Maosheng Xiong

Department of Mathematics, HKUST

- $F(x)$ is an anti-derivative of $f(x)$, if $F^{\prime}(x)=f(x)$.
- Indefinite integral (L.25,Ch.13-1)

$$
\int \underbrace{f(x)}_{\text {integrand }} \underbrace{d x}_{\text {differential }}=\underbrace{F(x)}_{\text {anti-derivative }}+\underbrace{C}_{\text {constant }}
$$

- Definite integral: $\int_{a}^{b} f(x) d x$ - signed area (L.27,Ch.13-4)

- Fundamental theorem of calculus (L.28,Ch.13-5):

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a) .
$$

Indefinite Integrals

Integration by Substitution (medium) (L.27,Ch.13-2):

- Formula:

$$
\int f(x) d x \stackrel{u=u(x)}{=} \int g(u) \underbrace{u^{\prime}(x) d x}_{d u}=\int \underbrace{g(u)}_{\text {anti-derivative obtainable }} d u
$$

- General form in applications of the method:
$\int f\left(x^{p}\right) x^{p-1} d x, \quad \int f(\ln x) \frac{d x}{x}, \quad \int x^{+ \text {integer }} \cdot(a x+b)^{q} d x, \cdots$
- Examples:
$\int x^{3} \sqrt{x^{4}+1} d x, \quad \int x e^{-x^{2}} d x, \quad \int \frac{d x}{x \ln x}, \quad \int x^{2}(3 x+2)^{-1 / 3} d x$

Indefinite Integrals
Integration by Parts (difficult) (L.31,Ch.14-3):

- Formula:

$$
\int u \underbrace{v^{\prime} d x}_{d v}=u v-\int v \underbrace{u^{\prime} d x}_{d u}
$$

- General form in applications of the method:
- To calculate $\int x^{n} e^{a x} d x$, we need

$$
u=x^{n}, \quad v^{\prime} d x=e^{a x} d x \Rightarrow v=\frac{1}{a} e^{a x}
$$

- To calculate $\int x^{p}(\ln x)^{q} d x$, we need

$$
u=(\ln x)^{q}, \quad v^{\prime} d x=x^{p} d x \Rightarrow v=\frac{1}{p+1} x^{p+1}
$$

- Examples (the method may be applied repeatedly):

$$
\int x e^{-2 x} d x, \quad \int x^{2} e^{-2 x} d x, \quad \int(\ln x)^{2} x^{5} d x
$$

Definite Integrals

- Area between two curves(L.29,Ch.14-1):

$$
R=\int_{a}^{b}(f(x)-g(x)) d x
$$

(i) zeros of $f(x)-g(x)$
(ii) the sign of $f(x)-g(x)$

- Gini Index(L.30,Ch.14-1): $G=A_{1} / A_{2}=2 \int_{0}^{1}(x-f(x)) d x$

- Integration by parts(L.31,Ch.14-3):

$$
\int_{a}^{b} u v^{\prime} d x=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v u^{\prime} d x
$$

Problems and Solutions

Solution for (a) and (b)
(a) Let $u=x^{5}+1$, then $d u=5 x^{4} d x \Rightarrow x^{4} d x=d u / 5$:

$$
\int x^{4} \sqrt{x^{5}+1} d x=\frac{1}{5} \int u^{1 / 2} d u=\frac{2}{15} u^{3 / 2}=\frac{2}{15}\left(x^{5}+1\right)^{3 / 2}+C
$$

Therefore,

$$
\int_{0}^{1} x^{4} \sqrt{x^{5}+1} d x=\left.\frac{2}{15}\left(x^{5}+1\right)^{3 / 2}\right|_{0} ^{1}=\frac{2(2 \sqrt{2}-1)}{15}
$$

(b) Let $u=-x^{2}$, then $d u=-2 x d x \Rightarrow x d x=-d u / 2$:

$$
\int x e^{-x^{2}} d x=-\frac{1}{2} \int e^{u} d u=-\frac{1}{2} e^{u}=-\frac{1}{2} e^{-x^{2}}+C
$$

Solution for (c)

(c) Let $u=3 x+2$, then $x=(u-2) / 3$ and $d x=d u / 3$:

$$
\begin{aligned}
& \int x^{2}(3 x+2)^{-1 / 3} d x \\
= & \frac{1}{27} \int(u-2)^{2} u^{-1 / 3} d u=\frac{1}{27} \int\left(u^{2}-4 u+4\right)^{2} u^{-1 / 3} d u \\
= & \frac{1}{27} \int u^{5 / 3} d u-\frac{4}{27} \int u^{2 / 3}+\frac{4}{27} \int u^{-1 / 3} d u \\
= & \frac{u^{8 / 3}}{72}-\frac{4 u^{5 / 3}}{45}+\frac{2 u^{2 / 3}}{9}+C \\
= & \frac{(3 x+2)^{8 / 3}}{72}-\frac{4(3 x+2)^{5 / 3}}{45}+\frac{2(3 x+2)^{2 / 3}}{9}+C \\
= & \frac{(3 x+2)^{2 / 3}}{40}\left(5 x^{2}-4 x+4\right)+C .
\end{aligned}
$$

Problems and Solutions

Solution for (e)
(e) Let $u=\ln x$ and $v^{\prime}=x^{4}$, we have $u^{\prime}=1 / x$ and $v=\int x^{4} d x=x^{5} / 5$. Hence by integrating by parts, we have

$$
\begin{aligned}
& \int_{1}^{2} x^{4} \ln x d x=\left.\frac{x^{5} \ln x}{5}\right|_{1} ^{2}-\frac{1}{5} \int_{1}^{2} x^{4} d x \\
= & \frac{32 \ln 2}{5}-\left.\frac{x^{5}}{20}\right|_{1} ^{2}=\frac{32 \ln 2}{5}-\frac{31}{20} .
\end{aligned}
$$

(f) Let $u=\ln x$, then $d u=\frac{d x}{x}$. Hence

$$
\int \frac{\sqrt{\ln x}}{x} d x=\int \sqrt{u} d u=\frac{2 u^{3 / 2}}{3}=\frac{2(\ln x)^{3 / 2}}{3}
$$

Solution for (d)

(d) Let $u=x^{2}$ and $v^{\prime}=e^{x}$, we have $u^{\prime}=2 x$ and $v=\int e^{x} d x=e^{x}$. Hence by integrating by parts, we have

$$
\int_{0}^{1} x^{2} e^{x} d x=\left.x^{2} e^{x}\right|_{0} ^{1}-\underbrace{\int 2 x e^{x} d x}_{\text {by part again }}
$$

Then we need to choose $u=2 x$ and $v=e^{x}$ to obtain

$$
\int 2 x e^{x} d x=\left.2 x e^{x}\right|_{0} ^{1}-2 \int e^{x} d x=2 e-\left.2 e^{x}\right|_{0} ^{1}=2
$$

Finally we have

$$
\int_{0}^{1} x^{2} e^{x} d x=\left.x^{2} e^{x}\right|_{0} ^{1}-2=e-2
$$

Problems and Solutions

Example
Given

$$
f(x)=(\ln x)^{2}-\ln x, \text { with } x>0
$$

(a) find the intervals where $f(x)$ is positive / negative / increasing / decreasing / concave-upwards / concave-downwards
(b) sketch $f(x)$ for $x \in[0.2,5]$
(c) find the area bounded by $f(x)$ and the x-axis

Solution - Part 1

(a) To determine the sign of $f(x)$, we need its zeros:

$$
\begin{gathered}
(\ln x)^{2}-\ln x=0 \Rightarrow \ln x=0,1 \Rightarrow x=1, e \\
f^{\prime}(x)=\frac{2 \ln x-1}{x} \Rightarrow \text { critical point: } x=\sqrt{e} \\
f^{\prime \prime}(x)=\frac{3-2 \ln x}{x^{2}} \Rightarrow \text { inflection point: } x=\sqrt{e^{3}} .
\end{gathered}
$$

Then one can generate the following sign chart:

Solution - Part 2
(b) Evaluation of $f(x)$ at characterising points:

x	$f(x)$
0.2	4.1997
1	0
\sqrt{e}	-0.25
e	0
$\sqrt{e^{3}}$	0.75
5	0.9809

Problems and Solutions

Solution - Part 3
(c) The bounded area then is $S=-\int_{1}^{e}\left((\ln x)^{2}-\ln x\right) d x$.

To evaluate $\int_{1}^{e}(\ln x)^{2} d x$, we need $u=(\ln x)^{2}$ and $v^{\prime}=1$, so that $u^{\prime}=2 \ln x / x$ and $v=\int 1 d x=x$. Integration by parts gives

$$
\int_{1}^{e}(\ln x)^{2} d x=\left.x(\ln x)^{2}\right|_{1} ^{e}-2 \int_{1}^{e} \ln x d x
$$

To evaluate $\int_{1}^{e} \ln x d x$, we need $u=\ln x$ and $v^{\prime}=1$, so that $u^{\prime}=1 / x$ and $v=x$. Then

$$
\int_{1}^{e} \ln x d x=\left.x \ln x\right|_{1} ^{e}-\int_{1}^{e} 1 d x=1 .
$$

Therefore, the area is $S=-(\underbrace{e-2 \cdot 1}_{\int_{1}^{e}(\ln x)^{2} d x}-\underbrace{1}_{\int_{1}^{e} \ln x d x})=3-e$.

