

Solution for (b)

The computation is similar to the solution for (a). But now the period of providing interest is half year. Therefore, we have the following:

• Amount of money in the bank at the end of the 1st half-year:

$$1000(1+rac{0.1}{2})$$

Amount of money in the bank at the end of the 2nd half-year:

$$1000(1+rac{0.1}{2})(1+rac{0.1}{2})=1000(1+rac{0.1}{2})^2$$

• • • • • • •

Amount of money in the bank at the end of the 8th half-year:

$$1000(1+\frac{0.1}{2})^8 =$$
\$1477.5

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 2)

Compound Interest Annual Percentage Yield

Compound Interest

The previous example is

Theorem

Let the annual interest rate be r. Let P be the principal (present value). If the bank provides interest m times per year, then after t years, the amount (future value), A, is given by

$$A=P\left(1+\frac{r}{m}\right)^{mt}.$$

The total interest earned is

$$I = P\left(1 + \frac{r}{m}\right)^{mt} - P$$

Check that I > Prt.

イロト 不得 トイヨト イヨト 二日

200

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Compound Interest Annual Percentage Yield

Solutions for (c) and (d)

By similar computation, we obtain the following results:

 For (c), the amount of money in the bank at the end of the 4th year is

$$1000(1 + \frac{0.1}{4})^{16} =$$
\$1484.5

 For (d), the amount of money in the bank at the end of the 4th year is

$$1000(1 + \frac{0.1}{12})^{48} =$$
\$1489.4

MATH 1003 Calculus and Linear Algebra (Lecture 2)

Compound Interest Annual Percentage Yield

Compound Interest

Maosheng Xiong Department of Mathematics, HKUST

Observation

Given a fixed annual interest rate, the more times compounded in a certain period, the more profit a certain amount deposit can make

Example

Period	3 months	6 months	1 year
Interest rate	2.4 p.a.	2.5 p.a.	2.7 p.a.

The annual interest rate generally varies for different periods.

- 4 日 1 4 日 1 4 日 1 4 日 1 9 9 9 9 9

Example 1 Finding Present Value

How much should you invest now at 10% compounded quarterly to have \$8,000 toward the purchase of a car in 5 years?

Compound Interest Annual Percentage Yield

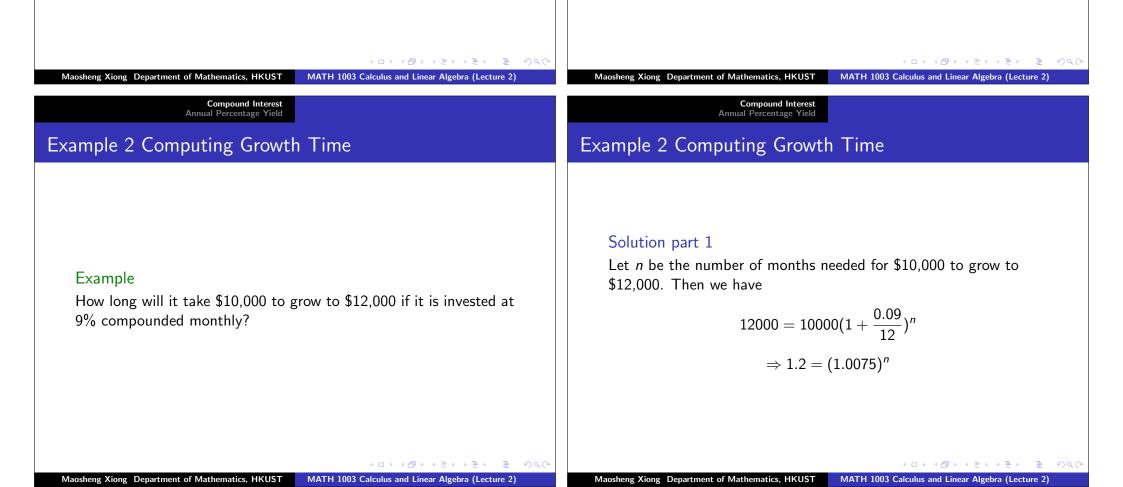
Example 1 Finding Present Value

Solution

Let P be the amount of investment. Then we have

$$P(1 + \frac{0.1}{4})^{20} = 8000$$
$$\Rightarrow P = $4882.2$$
viewed as the present

A remark: This can be viewed as the present value of \$8,000 after 5 years.



Example 2 Computing Growth Time

Example 3 Finding Interest (Inflation) Rate (Self-Study)

Solution part 2

To solve an equation with an unknown in the power, we need to use the "logarithm":

 $\ln 1.2 = \ln(1.0075)^{n}$ $\ln 1.2 = n \ln(1.0075)$ $\Rightarrow n = \frac{\ln 1.2}{\ln 1.0075} = 24.4$

Therefore, it will take 25 months for \$10,000 to grow to \$12,000.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

200

MATH 1003 Calculus and Linear Algebra (Lecture 2)

Example

A \$10000 investment in a particular growth-oriented mutual fund over a recent 10-year period would have grown to \$128000. What annual nominal rate would produce the same growth if interest was compounded annually?

> Compound Interest Annual Percentage Yield

Compound Interest

Maosheng Xiong Department of Mathematics, HKUST

Recall that

Theorem

Let r be the (annual nominal) interest rate, (compound) interest paid m times per year. Let P be the principal (present value). Then after t years, the amount (future value), A, is given by

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

MATH 1003 Calculus and Linear Algebra (Lecture 2)

Compound Interest Annual Percentage Yield

Maosheng Xiong Department of Mathematics, HKUST

Example 3 Finding Interest (Inflation) Rate (Self-Study)

Example

A \$10000 investment in a particular growth-oriented mutual fund over a recent 10-year period would have grown to \$128000. What annual nominal rate would produce the same growth if interest was compounded annually?

Solution

Let r be the annual nominal rate of the mutual fund. Then we have

$$128000 = 10000 (1 + r)^{20}$$
$$\sqrt[10]{12.8} = 1 + r$$
$$\Rightarrow r = 0.29 = 29\%$$

Compound Interest

Recall that

Theorem

Let r be the (annual nominal) interest rate, (compound) interest paid m times per year. Let P be the principal (present value). Then after t years, the amount (future value), A, is given by

 $A=P\left(1+\frac{r}{m}\right)^{mt}.$

Compound Interest Annual Percentage Yield

Compound Interest

Recall that

Theorem

Let r be the (annual nominal) interest rate, (compound) interest paid m times per year. Let P be the principal (present value). Then after t years, the amount (future value), A, is given by

$$A = P\left(1 + \frac{r}{m}\right)^{mt}.$$

Remark

Definition

• m = 2: compounded semiannually;

Compound Interest Annual Percentage Yield

As the number m of compounding periods per year increases without bound, the compounded amount approaches a limiting

 $\lim_{m \to \infty} P\left(1 + \frac{r}{m}\right)^{mt} = Pe^{rt}$

 $A = Pe^{rt}$.

value. This value is given by the following formula:

where A is the compounded amount and $e \approx 2.71828$.

- m = 4: compounded quarterly;
- m = 12: compounded monthly;

Maosheng Xiong Department of Mathematics, HKUST

Continuous Compound Interest

Compound Interest Annual Percentage Yield

Maosheng Xiong Department of Mathematics, HKUST

Compound Interest

Remark

$$A=P\left(1+\frac{r}{m}\right)^{mt}.$$

- m = 365: compounded daily;
- ▶ *m* = 365 * 24 * 60 = 525,600: compounded every minute;
- m = 5,256,000: compounded every 10th of a minute;
- $m
 ightarrow \infty$, i.e., m gets larger and larger, then what?

If $m \to \infty$, interest is called compounded continuously, we have

・ロト・西ト・ヨト・ヨー うへぐ

MATH 1003 Calculus and Linear Algebra (Lecture 2)

MATH 1003 Calculus and Linear Algebra (Lecture 2)

Continuous Compound Interest

Example

What amount will an account have after 10 years if \$1500 is invested at an annual rate of 6.75% compounded continuously?

Solution

 $A = 1500e^{0.0675 \times 10} = \$2946.05.$

Remark

This amount is only 18 cents more than the amount you receive by daily compounding.

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 2)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Compound Interest Annual Percentage Yield

Example 4 Comparison of Different Investments

 APY is useful when you want to compare different investment/loan schemes.

Example

Three banks offer 1-year certificates of deposit (CD):

- (a) Lion bank pays 3.97% compounded daily
- (b) Chatter bank pays 3.95% compounded monthly
- (c) Asian bank pays 3.98% compounded quarterly

Find APY for each of these banks and determine which bank offers the greatest return.

Compound Interest Annual Percentage Yield

Annual Percentage Yield

Definition

If a principal is invested at the annual rate r compounded m times a year, then the amount after 1 years is $A = P(1 + \frac{r}{m})^m$. The simple interest rate that will produce the same amount A in 1 year is called the annual percentage yield (APY).

Theorem Formula for APY:

$$APY = (1 + \frac{r}{m})^m - 1$$

The APY is also referred to as the effective rate or the true interest rate.

remark

r and m are both determined by a financial institution.

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 2)

Compound Interest Annual Percentage Yield

Example 4 Comparison of Different Investments

Solution

(a) APY for Lion bank is

$$\left(1+\frac{0.0397}{360}\right)^{360}-1=4.05\%$$

(b) APY for Chatter bank is

$$\left(1+\frac{0.0395}{12}\right)^{12}-1=4.02\%$$

(c) APY for Asian bank is

$$\left(1+rac{0.0398}{4}
ight)^4-1=4.04\%$$

Therefore, the CD of Lion bank has the greatest return. =

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 2)

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 2)

Example 5 Find the Annual Nominal Rate (Optional)

Example

A savings and loan wants to offer a CD with a monthly compounding rate that has an APY of 7.2%. What annual nominal rate compounded monthly should they use?

Solution

Let r be the annual nominal rate. Then we have

$$0.072 = \left(1 + \frac{r}{12}\right)^{12} - 1$$

$$\Rightarrow$$
 r = 0.0697 = 6.97%

・ロト・日本・モン・モン モー うくぐ

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 2)