MATH 1003 Calculus and Linear Algebra

 (Lecture 2)
Maosheng Xiong

Department of Mathematics, HKUST

1. Problem sets 1 and 2 , Web of Work (compulsory) are open.
2. Midterm 1 (25\%), 1.5-hour - Date: 8 October (Saturday)
3. Midterm 2 (25%), 1.5 -hour - Date: 12 November (Saturday)

Compound Interest

Example

If $\$ 1,000$ is deposited at annual interest rate 10% and the bank provides interest
(a) annually;
(b) semiannually;
(c) quarterly;
(d) monthly.

What is the amount of money in the bank after 4 years?

Solution for (b)

The computation is similar to the solution for (a). But now the period of providing interest is half year. Therefore, we have the following:

- Amount of money in the bank at the end of the 1st half-year:

$$
1000\left(1+\frac{0.1}{2}\right)
$$

- Amount of money in the bank at the end of the 2 nd half-year:

$$
1000\left(1+\frac{0.1}{2}\right)\left(1+\frac{0.1}{2}\right)=1000\left(1+\frac{0.1}{2}\right)^{2}
$$

-......

- Amount of money in the bank at the end of the 8th half-year:

$$
1000\left(1+\frac{0.1}{2}\right)^{8}=\$ 1477.5
$$

Compound Interest
Annual Percentage Yield

Compound Interest

The previous example is
Theorem
Let the annual interest rate be r. Let P be the principal (present value). If the bank provides interest m times per year, then after t years, the amount (future value), A, is given by

$$
A=P\left(1+\frac{r}{m}\right)^{m t} .
$$

The total interest earned is

$$
I=P\left(1+\frac{r}{m}\right)^{m t}-P .
$$

Check that I > Prt.

Observation
Given a fixed annual interest rate, the more times compounded in a certain period, the more profit a certain amount deposit can make Example

Period	3 months	6 months	1 year
Interest rate	2.4 p.a.	2.5 p.a.	2.7 p.a.

The annual interest rate generally varies for different periods.

Example 1 Finding Present Value

Example

How much should you invest now at 10% compounded quarterly to have $\$ 8,000$ toward the purchase of a car in 5 years?

Solution
Let P be the amount of investment. Then we have

$$
\begin{gathered}
P\left(1+\frac{0.1}{4}\right)^{20}=8000 \\
\Rightarrow P=\$ 4882.2
\end{gathered}
$$

A remark: This can be viewed as the present value of $\$ 8,000$ after 5 years.

Example 2 Computing Growth Time

Example

How long will it take $\$ 10,000$ to grow to $\$ 12,000$ if it is invested at 9% compounded monthly?

Solution part 1
Let n be the number of months needed for $\$ 10,000$ to grow to $\$ 12,000$. Then we have

$$
\begin{aligned}
& 12000=10000\left(1+\frac{0.09}{12}\right)^{n} \\
& \Rightarrow 1.2=(1.0075)^{n}
\end{aligned}
$$

Example 2 Computing Growth Time

Example 3 Finding Interest (Inflation) Rate (Self-Study)

Solution part 2

To solve an equation with an unknown in the power, we need to use the "logarithm":

$$
\begin{aligned}
& \ln 1.2=\ln (1.0075)^{n} \\
& \ln 1.2=n \ln (1.0075) \\
& \Rightarrow n=\frac{\ln 1.2}{\ln 1.0075}=24.4
\end{aligned}
$$

Therefore, it will take 25 months for $\$ 10,000$ to grow to $\$ 12,000$.
Example 3 Finding Interest (Inflation) Rate (Self-Study)

Example

A $\$ 10000$ investment in a particular growth-oriented mutual fund over a recent 10 -year period would have grown to $\$ 128000$. What annual nominal rate would produce the same growth if interest was compounded annually?

Solution
Let r be the annual nominal rate of the mutual fund. Then we have

$$
\begin{gathered}
128000=10000(1+r)^{20} \\
\sqrt[10]{12.8}=1+r \\
\Rightarrow r=0.29=29 \%
\end{gathered}
$$

Example

A $\$ 10000$ investment in a particular growth-oriented mutual fund over a recent 10 -year period would have grown to $\$ 128000$. What annual nominal rate would produce the same growth if interest was compounded annually?

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 2)
Compound Interest
Annual Percentage Yield
Compound Interest

Recall that

Theorem
Let r be the (annual nominal) interest rate, (compound) interest paid m times per year. Let P be the principal (present value).
Then after t years, the amount (future value), A, is given by

Compound Interest

Recall that
Theorem
Let r be the (annual nominal) interest rate, (compound) interest paid m times per year. Let P be the principal (present value). Then after t years, the amount (future value), A, is given by

$$
A=P\left(1+\frac{r}{m}\right)^{m t} .
$$

Compound Interest

Recall that

Theorem
Let r be the (annual nominal) interest rate, (compound) interest paid m times per year. Let P be the principal (present value).
Then after t years, the amount (future value), A, is given by

$$
A=P\left(1+\frac{r}{m}\right)^{m t} .
$$

Remark

- $m=2$: compounded semiannually;
- $m=4$: compounded quarterly;
- $m=12$: compounded monthly;

Definition

As the number m of compounding periods per year increases without bound, the compounded amount approaches a limiting value. This value is given by the following formula:

$$
\begin{aligned}
\lim _{m \rightarrow \infty} P\left(1+\frac{r}{m}\right)^{m t} & =P e^{r t} \\
A & =P e^{r t}
\end{aligned}
$$

where A is the compounded amount and $e \approx 2.71828$.
If $m \rightarrow \infty$, interest is called compounded continuously, we have

Continuous Compound Interest

Example

What amount will an account have after 10 years if $\$ 1500$ is invested at an annual rate of 6.75% compounded continuously?

Solution

$$
A=1500 e^{0.0675 \times 10}=\$ 2946.05 .
$$

Remark
This amount is only 18 cents more than the amount you receive by daily compounding.

Annual Percentage Yield

Definition

If a principal is invested at the annual rate r compounded m times a year, then the amount after 1 years is $A=P\left(1+\frac{r}{m}\right)^{m}$. The simple interest rate that will produce the same amount A in 1 year is called the annual percentage yield (APY).
Theorem
Formula for APY:

$$
A P Y=\left(1+\frac{r}{m}\right)^{m}-1
$$

The APY is also referred to as the effective rate or the true interest rate.
remark
r and m are both determined by a financial institution.

Example 4 Comparison of Different Investments

Solution

(a) APY for Lion bank is

$$
\left(1+\frac{0.0397}{360}\right)^{360}-1=4.05 \%
$$

(b) APY for Chatter bank is

$$
\left(1+\frac{0.0395}{12}\right)^{12}-1=4.02 \%
$$

(c) APY for Asian bank is

$$
\left(1+\frac{0.0398}{4}\right)^{4}-1=4.04 \%
$$

Therefore, the CD of Lion bank has the greatest return

Example 5 Find the Annual Nominal Rate (Optional)

Example
A savings and loan wants to offer a CD with a monthly compounding rate that has an APY of 7.2%. What annual nominal rate compounded monthly should they use?

Solution
Let r be the annual nominal rate. Then we have

$$
\begin{aligned}
& 0.072=\left(1+\frac{r}{12}\right)^{12}-1 \\
& \Rightarrow r=0.0697=6.97 \%
\end{aligned}
$$

