α < 2; (13)

(b)
1

nc0 log n

⌊nτ⌋
t=1

ut
J1

H⇒


∞

l=0

dl


W (τ ), α = 2; (14)

(c)
1

n

Eσ 2

1

 ⌊nτ⌋
t=1

ut
J1

H⇒


∞

l=0

dl


W (τ ), α > 2; (15)

where ξα(·) is an α-stable process with ξα(1) =


∞

i=1


∞

j=1 Pi (α)Q
(0)
i j (α). �

Remark 3.1. Using the point process technique, Davis and Hsing [18] showed

n
t=1

δεt/an

L
−→

∞
i=1

∞
j=1

δ
Pi (α)Q

(0)
i j (α)

, (16)

for any 0 < α < 2. By the continuous mapping theorem, for any ϱ > 0 and for τ = 1,

a−1
n

⌊nτ⌋
t=1

εt I (|εt |/an > ϱ)
L

−→

∞
i=1

∞
j=1

Pi (α)Q
(0)
i j (α)I


|Pi (α)Q

(0)
i j (α)| > ϱ


=: ξ (ϱ)α (τ ). (17)

4 See also Remark 2.3 in [19]; or Remark 4.7 in [10].
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For any ϵ > 0, limϱ↓0 lim supn↑∞ P

|a−1

n
n

t=1 (εt I (|εt |/an ≤ ϱ)− Eε1 I (|ε1|/an ≤ ϱ)) |

> ϵ


= 0. Recall ε1 is symmetrically distributed and Eε1/an I (|ε1|/an ≤ 1) = 0. Thus,

a−1
n

⌊nτ⌋
t=1

εt
L

−→ lim
ϱ↓0

ξ (ϱ)α (τ ) =

∞
i=1

∞
j=1

Pi (α)Q
(0)
i j (α) =: ξα(τ ), for τ = 1. (18)

The convergence of (17)–(18) was generalized to all τ ∈ [0, 1] by Basrak, Krizmanić and Segers
[9, Theorem 3.4]. More precisely, they showed (17)–(18) hold in D[0, 1] under the M1 topology,
by considering a time-space process N in [−T, 1] × [−ϱ, ϱ]c, T > 0. N is a Poisson process
with mean measure λ× ν(ϱ), λ is the Lebesgue measure and for x > 0,

ν(ϱ)([−x, x]
c) := ϱ−αP


ϱ

∞
t=1

|Yt |I (|Yt | > 1) > x, sup
−∞≤ j≤−1

|Y j | ≤ 1


, (19)

{Yt } is the tail process of {εt } (Theorems 2.1 and 2.3 in [9]). Thus,

ξ (ϱ)α (τ ) =

 τ+

0


[−ϱ,ϱ]c

r N (ds, dr), ξα(τ ) = lim
ϱ↓0

ξ (ϱ)α (τ ), for τ ∈ [0, 1]. � (20)

Theorem 3.2. Suppose Assumptions 2.1–2.3 hold, limn→∞
1

n1−β l(n)

n
j=0 |d j | < ∞, dn =

O(l(n)/nβ),max{
1
α
, 1

2 } < β ≤ 1, α is given by (4), and l(n) is a slowly varying function.

(a)
1

n1−βl(n)an

⌊nτ⌋
t=1

ut
S

H⇒ K
 τ

−∞

X (s, τ ) dξα(s), 1 < α < 2; (21)

(b)
1

n1−βl(n)


nc0 log n

⌊nτ⌋
t=1

ut
J1

H⇒ K
 τ

−∞

X (s, τ ) dW (s), α = 2; (22)

(c)
1

n1−βl(n)


n

Eσ 2

1

 ⌊nτ⌋
t=1

ut
J1

H⇒ K
 τ

−∞

X (s, τ ) dW (s), α > 2; (23)

where K = limn→∞
1

n1−β l(n)

n
j=0 d j , and

X (s, τ ) :=


(s − τ)−

1−β
−

s−
1−β

, β < 1,
I (0 ≤ s ≤ τ) , β = 1;

(24) τ

−∞

X (s, τ ) dξα(s) := lim
T ↑∞

lim
ϱ↓0

 τ+

−T


[−ϱ,ϱ]c

X (s, τ )r N (ds, dr); (25)

in which the random measure N (ds, dr) is defined around (19). �

Remark 3.2. Consider an ARF I M A(p, 1 − ι, q) model, p, q < ∞,max{
1
α
, 1

2 } < ι ≤ 1:

φ(B)(1 − B)1−ιut = θ(B)εt , (26)

where B is the lag operator and {εt } is a GARCH(1,1) noise specified in (3).

(a) When ι = 1, the conclusions of Theorem 3.1 hold with


∞

l=0 dl =
θ(1)
φ(1) .
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(b) When max{1/α, 1/2} < ι < 1, the conclusions of Theorem 3.2 hold with K =
θ(1)

φ(1)Γ (1−ι)
,

where Γ (·) is the gamma function.5 �

Remark 3.3. Theorem 3.2(a) extends Theorem 3.9 of [6] to the S-convergence of a long-
memory linear process of GARCH(1,1) noises, where 1 < α < 2. To the best of our knowledge,
the result in Theorem 3.2(b), where α = 2, is new; while Theorem 3.2(c), where α > 2, is a
special case of Theorem 2 of [49]. �

3.2. Sample autocovariance of the short- and long-memory processes

In this subsection, we study the weak convergence of the sample autocovariance of {ut }.
For Theorem 3.1 (and Theorem 3.3), let p = γ ; and for Theorem 3.2 (and Theorem 3.4), let
1 ≤ 1/β < p < min{2, α}. In either case, for 0 ≤ k < ∞,

∞
l=0

|dl |
p < ∞ H⇒

∞
l=0

|dldl+k |
p/2

≤

∞
l=0


|dl |

p
+ |dl+k |

p /2 < ∞, (27)

where p < min{2, α}. Thus we define

γ (k)n =



0, 0 < α < 2,
∞

l=0

dldl+k


c0 log n, α = 2,

∞
l=0

dldl+k


(Eσ 2

1 ), α > 2.

(28)

Denote Pi = Pi (α) and Q(h)
i j = Q(h)

i j (α), h ≥ 0. For 0 < α < 4 in Theorems 3.3 and 3.4, the

limit involves a α/2-stable process, S(h)α/2(·). When 0 < α < 2, or h ≥ 1,6

S(h)α/2(1) =


i, j≥1

P2
i Q(0)

i j Q(h)
i j . (29)

When 2 ≤ α < 4 and h = 0, S(0)α/2(1) is the distributional limit of
i, j≥1

P2
i Q(0)2

i j I

ϱ < P2

i Q(0)2
i j


−


√
ϱ<x≤1

x2µ(dx), α = 2; (30)


i, j≥1

P2
i Q(0)2

i j I

ϱ < P2

i Q(0)2
i j


−


√
ϱ<x

x2µ(dx), 2 < α < 4; (31)

as ϱ ↓ 0, where by (6)–(7), µ(dx) = αx−α−1dx .

Remark 3.4. Deriving the limit behavior of the sample autocovariance of a sequence not
necessarily a m.d.s., Theorem 3.5 in [19] did not consider the case α = 2. In (30) where

5 See, for instance, [28,35].
6 For 2 ≤ α < 4, εt εt−h = σt−h |ηt−h |σt sign(ηt−h)ηt , which is symmetrically distributed, as sign(ηt−h)ηt is

independent of σt−h |ηt−h |σt . Thus, the points


j≥1 P2
i Q(0)i j Q(h)i j are summable.
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α = 2, the centering constant is Eε2
1 I (|ε1| ≤ an) = c0 log n. On the other hand, in (31) where

2 ≤ α < 4, as in [19], the centering constant is Eε2
1 = Eσ 2

1 . See also Lemmas 4.2 and 4.3. �

Theorem 3.3. Suppose the assumptions in Theorem 3.1 hold. For 0 ≤ k < ∞,

(a)
1

a2
n

⌊nτ⌋
t=1

(ut ut−k − γ (k)n )
S

H⇒ Z (k)α/2(τ ), 0 < α < 4; (32)

(b)
1

n log n

⌊nτ⌋
t=1

(ut ut−k − γ (k)n )
J1

H⇒ K (k)
1 W (τ ), α = 4; (33)

(c)
1

√
n

⌊nτ⌋
t=1

(ut ut−k − γ (k)n )
J1

H⇒ K (k)
2 W (τ ), α > 4; (34)

where Z (k)α/2(·) is a α/2-stable process with

Z (k)α/2(1) =


∞

l=0

dldl+k


S(0)α/2(1)+

∞
h=1


∞

l=0

dldl+h+k +

∞
l=0

dldl+|h−k|


S(h)α/2(1), (35)

K (k)2
1 =


∞

l=0

dldl+k

2

c0 E

η4

1 − 1
 1 − a

1 − a − b

2

+

∞
h=1

 ∞
l=0

dldl+h+k +

∞
l=0

dldl+|h−k|

2

(a + b)(h−1)

 c0


a + bEη4

1


, (36)

K (k)2
2 =


∞

l=0

dldl+k

2

(Eσ 4
1 )E


η4

1 − 1
 1 − a

1 − a − b

2

+

∞
h=1

 ∞
l=0

dldl+h+k +

∞
l=0

dldl+|h−k|

2

E

ε2

1ε
2
1−h

 , (37)

in which for α > 4, with A1 = a + bη2
0 and defining π := a + b,7

Eσ 4
1 =

ω2(1 + π)

(1 − π)(1 − E A2
1)
,

E

ε2

1ε
2
1−h


=


Eσ 4

1

 
a + bEη4

1


πh−1

+
ω2

1 − πh


(1 − π)2

, h ≥ 1.

Theorem 3.4. Suppose the assumptions in Theorem 3.2 hold. For 0 ≤ k < ∞,

(a) If 1 < α ≤ 2, or 2 < α < 4 with β > 1 − 1/α,

7 When α > 4 and π = 0, write γ (s) = ω2 ∞
l=0 dl dl+s and observe that γ (s) = γ (−s), K (k)22 = E(η4

1 − 3)

γ 2(k) +


∞
h=−∞


γ 2(h) + γ (h + k)γ (h − k)


, which is the asymptotic variance of the sample autocovariance of

order k, when {εt } is an i.i.d. sequence with finite 4th moment. See, for instance, Proposition 7.3.1 in [15].
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1

a2
n

⌊nτ⌋
t=1

(ut ut−k − γ (k)n )
S

H⇒ Z (k)α/2(τ ); (38)

(b) If 2 < α ≤ 4 with β < 1 − 1/α, or α > 4 with β < 3/4,

1

n2(1−β)l2(n)

⌊nτ⌋
t=1

(ut ut−k − γ (k)n )
J1

H⇒ (Eσ 2
1 )Uβ(τ ); (39)

(c) If α = 4 with β > 3/4,

1
n log n

⌊nτ⌋
t=1

(ut ut−k − γ (k)n )
J1

H⇒ K (k)
1 W (τ ); (40)

(d) If α > 4 with β > 3/4,

1
√

n

⌊nτ⌋
t=1

(ut ut−k − γ (k)n )
J1

H⇒ K (k)
2 W (τ ); (41)

where Z (k)α/2(·) is defined as in (35), Uβ(·) is a Rosenblatt process defined as:

Uβ(τ ) = 2


s1<s2<τ

 τ

0


(r − s1)

+
−β 

(r − s2)
+
−β

dr


W (ds1)W (ds2), (42)

and K (k)2
1 and K (k)2

2 are defined as in (36)–(37). �

Remark 3.5. Consider model (26) in Remark 3.2.

(a) When ι = 1, the conclusions of Theorem 3.3 hold with


∞

j=0 d j B j
=

θ(B)
φ(B) ; and

∞

j=0 d j d j+s, s ≥ 0 being defined accordingly.
(b) When max{1/α, 1/2} < ι < 1, the conclusions of Theorem 3.4 hold with


∞

j=0 d j B j
=

θ(B)(1−B)(ι−1)

φ(B) , where

(1 − B)(ι−1)
=

∞
j=0

ψ j B j , in which ψ0 = 1, ψ j =

j
i=1

i − ι

i
, j ≥ 1;

and


∞

j=0 d j d j+s, s ≥ 0 being defined accordingly.8 �

4. Proofs

Define
⌊−nτ⌋

t=1 =
0

t=⌊−nτ⌋ for τ > 0. Lemma 4.1 for the partial sum of {εt } is essentially
Theorem 2.1(b), 2.1(c) and 2.2(a) in [17], as well as Theorem 18.3 in [13]. It plays a crucial role
in establishing the FLD of {ut }.

Lemma 4.1. Suppose Assumptions 2.1–2.3 hold with α given by (4).

(a)
1
an

⌊nτ⌋
t=1

εt
S

H⇒ ξα(τ ), 0 < α < 2; (43)

8 The detailed formulae can be found in pp. 172–173 in [47] and pp. 47–48 in [42].
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(b)
1

nc0 log n

⌊nτ⌋
t=1

εt
J1

H⇒ W (τ ), α = 2; (44)

(c)
1

n(Eσ 2
1 )

⌊nτ⌋
t=1

εt
J1

H⇒ W (τ ), α > 2; (45)

where ξα(·) is an α-stable process with ξα(1) defined as in Theorem 3.1. �

Proof. We first show (43) where 0 < α < 2. Let Sn(τ ) =
⌊nτ⌋

t=1 εt/an . By the arguments for
Theorem 2.1(b) in [17] (see also Lemmas A.5–A.6 there),

Sn(τ )
f.d.d.
−→ ξα(τ ). (46)

Let Sn(τ ) =
⌊nτ⌋

t=1 εt I (σt ≤ an)/an +
⌊nτ⌋

t=1 εt I (σt > an)/an =: S1n(τ ) + S2n(τ ). For all
n, {εt I (σt ≤ an)/an} is a m.d.s. and supn supτ∈[−T,1] E |S1n(τ )| < ∞. By Doob’s inequality,

(a) {max−T ≤τ≤1 |S1n(τ )|} is stochastically bounded.
(b) For any a < b, a, b ∈ R, {N a,b(S1n)} is stochastically bounded,

where N a,b(S1n) is the number of up-crossings of [a, b] by the process S1n . Similarly define
N a,b(S2n) and N a,b(Sn). Next let ϱ = min{α − ϵ, 1}, 0 < ϵ < α,

max
n

E


max

−T ≤τ≤1
|S2n(τ )|

ϱ
≤ max

n
a−ϱ

n


⌊−nT ⌋≤t≤n

E

|εt |

ϱ I (σt > an)

< ∞,

E


N a,b(S2n)


≤ E

 
⌊−nT ⌋≤t≤n

I (σt > an)


= (⌊nT ⌋ + n + 1) P (σ1 > an) < ∞.

Thus, {max−T ≤τ≤1 |S2n(τ )|} and {N a,b(S2n)} are also stochastically bounded. Since

max
−T ≤τ≤1

|Sn(τ )| ≤ max
−T ≤τ≤1

|S1n(τ )| + max
−T ≤τ≤1

|S2n(τ )|,

N a,b(Sn) ≤ N a,b(S1n)+ N a,b(S2n),

it follows that {max−T ≤τ≤1 |Sn(τ )|} and {N a,b(Sn)} are also stochastically bounded. By
Theorem 3.2 in [31], {Sn(τ )} is relatively compact and (43) is proved. Next, we show (44)
where α = 2. Let εt1 = εt I (σt ≤


nc0 log log n), εt2 = εt I (σt >


nc0 log log n) and

kn =


nc0 log n. Now define S1n(τ ) =
1
kn

⌊nτ⌋
t=1 εt1 and S2n(τ ) =

1
kn

⌊nτ⌋
t=1 εt2. By arguments

for (6.3) in [17],

S1n(τ )
J1

H⇒ W (τ ). (47)

On the other hand, for any 0 < ϵ < 2,

E

 sup
−T ≤τ≤1

S2n(τ )


2−ϵ

 ≤
1

k2−ϵ
n

n
t=⌊−nT ⌋

E |εt2|
2−ϵ

≤ C
(n log log n)1−ϵ/2

(n log n)1−ϵ/2 → 0. (48)

It follows that sup−T ≤τ≤1 S2n(τ )
P

−→ 0 and thus (44) holds. Finally, when α > 2,
⌊nτ⌋

t=1 εt is a
square integrable martingale. Eq. (45) follows by the martingale functional central limit theorem.
See Theorem 18.3 in [13]. �
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Proof of Theorem 3.1. Write

ut =

∞
l=0

dlεt−l =

H
l=0

dlεt−l +

∞
l=H+1

dlεt−l =: I1t (H)+ I2t (H). (49)

We first show (13). By Lemma 4.1(a), for any integer 0 ≤ l ≤ H, 1
an

⌊nτ⌋
t=1 εt−l

S
H⇒ ξα(τ ).

Since addition is sequentially continuous with respect to the S topology (see Theorem 2.13 in
[31]), it follows that

1
an

⌊nτ⌋
t=1

I1t (H) =

H
l=0

dl


1
an

⌊nτ⌋
t=1

εt−l


S

H⇒


H

l=0

dl


ξα(τ ). (50)

By Theorem 3.2 in [13], it remains to show for any ϱ > 0,

lim
H→∞

lim sup
n→∞

P


sup

0≤τ≤1

 1
an

⌊nτ⌋
t=1

I2t (H)

 > ϱ


= 0, and (51)

as H → ∞,


H

l=0

dl


ξα(τ )

P
−→


∞

l=0

dl


ξα(τ ). (52)

Given


∞

l=0 |dl | < ∞, (52) results. It remains to show (51). Write

1
an

⌊nτ⌋
t=1

I2t (H) =
1
an

∞
l=H+1

dl

⌊nτ⌋
t=1

εt−l I (σt−l ≤ an)

+
1
an

⌊nτ⌋
t=1

∞
l=H+1

dlεt−l I (σt−l > an)

=: Σ1n(τ )+ Σ2n(τ ). (53)

Note that for any fixed l, {εt−l I (σt−l ≤ an)} is a m.d.s. By Doob’s inequality,

E

 sup
0≤τ≤1

1
an

[nτ ]
t=1

εt−l I (σt−l ≤ an)


2

≤ 4E

 1
an

n
t=1

εt−l I (σt−l ≤ an)


2

→
4α

2 − α
, (54)

as n → ∞, where the last limit follows by the uncorrelatedness of εt−l ’s and Karamata’s
theorem. By (54), since


∞

l=0 |dl | < ∞, we haveE

 sup
0≤τ≤1

Σ1n(τ )


2
1/2

≤

∞
l=H+1

|dl |

E

 sup
0≤τ≤1

1
an

[nτ ]
t=1

εt−l I (σt−l ≤ an)


2
1/2

≤ 2

α(2 − α)−1

∞
l=H+1

|dl | → 0, (55)

as n → ∞ followed by H → ∞. Thus sup0≤τ≤1 Σ1n(τ )
P

−→ 0. Let γ be that specified in the
Theorem.
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E

 sup
0≤τ≤1

Σ2n(τ )


γ

≤

n
t=1

∞
l=H+1

|dl |
γ E

 1

aγn
|εt−l |

γ I (σt−l > an)


≤ α(α − γ )−1

∞
l=H+1

|dl |
γ

→ 0,

as n → ∞ followed by H → ∞. Thus, sup0≤τ≤1 Σ2n(τ )
P

−→ 0. And (13) is proved. Next, we
show (14). Let kn =


nc0 log n. By Lemma 4.1(b), for any fixed integer H > 0,

1
kn


⌊nτ⌋
t=1

εt ,

⌊nτ⌋
t=1

εt−1, . . . ,

⌊nτ⌋
t=1

εt−H


J1

H⇒ (W (τ ),W (τ ), . . . ,W (τ )) . (56)

Given


∞

l=0 |dl | < ∞,

1
kn

⌊nτ⌋
t=1

I1t (H)
J1

H⇒


H

l=1

dl


W (τ )

P
−→


∞

l=1

dl


W (τ ), (57)

as n → ∞ followed by H → ∞. Write

1
kn

[nτ ]
t=1

I2t (H) =
1
kn

∞
l=H+1

dl

⌊nτ⌋
t=1

εt−l I (σt−l ≤ kn)+
1
kn

⌊nτ⌋
t=1

∞
l=H+1

dlεt−l I (σt−l > kn) .

Using the same argument for (51), sup0≤τ≤1
1
kn

⌊nτ⌋
t=1 I2t (H)

P
−→ 0. Thus, Eq. (14) holds.

Finally, we turn to (15). Using Lemma 4.1(c) and the same argument for (57),

1
n

Eσ 2

1

 ⌊nτ⌋
t=1

I1t (H)
J1

H⇒


∞

l=1

dl


W (τ ).

For any fixed l, {εt−l} is a square integrable m.d.s. By Doob’s inequality,E

 sup
0≤τ≤1

1
n

Eσ 2

1

 ⌊nτ⌋
t=1

I2t (H)


2


1/2

≤ C
∞

l=H+1

|dl | → 0, (58)

as H → ∞. Thus, (15) results and the proof is complete. �

Proof of Theorem 3.2. First consider (21). Let εi1 = εi I (σi ≤ an), εi2 = εi I (σi > an).

⌊nτ⌋
t=1

ut =

⌊nτ⌋
i=−∞

⌊nτ⌋
t=i∨1

dt−iεi =

−⌊nT ⌋−1
i=−∞

⌊nτ⌋
t=1

dt−iεi +

⌊nτ⌋
i=−⌊nT ⌋

⌊nτ⌋
t=i∨1

dt−iεi

=

∞
i=⌊nT ⌋+1

⌊nτ⌋
t=1

dt+iε−i1 +

∞
i=⌊nT ⌋+1

⌊nτ⌋
t=1

dt+iε−i2 +

⌊nτ⌋
i=−⌊nT ⌋

⌊nτ⌋
t=i∨1

dt−iεi

=:

3
j=1

I jn(T, τ ). (59)
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Eq. (21) follows by proving:

sup
0≤τ≤1

1

n1−βl(n)an
|I1n(T, τ )+ I2n(T, τ )|

P
−→ 0, and (60)

1

n1−βl(n)an
I3n(T, τ )

S
H⇒ K

 τ

−∞

X (s, τ )dξα(s). (61)

Note that {εi1} is a m.d.s. For any fixed τ ,

E

 1

n1−βl(n)an
I1n(T, τ )

2 ≤ C


n1−βl(n)an

−2 ∞
i=⌊nT ⌋+1


⌊nτ⌋
t=1

|dt+i |

2

E |ε11|
2

≤ C


1

T 2β−1


⌊nT ⌋

2β−1
∞

i=⌊nT ⌋+1


1
i

2β


n

a2
n

E |ε11|
2


≤ C


1

T 2β−1


→ 0, (62)

by letting T → ∞. Similarly, for µ ≤ τ ,

E


1

n1−βl(n)an
[I1n(T, τ )− I1n(T, µ)]

2

≤ C


n1−βl(n)an

−2 ∞
i=⌊nT ⌋+1


⌊nτ⌋

t=⌊nµ⌋+1

|dt+i |

2

Eε2
11

≤ C(τ − µ)2T −2β+1. (63)

By Theorem 12.3 in [12], we have

sup
0≤τ≤1

1

n1−βl(n)an
|I1n(T, τ )|

P
−→ 0, as T → ∞. (64)

On the other hand, {εi2} is also a m.d.s. For any 1 ≤ 1/β < q < α,

E

 1

n1−βl(n)an
I2n(T, τ )

q ≤ C


n1−βl(n)an

−q ∞
i=⌊nT ⌋+1


⌊nτ⌋
t=1

|dt+i |

q

E |ε12|
q

≤ CT −βq+1
→ 0,

by letting T → ∞. Similar to above, for µ ≤ τ ,

E


1

n1−βl(n)an
[I2n(T, τ )− I2n(T, µ)]

q

≤ C(τ − µ)γ T −βq+1.

Thus, by Theorem 12.3 in [12] again, we also have

sup
0≤τ≤1

1

n1−βl(n)an
|I2n(T, τ )|

P
−→ 0, as T → ∞. (65)

Combining (64) with (65) yields (60). To show (61), let I +

3n(T, τ ) =
⌊nτ⌋

i=−⌊nT ⌋

⌊nτ⌋
t=i∨1 d+

t−iεi

and I −

3n(T, τ ) =
⌊nτ⌋

i=−⌊nT ⌋

⌊nτ⌋
t=i∨1 d−

t−iεi . We first show the f.d.d . convergence of

I +

3n(T, τ ). Denote the time-space point process Nn(ds, dr) =
n

t=−⌊nT ⌋
δ(t/n,εt/an)(ds, dr). By
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Theorem 2.3 in [9], for any ϱ > 0,

Nn
L

−→ N , in [−T, 1] × [−ϱ, ϱ]c. (66)

Let X+
n (s, τ ) := nβ−1l−1(n)

⌊nτ⌋
t=⌊ns⌋∨1 d+

t−⌊ns⌋ and K +
:= limn→∞

1
n1−β l(n)

n
j=0 d+

j .

Note X+
n (s, τ ) =



0, 0 ≤ τ ≤ s,

nβ−1l−1(n)
⌊nτ⌋−⌊ns⌋

j=0

d+

j , 0 ≤ s ≤ τ,

nβ−1l−1(n)


⌊nτ⌋−⌊ns⌋

j=0

d+

j −

−⌊ns⌋
j=0

d+

j


, s ≤ 0 ≤ τ.

(67)

→ K + X (s, τ ), (68)

uniformly in s ∈ [−T, 1], where fixing a τ, X (., τ ) is defined as in (24). For any ϵ < α.

∥X+
n − K + X∥α,ϵ → 0,

∥ f ∥α,ϵ = max

 τ

−∞

| f (s)|α−ϵ ds,

 τ

−∞

| f (s)|α+ϵ ds

 α−ϵ
α+ϵ


. (69)

Further, for any ϱ > 0,

I +

3n(T, τ )

n1−βl(n)an
=

1

n1−βl(n)an

⌊nτ⌋
i=−⌊nT ⌋

⌊nτ⌋
t=i∨1

d+

t−iεi

=

 τ+

−T


∞

−∞

X+
n (s, τ )r I (|r | > ϱ)Nn(ds, dr)

+

 τ+

−T


∞

−∞

X+
n (s, τ )r I (|r | ≤ ϱ)Nn(ds, dr)

=: I +

3n,1(T, τ )+ I +

3n,2(T, τ ), where

E
I +

3n,2(T, τ )
2 =

⌊nτ⌋
i=−⌊nT ⌋


⌊nτ⌋

t=i∨1
d+

t−i

n1−βl(n)



2

E

 εi

an
I

 εi

an

 ≤ ϱ

2 → 0, as ϱ → 0. (70)

On the other hand, given (66), Lemma 4.1(a), (68) and (69), by arguments similar to Theorem 3.1
in [32] (see also Proposition 6.4 in [33], that also considered the dependent case), as n → ∞,

I +

3n,1(T, τ )
L

−→ K +

 τ+

−T


[−ϱ,ϱ]c

X (s, τ )r N (ds, dr). (71)

Recall the definition of
 τ
−∞

X (s, τ )dξα(s) in (25). Combining (70) with (71), we have

I +

3n(T, τ )

n1−βl(n)an

L
−→ K +

 τ

−∞

X (s, τ )dξα(s),
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as ϱ → 0 followed by T → ∞, By the standard Cramér–Wold’s device, for τ ∈ [0, 1],

I +

3n(T, τ )

n1−βl(n)an

f.d.d.
−→ K +

 τ

−∞

X (s, τ )dξα(s). (72)

Replacing Theorem 5.1 in [32] by (72), the proof of Theorem 3.7 in [6] goes through and thus

I +

3n(T, τ )

n1−βl(n)an

M1
H⇒ K +

 τ

−∞

X (s, τ )dξα(s). (73)

By the arguments above, we also have

I −

3n(T, τ )

n1−βl(n)an

M1
H⇒ K −

 τ

−∞

X (s, τ )dξα(s). (74)

Further, it is not difficult to show, using the arguments for (30) in [6], that for any 0 ≤ τ1 <

· · · < τk ≤ 1, k ≥ 1,

1

n1−βl(n)an


I +

3n(T, τ1), I −

3n(T, τ1), . . . , I +

3n(T, τk), I −

3n(T, τk)


L
−→


K +

 τ1

−∞

X (s, τ )dξα(s), K −

 τ1

−∞

X (s, τ )dξα(s), . . . K +

 τk

−∞

X (s, τ )dξα(s),

K −

 τk

−∞

X (s, τ )dξα(s)


. (75)

With (73)–(75), Theorem 2.15 in [6] implies (61). Thus (21) is proved. Re-defining εi1 :=

εi I (σi ≤


nc0 log n) and εi2 = εi I (σi >


nc0 log n) in (59), Eq. (22) follows by proving:

sup
0≤τ≤1

1

n1−βl(n)


nc0 log n
(I1n(T, τ )+ I2n(T, τ ))

P
−→ 0, and (76)

1

n1−βl(n)


nc0 log n
I3n(T, τ )

J1
H⇒ K

 τ

−∞

X (s, τ )dW (s). (77)

The proof of (76) is exactly the same as that of (60), with the above definitions of εi1

and εi2, and replacing an by


nc0 log n. Let Xn(s, τ ) := nβ−1l−1(n)
⌊nτ⌋

t=⌊ns⌋∨1 dt−⌊ns⌋.
Eqs. (68)–(69) hold with X+

n (s, τ ) replaced by Xn(s, τ ) and K + replaced by K . By
Lemma 4.1(b) and the same argument as in (73), it follows that (77) holds in finite-dimension
distribution, by letting n → ∞ and T → ∞. The tightness can be proved as in Theorem 2 in [49].
Eq. (22) is thus proved. Eq. (23) follows by Theorem 2 in [49]. �

Lemma 4.2. Suppose Assumptions 2.1–2.3 hold with α given by (4). For h ≥ 1,

(a)
1

a2
n

⌊nτ⌋
t=1

εtεt−h
S

H⇒ S(h)α/2(τ ), 0 < α < 4; (78)

(b)
1

n log n

⌊nτ⌋
t=1

εtεt−h
J1

H⇒


c0 (a + b)h−1 a + bEη4

1


W (τ ), α = 4; (79)
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(c)
1

√
n

⌊nτ⌋
t=1

εtεt−h
J1

H⇒


E

ε2

1ε
2
1−h


W (τ ), α > 4; (80)

where S(h)α/2(·) is a α/2-stable process defined as in (29). �

Proof. We first show (78) where 0 < α < 4. Let Sn(τ ) =
⌊nτ⌋

t=1 εtεt−h/a2
n . By the arguments

for Theorem 2.1(b) in [17] (see also Lemmas A.5–A.6 there),

Sn(τ )
f.d.d.
−→ S(h)α/2(τ ). (81)

Further, the arguments for relative compactness in the proof of Lemma 4.1 go through
and thus (78) is proved. Next, we show (79) where α = 4. Let kn =


n log log n and

νh = c0 (a + b)h−1 a + bEη4
1


. Define ζt1 = εtεt−h I (σt |εt−h | ≤ kn) /


nνh log n and ζt2 =

εtεt−h I (σt |εt−h | > kn) /


nνh log n. Therefore,

1
nνh log n

⌊nτ⌋
t=1

εtεt−h =

⌊nτ⌋
t=1

ζt1 +

⌊nτ⌋
t=1

ζt2.

For any 0 < ϵ < 2,

E

 sup
−T ≤τ≤1

⌊nτ⌋
t=1

ζt2


2−ϵ

 ≤
C

(n log n)1−ϵ/2

n
t=⌊−nT ⌋

E |εtεt−h |
2−ϵ I (σt |εt−h | > kn)

≤ C
(n log log n)1−ϵ/2

(n log n)1−ϵ/2 −→ 0. (82)

It follows that sup−T ≤τ≤1
⌊nτ⌋

t=1 ζt2
P

−→ 0. Thus, it remains to show:

⌊nτ⌋
t=1

ζt1
J1

H⇒ W (τ ). (83)

Eq. (83) follows by the proof of (6.3) in [17], if

⌊nτ⌋
t=1

E

ζ 2

t1|Ft−1


=

Eη2
1

nνh log n

⌊nτ⌋
t=1

σ 2
t ε

2
t−h I (σt |εt−h | ≤ kn)

P
−→ τ. (84)

See (6.5) there. Let Ak := a + bη2
k−1. Note:

et := σ 2
t ε

2
t−h =

t
k=t−h+1

Akσ
4
t−hη

2
t−h + ω


1 +

t−1
k=t−h+1

t
m=k+1

Am


ε2

t−h

=: et1 + et2, and

I


et ≤ k2
n


= I


et1 ≤ k2

n


− I


et > k2

n, et1 ≤ k2
n


.

It is not difficult to see that for any 0 < ϱ < 1,
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E

 sup
0≤τ≤1

1
nνh log n

⌊nτ⌋
t=1

et I


et > k2
n, et1 ≤ k2

n


ϱ

≤ C
(n log log n)ϱ

(n log n)ϱ
−→ 0, (85)

1
nνh log n

⌊nτ⌋
t=1

Eet2 I


et1 ≤ k2
n


≤

C

log n
−→ 0. (86)

Note limx→∞ x P

σ 4

1−hη
2
1−h

1
k=2−h Ak > x


= c0 E


η2

1−h

1
k=2−h Ak


= νh (by Proposi-

tion 3 in [14]), and E

σ 4

1−hη
2
1−h

1
k=2−h Ak I


σ 4

1−hη
2
1−h

1
k=2−h Ak ≤ k2

n


∼ νh log n. As a

result,

Ee11 I


e11 ≤ k2
n


∼ νh log n. (87)

Eq. (84) follows by (85)–(87), and the arguments for (6.6) in [17]. Thus (79) is proved. Finally,
when α > 4,

⌊nτ⌋
t=1 εtεt−h is a square integrable martingale. Eq. (80) follows by Theorem 18.3

in [13]. �

Lemma 4.3. Suppose Assumptions 2.1–2.3 hold with α given by (4).

(a)
1

a2
n

⌊nτ⌋
t=1


ε2

t − cn


M1

H⇒ S(0)α/2(τ ), 0 < α < 4; (88)

(b)
1

n log n

⌊nτ⌋
t=1


ε2

t − Eσ 2
1


J1

H⇒


c0 E


η4

1 − 1
  1 − a

1 − a − b


W (τ ), α = 4; (89)

(c)
1

√
n

⌊nτ⌋
t=1


ε2

t − Eσ 2
1


J1

H⇒


E

σ 4

1


E

η4

1 − 1
  1 − a

1 − a − b


W (τ ), α > 4; (90)

where cn = 0 for 0 < α < 2, cn = c0 log n for α = 2, and cn = Eσ 2
1 for 2 < α < 4, and S(0)α/2(·)

is a α/2-stable process defined as in (29)–(31). �

Remark 4.1. As one can see in Remark 3.1, Theorem 4.3 in [9] can be used to prove
Lemma 4.1(a). For 2 ≤ α < 4, if for any ϵ > 0,

lim
ϱ↓0

lim sup
n↑∞

P


sup

0≤τ≤1

 1

a2
n

⌊nτ⌋
t=1


ε2

t I (|εt | ≤ ϱan)− E

ε2

t I (|εt | ≤ ϱan)
 > ϵ


= 0,

(91)

that theorem may be used to prove Lemma 4.3(a) (see their Condition 3.3 and Example 4.4).
Condition (91) is not straightforward to check though. In the following, we attempt another line
of proof. �

Proof of Lemma 4.3. We first consider (88)–(89). As the sample path of Brownian motion is
almost surely continuous, to prove (89) under J1, it suffices to prove it under M1. In turn, to
prove (88)–(89) under M1, by Theorem 1 in [38], it suffices to show the following:

(a) {ε2
t } is an associate sequence, and

(b) the weak convergence of finite-dimension distribution (f.d.d.).
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We first show (a). For any N ≥ 1, define ε2
t,N = ω


1 +

t−1
k=t−N+1

t
m=k+1 Am


η2

t , where

At := a + bη2
t−1. As σ 2

t =
t

k=t−N+1 Akσ
2
t−N + ω


1 +

t−1
k=t−N+1

t
m=k+1 Am


, ε2

t = σ 2
t η

2
t

and ρ(α) = E |A1|
α/4 < 1 (see the argument in Lemma A.1), it follows that limN→∞ ε2

t,N = ε2
t

a.s. Thus, by P5 in [22], it suffices to show {ε2
t,N } is an associate sequence. Write ε2

t,N =

f

η2

t , η
2
t−1, . . . , η

2
t−N


, then the function f (·) is coordinate-wise non-decreasing. Since for any

N > 0,

η2

t , η
2
t−1, . . . , η

2
t−N


is an associate sequence (by Theorem 2.1 in [22]), so is {ε2

t N }

(by P4 of [22]). Next we turn to (b). The f.d.d. of (88) follows by (10) and the point-process
technique.9 It remains to show the f.d.d. of (89). Note that for α > 2, (1 − a − b) Eσ 2

1 = ω. It
follows that

σ 2
t+1 − Eσ 2

1 = − (a + b) Eσ 2
1 + aσ 2

t + bε2
t = bσ 2

t


η2

t − 1


+ (a + b)

σ 2

t − Eσ 2
1


,

n
t=1


σ 2

t+1 − Eσ 2
1


=

n
t=1

bσ 2
t (η

2
t − 1)+ (a + b)

n
t=1


σ 2

t − Eσ 2
1


. (92)

As a result, we have

(1 − a − b)
n

t=1


σ 2

t − Eσ 2
1


=

n
t=1

bσ 2
t


η2

t − 1


+ σ 2
1 − σ 2

n+1, (93)

n
t=1


ε2

t − Eσ 2
1


=

n
t=1

σ 2
t


η2

t − 1


+

n
t=1


σ 2

t − Eσ 2
1


=

1 − a

1 − a − b

n
t=1

σ 2
t


η2

t − 1


+
σ 2

1 − σ 2
n+1

1 − a − b
. (94)

Set kn =


nc0 E


η4

1 − 1


log n. Since k−1
n


σ 2

1 − σ 2
n+1

 P
−→ 0, by (94),

1
kn

n
t=1


ε2

t − Eσ 2
1

 L
=


1 − a

1 − a − b


1
kn

n
t=1

σ 2
t


η2

t − 1

. (95)

Let εt1 = σ 2
t (η

2
t − 1)I (σt ≤ (n log log n)1/4) and εt2 = σ 2

t (η
2
t − 1)I (σt > (n log log n)1/4). By

arguments for (44) in Lemma 4.1(a), it is easy to show that:

1
kn

n
t=1

σ 2
t


η2

t − 1
 L

−→ W (1). (96)

Eqs. (95)–(96) and the Cramér–Wold device gives the f.d.d. of (89), as desired. For the proof of
(90), observe that {σt } is a β-mixing process with exponential decay (see, for instance, Theorem 3
in [23]), it follows that {σ 2

t


η2

t − 1

} also satisfies the β-mixing condition with exponential

decay. Eq. (90) follows by Corollary 1 in [26]. �

Proof of Theorem 3.3. We first show (32) where 0 < α < 4. Note:

ut ut−k −


∞

l=0

dldl+k


cn =

∞
l=0

dldl+k


ε2

t−l − cn


+

H
h=1

∞
l=0

dldl+h+kεt−lεt−l−h

9 Alternatively, it also follows by Theorem 1.15 in [41].
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+

H
h=1

∞
l=0∨(k−h)

dldl+h−kεt−lεt−l−h +

∞
h=H+1

∞
l=0

dldl+h+kεt−lεt−l−h

+

∞
h=H+1

∞
l=0∨(k−h)

dldl+h−kεt−lεt−l−h . (97)

As the proofs are similar, we only give that for k = 0, consider:

∞
l=0

d2
l


ε2

t−l − cn


+ 2

H
h=1

∞
l=0

dldl+hεt−lεt−l−h + 2
∞

h=H+1

∞
l=0

dldl+hεt−lεt−l−h

=: I1t + I2t (H)+ I3t (H). (98)

For any positive integers l and H , we define an (H + 1)-dimensional random vector:

Zt,l,H =


ε2

t−l − cn, εt−lεt−l−1, . . . , εt−lεt−l−H


=:


Z (0)t,l , Z (1)t,l , . . . , Z (H)t,l


, t ∈ Z. (99)

Since convergence in M1 implies convergence in S, by Lemmas 4.2(a), 4.3(a) and (10), for any
positive integer l,

1

a2
n

⌊nτ⌋
t=1

Zt,l,H
S

H⇒


S(0)α/2(τ ), S(1)α/2(τ ), . . . , S(H)α/2 (τ )


=: SH (τ ).

Thus for any positive integers L and H ,

1

a2
n


⌊nτ⌋
t=1

Zt,0,H ,

⌊nτ⌋
t=1

Zt,1,H , . . . ,

⌊nτ⌋
t=1

Zt,L ,H


S

H⇒ (SH (τ ),SH (τ ), . . . ,SH (τ ))1×L .

(100)

By (100) and the fact that addition is sequentially continuous with respect to S topology (see
[31]), it follows that

1

a2
n

Sn,L ,H (τ ) :=
1

a2
n

 L
l=0

d2
l

⌊nτ⌋
t=1


ε2

t−l − cn


+ 2

L
l=0

dldl+1

⌊nτ⌋
t=1

εt−lεt−l−1

+ · · · + 2
L

l=0

dldl+H

⌊nτ⌋
t=1

εt−lεt−l−H


S

H⇒

L
l=0

d2
l S(0)α/2(τ )+ 2

L
l=0

dldl+1S(1)α/2(τ )+ · · · + 2
L

l=0

dldl+H S(H)α/2 (τ )

=: SL ,H (τ ). (101)

We first consider the sub-case 0 < α < 2. Fix an H and for any L ,

sup
0≤τ≤1

1

a2
n

⌊nτ⌋
t=1

(I1t + I2t (H))− Sn,L ,H (τ )

 ≤
1

a2
n

n
t=1

∞
l=L+1


d2

l ε
2
t−l I


ε2

t−l ≤ a2
n


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+

H
h=1

|dldl+hεt−lεt−l−h | I

|εt−lεt−l−h | ≤ a2

n



+
1

a2
n

n
t=1

∞
l=L+1


d2

l ε
2
t−l I


ε2

t−l > a2
n


+

H
h=1

|dldl+hεt−lεt−l−h | I

|εt−lεt−l−h | > a2

n


=: Π1(H, L)+ Π2(H, L).

By (27) it is easy to show that, uniformly in H, limL→∞ limn→∞ E |Π1(H, L)| = 0 and
limL→∞ limn→∞ E |Π2(H, L)|p/2

= 0. Thus for any ϵ > 0 and uniformly in H ,

lim
L→∞

lim
n→∞

P


sup

0≤τ≤1

1

a2
n

⌊nτ⌋
t=1

(I1t + I2t (H))− Sn,L ,H (τ )

 > ϵ


= 0. (102)

For the sub-case α = 2, fix an H and for any L ,

⌊nτ⌋
t=1

(I1t + I2t (H))− Sn,L ,H (τ ) =

−L
j=−∞


⌊nτ⌋
t=1

d2
t− j


ε2

j − cn



+

⌊nτ⌋
t=1

∞
l=L+1

H
h=1

dldl+hεt−lεt−l−h +

⌊nτ⌋−L
j=1−L


⌊nτ⌋

t=L+ j

d2
t− j


(ε2

j − cn)

=: Λ1n(L , τ )+ Λ2n(H, L , τ )+ Λ3n(L , τ ). (103)

For p given in (27), E |ε1|
p < ∞. It follows that as L → ∞,

E

 sup
0≤τ≤1

n−1Λ1n(L , τ )


p/2

≤


−L

j=−∞

d1− j
p


E |ε1|

p
→ 0. (104)

For Λ2n(H, L , τ ), let ζt1(h) = εtεt−h I (|εtεt−h | ≤ n) and ζt2(h) = εtεt−h I (|εtεt−h | > n). As
in the proof of Theorem 3.1, applying Doob’s inequality to

⌊nτ⌋
t=1


∞

l=L+1
H

h=1 dldl+hζt1(h)

and Karamata’s theorem to
[nτ ]

t=1


∞

l=L+1
H

h=1 dldl+hζt2(h), it follows that as L → ∞,

sup
0≤τ≤1

n−1Λ2n(H, L , τ )
P

−→ 0, (105)

uniformly in H . By Lemma A.3, sup0≤τ≤1 n−1Λ3n(L , τ )
P

−→ 0 as L → ∞. Together with
(104)–(105), Eq. (102) holds for α = 2. Next we consider the sub-case where 2 < α < 4. By the
representation in (95) and the fact that for any h ≥ 1, {εtεt−h} is a m.d.s., along the line in the
proof of Theorem 3.1, we can show that (102) also holds. All in all, for 0 < α < 4, by (101) and
(102),

1

a2
n

⌊nτ⌋
t=1

(I1t + I2t (H))
S

H⇒ lim
L→∞

SL ,H (τ ) =: SH (τ ). (106)
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But by Lemma A.1,

sup
0≤τ≤1

 1

a2
n

⌊nτ⌋
t=1


u2

t −

∞
l=0

d2
l cn


−

1

a2
n

n
t=1

(I1t + I2t (H))

 P
−→ 0, (107)

by letting n → ∞ and then H → ∞. Thus, it remains to show

lim
H→∞

SH (1) =


∞

l=0

d2
l

 
i, j≥1

P2
i Q(0)2

i j + 2
∞

h=1


∞

l=0

dldl+h

 
i, j≥1

P2
i Q(0)

i j Q(h)
i j (108)

is well defined, where Pi and Q(h)
i j ’s are defined as in Section 2. By (78), (A.4) and (A.5), for

large x, P

|Sh
α/2(1)| > x


∼ Cρh x−α/2. Let p be as in (27), for any ϵ > 0,

P

 ∞
h=H+1


∞

l=0

dldl+h

 
i, j≥1

P2
i Q(0)

i j Q(h)
i j

 > ϵ



≤ ϵ−p/2
∞

h=H+1


∞

l=0

|dldl+h |
p/2


E


i, j≥1

P2
i Q(0)

i j Q(h)
i j


p/2

≤ Cϵ−p/2


∞

l=0

|dl |
p


∞

h=H+1

ρh
→ 0,

as H → ∞. By Property 1.2.17 in [45], limH→∞ SH (1) is well defined. When α ≥ 4, by the
representation in (95) and the fact that for any h ≥ 1, {εtεt−h} is a m.d.s., along the line in
the proof of showing (14) and (15), it is not difficult to show (33) and (34). This completes the
proof. �

Proof of Theorem 3.4. The proof of (a) is the same as that of Theorem 3.3(a), with Lemma A.1
replaced by Lemma A.2. Next we turn to (b). As the proofs are similar, again we only give that
for k = 0. Recall the definition of kn in Lemma A.1. Refer to (98). Given Lemma 4.3 and the
fact that


∞

l=1 d2
l < ∞, it follows that for 2 < α ≤ 4 with β < 1 − 1/α, or α > 4 with

β < 3/4,
n

t=1 I1t = OP (kn) = oP

n2(1−β)l2(n)


. Thus, it remains to prove:

1

n2(1−β)l2(n)

⌊nτ⌋
t=1

∞
h=1

∞
l=0

dldl+hεt−lεt−l−h
J1

H⇒


Eσ 2

1


Uβ(τ ). (109)

Careful inspection of the arguments for (A.7) shows:

sup
0≤τ≤1

1
kn

⌊nτ⌋
t=1

∞
h=1

∞
l=0

dldl+hεt−l−h


σt−l − ∆1/2

2 (t − l, h)

ηt−l = OP (1), (110)

where ∆2(t − l, h) is defined as in Lemma A.1. Thus, it remains to prove:

1

n2(1−β)l2(n)

⌊nτ⌋
t=1

∞
h=1

∞
l=0

dldl+hεt−l−h∆
1/2
2 (t − l, h)ηt−l

J1
H⇒


Eσ 2

1


Uβ(τ ). (111)
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For any 0 ≤ s < τ ≤ 1, by arguments similar to those for (A.13)–(A.15) (with β < 3/4),

E

 1

n2(1−β)l2(n)

⌊nτ⌋
t=⌊ns⌋+1

∞
h=1

∞
l=0

dldl+hεt−l−h∆
1/2
2 (t − l, h)ηt−l


2

≤ C(τ − s)4(1−β),

(112)

where 4(1 − β) > 1. Thus, it remains to show (111) holds for τ = 1. For any 0 < H < ∞,

E

 1

n2(1−β)l2(n)

n
t=1

H
h=1

∞
l=0

dldl+hεt−l−h∆
1/2
2 (t − l, h)ηt−l


2

≤
C

n4(1−β)l4(n)

n
j=−∞

E

 H
h=1


n

t=1∨ j

dt− j dt− j+h


ε j−h∆

1/2
2 ( j, h)η j


2

≤
C

n4(1−β)


n

t=1

n
t ′=1

∞
j=0

H
h=1

(t + j)−β(t ′ + j)−β(t + j + h)−β(t ′ + j + h)−β

×

n
j=1

H
h=1

n
t= j+1

n
t ′= j+1

(t − j)−β(t ′ − j)−β(t − j + h)−β(t ′ − j + h)−β


≤ C


Hn−2(1−β)
+ Hn1−4(1−β)


→ 0, as n → ∞, (113)

since β < 3/4. Thus, it remains to prove:

1

n2(1−β)l2(n)

n
t=1

∞
h=H+1

∞
l=0

dldl+hεt−l−h∆
1/2
2 (t − l, h)ηt−l

L
−→


Eσ 2

1


Uβ(1), (114)

as n → ∞ and H → ∞. Note that for any given l and h,

∆1/2

2 (t − l, h)ηt−l , t = 1, . . . , n


is

a m.d.s. with (α + 2)/2th moment, with limh→∞ E[∆2(1, h)] = Eσ 2
1 . Thus,

1
nEσ 2

1

⌊nτ⌋
t=1

∆1/2
2 (t − l, h)ηt−l

J1
H⇒ W (τ ), (115)

by letting h → ∞. Further, by Lemma 4.1(c), we also have

1
nEσ 2

1

⌊nτ⌋
t=1

εt
J1

H⇒ W (τ ). (116)

Using (115) and (116), as n → ∞ and then H → ∞, (114) can be shown along the lines in
Theorem 6.1 in [24] (see also Theorems 3.1(b) and 3.3(b) in [27]). Finally we consider (c) and
(d). The proofs are the same as those of Theorem 3.3(b) and (c) respectively, with Lemma A.1
replaced by Lemma A.2. �
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5. Statistical applications

The results in the last section have a lot of potential applications. Zhang and Ling [51] applied
Theorem 3.3 in this paper to a short-memory AR(p) model:

Yt =

p
i=1

φ0i Yt−i + εt , (117)

where εt satisfies a general version of (3), namely a power GARCH(1,1) model. The LSE of
φ0 =


φ01, . . . , φ0p

′ is defined by

φ̂n =


n

t=p+1

Yt−1Y′

t−1

−1  n
t=p+1

Yt−1Yt


, (118)

where Yt =

Yt , Yt−1, . . . , Yt−p+1

′. They showed in their Theorem 1 that:

(a) φ̂n − φ0
L

−→ Σ−1
α/2Zα/2, 0 < α < 2;

(b) log n

φ̂n − φ0

 L
−→ A−1

b Zα/2, α = 2;

(c) n1−2/α

φ̂n − φ0

 L
−→ A−1

c Zα/2, 2 < α < 4;

(d) (n/ log n)1/2

φ̂n − φ0

 L
−→ A−1

d N

0, Ip


, α = 4,

where Zα/2 is a p-dimensional stable vector with index α/2,Σα/2 is a p × p matrix whose
elements are composed of stable variables with index α/2; Ab, Ac and Ad are non-random p × p
matrices. That is, the LSE is not consistent when 0 < α < 2; and it is n1−2/α-consistent when
2 < α < 4, log n-consistent when α = 2, and n1/2/ log n-consistent when α = 4. Furthermore,
the limit distribution of the LSE is a functional of stable processes when α < 4 which is
substantially different from those with i.i.d. noises. On the other hand, Zhang, Sin and Ling
[52] considered the following unit root process:

yt = µ+ φyt−1 + ut , (119)

where µ = 0, φ = 1 and ut is defined as in (2). The LSE of the φ are

φ̂n =


n

t=1

y2
t−1

−1  n
t=1

yt−1 yt


,

φ̂µn =


n

t=1

(yt−1 − ȳ)2
−1  n

t=1

(yt−1 − ȳ)yt


,

when µ = 0 is known and unknown, respectively. Using Theorems 3.1 and 3.3 in this paper
(short-memory ut ’s), Theorem 2.1 in Zhang, Sin and Ling [52] showed

(a) If 0 < α < 2, then

n

φ̂n − 1

 L
−→

 1
0 ξ

−
α (τ )dξα(τ )+ Ξα/2(1) 1

0 ξ
2
α(τ )dτ

,
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n

φ̂µn − 1

 L
−→

 1
0 ξ

−
α (τ )dξα(τ )− ξα(1)

 1
0 ξα(τ )dτ + Ξα/2(1) 1

0 ξ
2
α(τ )dτ −

 1
0 ξα(τ )dτ

2 ;

(b) If α ≥ 2, then

n

φ̂n − 1

 L
−→

 1
0 W (τ )dW (τ )+

1
2


1 −

σ 2

σ 2
u


 1

0 W 2(τ )dτ
,

n

φ̂µn − 1

 L
−→

 1
0 W (τ )dW (τ )− W (1)

 1
0 W (τ )dτ +

1
2


1 −

σ 2

σ 2
u


 1

0 W 2(τ )dτ −

 1
0 W (τ )dτ

2 ,

where ξα(τ ), Ξα/2(τ ) are two stable vectors with index α and α/2 respectively. Using
Theorems 3.2 and 3.4 in this paper (long-memory ut ’s), their Theorem 2.2 shows

(a) If 1 < α < 2, then

n

φ̂n − 1

 L
−→

1
2

 1
−∞

X (s, 1)dξα(s)
2

 1
0

 τ
−∞

X (s, τ )dξα(s)
2 dτ

,

n

φ̂µn − 1

 L
−→

1
2

 1
−∞

X (s, 1)dξα(s)
2

−

 1
−∞

X (s, 1)dξα(s)
  1

0

 τ
−∞

X (s, τ )dξα(s)dτ


 1
0

 τ
−∞

X (s, τ )dξα(s)
2 dτ −

 1
0

 τ
−∞

X (s, τ )dξα(s)dτ
2 ;

(b) If α ≥ 2, then

n

φ̂n − 1

 L
−→

1
2

 1
−∞

X (s, 1)dW (s)
2

 1
0

 τ
−∞

X (s, τ )dW (s)
2 dτ

,

n

φ̂µn − 1

 L
−→

1
2

 1
−∞

X (s, 1)dW (s)
2

−

 1
−∞

X (s, 1)dW (s)
  1

0

 τ
−∞

X (s, τ )dW (s)dτ


 1
0

 τ
−∞

X (s, τ )dW (s)
2 dτ −

 1
0

 τ
−∞

X (s, τ )dW (s)dτ
2 .

These distributions are somewhat different from those in [44] where the noises are i.i.d. Finally,
our results in the last section can be used in other applications such as testing for a change
point in mean [4], or in covariance [2], and inference in mean [30] or in autocovariances and
autocorrelations [39].

Appendix

Lemma A.1. Suppose the conditions in Theorem 3.3 hold with α > 0. Then
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lim
H→∞

lim
n→∞

 1
kn

sup
0≤τ≤1

⌊nτ⌋
t=1

I3t (H)

 P
−→ 0,

I3t (H) :=

∞
h=H+1

∞
l=0

dldl+hεt−lεt−l−h,

(A.1)

where kn = a2
n for 0 < α ≤ 4, kn =


n log n for α = 4, and kn =

√
n for α > 4. �

Proof. Denote Ak = a + bη2
k−1. For all t and h ≥ 1,

σ 2
t =

t
k=t−h+1

Akσ
2
t−h + ω


1 +

t−1
k=t−h+1

t
m=k+1

Am


=: ∆1(t, h)+ ∆2(t, h).

Write I2(⌊nτ⌋, H) =

⌊nτ⌋
t=1

∞
h=H+1

∞
l=0

dldl+hεt−l−h∆
1/2
2 (t − l, h)ηt−l . (A.2)

It follows that⌊nτ⌋
t=1

I3t (H)− I2(⌊nτ⌋, H)


=

⌊nτ⌋
t=1

∞
h=H+1

∞
l=0

dldl+hεt−l−h


εt−l − ∆1/2

2 (t − l, h)ηt−l


=

 ⌊nτ⌋
j=−∞

∞
h=H+1


⌊nτ⌋

t=1∨ j

dt− j dt− j+h


ε j−h


σ j − ∆1/2

2 ( j, h)

η j


=: |I1(⌊nτ⌋, H)| . (A.3)

By the Cauchy–Schwarz inequality and the non-degeneracy of {ηt }, 0 < ρ = ρ(α) = E Aα/41 ≤

[E Aα/21 ]
1/2

= 1. However, by Theorem 4 in [34], α/2 is the unique solution to the equation
E Ax

1 = 1, x > 0. Thus, 0 < ρ < 1. Since limx→∞ xα/2 P

σ 2

1 > x


= c0, it follows from
Proposition 3 in [14] that

lim
y→∞

P


t

k=t−h+1

A1/2
k |ηt−hηt |σ

2
t−h > y



= c0 E

η2

1 A1

α/4
E |η1|

α/2


E Aα/41

h−1
y−α/2

=: k1ρ
h y−α/2, and (A.4)

lim
y→∞

P


ω


1 +

t
k=t−h+1

t
m=k+1

Am


η2

t−hη
2
t σ

2
t−h > y



= c0 E


ω


1 +

t
k=t−h+1

t
m=k+1

Am


η2

t−hη
2
t

α/2
y−α/2

=: k2 y−α/2. (A.5)
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We first consider 0 < α ≤ 2. By (A.4), it follows that for p < α given in (27),

E

 sup
0≤τ≤1

1
kn

I1(⌊nτ⌋, H)


p/2

q ≤
C

n p/α

n
j=−∞

∞
h=H+1


n

t=1∨ j

|dt− j dt− j+h |

p/2

E

|ε j−h |

p/2∆p/4
1 ( j, h)


E
η j
p/2

≤
C

n p/α

n
j=−∞

∞
h=H+1


n

t=1∨ j

|dt− j dt− j+h |

p/2 
ρ p/αh

≤ Cn p(1/2−1/α) ρ p/αH+1
→ 0, (A.6)

as n → ∞ and H → ∞. For 2 < α ≤ 4, write

1
kn

I1(⌊nτ⌋, H) =
1
kn

⌊nτ⌋
t=1

∞
h=H+1

∞
l=0

dldl+hεt−l−h I (σt−l−h ≤ an)

×


σt−l − ∆1/2

2 (t − l, h)

ηt−l +

1
kn

⌊nτ⌋
t=1

∞
h=H+1

∞
l=0

dldl+hεt−l−h I (σt−l−h > an)

×


σt−l − ∆1/2

2 (t − l, h)

ηt−l =: I11(⌊nτ⌋, H)+ I12(⌊nτ⌋, H).

By Doob’s inequality and Karamata’s theorem,E

 sup
0≤τ≤1

I11(⌊nτ⌋, H)


2
1/2

≤ C
∞

h=H+1


∞

l=0

|dldl+h |



×

E


sup

0≤τ≤1

1
kn

⌊nτ⌋
t=1

εt−l−h I (σt−l−h ≤ an)

σt−l − ∆1/2

2 (t − l, h)

ηt−l

2
1/2

≤ C
∞

h=H+1


∞

l=0

d2
l


1

k2
n

n
t=1

E

σ 4

t−l−h I (σt−l−h ≤ an)

[E A1]

h

1/2

≤ C
∞

h=H+1

[E A1]
h/2

→ 0,

as n → ∞ and H → ∞. For p < 2 < α as that given in (27), by Karamata’s theorem,

E

 sup
0≤τ≤1

I12(⌊nτ⌋, H)


p/2

≤ C
∞

h=H+1


∞

l=0

|dldl+h |
p/2


1

n p/α

n
t=1

E

σ

p
t−l−h I (σt−l−h > an)


[E Ap/4

1 ]
h

≤ C
∞

h=H+1

[E Ap/4
1 ]

h


∞

l=0

|dl |
p


→ 0,
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as n → ∞ and H → ∞. For α > 4, similar to above,E

 sup
0≤τ≤1

I1(⌊nτ⌋, H)


2
1/2

≤ C
∞

h=H+1


∞

l=0

d2
l


1
n

n
t=1

E

σ 4

t−l−h


[E A1]

h

1/2

→ 0,

as n → ∞ and H → ∞. All in all, for α > 0,

sup
0≤τ≤1

1
kn

I1(⌊nτ⌋, H)
P

−→ 0. (A.7)

Thus, it remains to show

sup
0≤τ≤1

1
kn

I2(⌊nτ⌋, H)
P

−→ 0. (A.8)

Again, first consider 0 < α < 2. Without loss of generality, we assume the γ given byn
l=1 |dl |

γ < ∞ satisfies γ > α/2 when α < 1. By Karamata’s theorem,

E

 sup
0≤τ≤1

1
kn

I2(⌊nτ⌋, H)


γ

≤
C

n2γ /α

∞
h=H+1

∞
l=0

|dldl+h |
γ

×

n
t=1

E
εt−l−h∆

1/2
2 (t − l, h)ηt−l

γ → 0, (A.9)

as n → ∞ and H → ∞. When α > 2, note Eε2
1 < ∞. By Doob’s inequality,

E

 sup
0≤τ≤1

1
kn

I2(⌊nτ⌋, H)


1/2

≤ C
∞

h=H+1

|dh |

∞
l=0

|dl |

E

 sup
0≤τ≤1

1
kn

⌊nτ⌋
t=1

εt−l−h∆
1/2
2 (t − l, h)ηt−l


2
1/2

≤ C
∞

h=H+1

|dh | → 0, (A.10)

as n → ∞ and H → ∞. (A.8) follows by (A.9) and (A.10). This completes the proof. �

Lemma A.2. Suppose the conditions in Theorem 3.4 hold with either (a) 1 < α ≤ 2;
or (b) 2 < α ≤ 4 with β > 1 − 1/α; or (c) α > 4 and β > 3/4. Then (A.1) holds. �

Proof. For α > 1, careful inspection of the proof of Lemma A.1 will show that
under the conditions in Lemma A.2, which considers the long-memory cases, the
arguments up to (A.7) are valid. It remains to show (A.8). First consider (a). Since

{


∞

h=H

n
t=1∨ j dt− j dt− j+h


ε j−h∆

1/2
2 (t, h)η j } =: {ξ j } and {∆1/2

2 (t, h)εt−h} =: {Xh} are

m.d.s. w.r.t. the σ -field Ft = σ {ηs, s ≤ t}, by the martingale inequality (see, for instance,
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Lemma 1 in [50]) that for fixed τ and any 1/β < q < α ≤ 2,

E

 1
kn

I2(⌊nτ⌋, H)

q ≤
2q+1

n2q/α
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E
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[nτ ]
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1/2
2 ( j, h)η j
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q

≤
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n2q/α
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
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t=1∨ j

|dt− j dt− j+h |

q 
E
ε j−h∆
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2 ( j, h)

q E
η j
q

≤ Cnq(1−2/α)
n

j=−∞, j≠1


(1 − j)+

−qβ
∞

h=H

h−qβ
→ 0, (A.11)

as n → ∞ and H → ∞. Similarly, we can show that for any 0 ≤ s < τ ≤ 1,

E

 1
kn

[I2(⌊nτ⌋, H)− I2(⌊ns⌋, H)]

q
≤

2q+1

n2q/α

n
j=−∞

E

 ∞
h=H+1


⌊nτ⌋

t=(⌊ns⌋+1)∨ j

dt− j dt− j+h


ε j−h∆

1/2
2 ( j, h)η j


q

= o(|τ − s|q). (A.12)

By (A.11) and (A.12), Eq. (A.8) holds. Next consider (b). By Doob’s inequality,

E

 sup
0≤τ≤1
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
ε j−h∆

1/2
2 ( j, h)η j


2
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n
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h=H+1


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(t − j)−β(t − j + h)−β
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∞
h=H+1

n
t= j+1

n
t ′= j+1

(t − j)−β(t ′ − j)−β(t − j + h)−β(t ′ − j + h)−β

=: Σ1 + Σ2. (A.13)

It is not difficult to see, as n → ∞,

Σ1 ≤ Cn−4/αn4(1−β)
→ 0, (A.14)

since β > 1 − 1/α. On the other hand,

Σ2 ≤ Cn−4/α
n

j=1

n
h=H+1

n
t= j+1

n
t ′= j+1

(t − j)−β(t ′ − j)−β(t − j + h)−β(t ′ − j + h)−β

+ Cn−4/α
n
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h=n

n
t= j+1

n
t ′= j+1
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≤ Cn−4/α
n

j=1

n
h=H+1


n

t= j+1

(t − j)−β(t − j + h)−β
2

+ Cn−4/α−2β+1
n

j=1


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(t − j)−β
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n

j=1

n
h=H+1

h2(−2β+1)
+ Cn−4/α−4β+4

≤ Cn−4/α

n4(1−β) I (β < 3/4)+ n log nI (β = 3/4)

+ nH−4β+3 I (β > 3/4)


→ 0,

(A.15)

as n → ∞ and H → ∞. Thus (A.8) holds for 2 < α ≤ 4 with β > 1 − 1/α. Finally consider
(c). The proof is the same as that in (A.13)–(A.15), with n−4/α replaced by n−1. Thus (A.8) also
holds for α > 4 with β > 3/4. This completes the proof. �

Lemma A.3. Refer to (103) in the proof of Theorem 3.3. When α = 2 and as L → ∞,

sup
0≤τ≤1

n−1Λ3n(L , τ ) = sup
0≤τ≤1

n−1
⌊nτ⌋−L
j=1−L


⌊nτ⌋
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
(ε2

j − cn)
P

−→ 0. (A.16)

Proof. Fix a τ , let a j =
⌊nτ⌋

t=L+ j d2
t− j , S j =

⌊nτ⌋−L
l= j


ε2

j − cn


and S⌊nτ⌋−L+1 = 0.
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
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a j − a j−1


S j . (A.17)

By Lemma 4.3(a), we have sup1−L≤ j≤⌊nτ⌋−L

S j
 /n = OP (1). Thus, by (A.17),

1
n
Λ3n(L , τ ) = OP (a1−L)+


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S j
 /n


⌊nτ⌋−L
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
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
= OP (a1−L) = oP (1), as L → ∞. (A.18)

Similarly, we can show that for any 0 ≤ s < τ ≤ 1,

1
n
(Λ3n(L , τ )− Λ3n(L , s)) =

1
n

⌊nτ⌋−L
j=1−L


⌊nτ⌋
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d2
t− j
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
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1
n
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d2
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
ε2

j − cn


= oP (|τ − s|). (A.19)

Combining (A.17) and (A.19) yields (A.16) as desired. �
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