MATH 1003 Calculus and Linear Algebra

 (Lecture 4)Maosheng Xiong

Department of Mathematics, HKUST

Midterm Exam

- Time: 7 Oct. 2017 (Sat), 10:30-12:00,
- Location: TBA.

Calculators

- Calculators with functions such as $1.23^{26.7}, \log _{2} 2568.9$ will be needed in the midterm exam,
- but only calculators with no matrix-operation will be allowed.
- The law will be enforced strictly.

Present Value of an Annuity

Idea: We compute the present value of each withdrawal one by one and sum them up.

Example

How much should you deposit in a bank account paying 6\% compounded semi-annually in order to be able to withdraw $\$ 100$ every 6 months for the next 3 years? (After the last withdrawal is made, no money is to be left in the account.)

Remark

- Obviously, you do not need to deposit $\$ 600$ because part of your future withdrawals can be covered by the interest provided.
- From the bank's viewpoint, the initial deposit can be regarded as the present value of the annuity.

n - num. of periods, i - interest rate over a period
- Present value of the 1 st withdrawal: $100\left(1+\frac{0.06}{2}\right)^{-1}$
- Present value of the 2 nd withdrawal: $100\left(1+\frac{0.06}{2}\right)^{-2}$
- Present value of the 3rd withdrawal: $100\left(1+\frac{0.06}{2}\right)^{-3}$
- Present value of the 6 th withdrawal: $100\left(1+\frac{0.06}{2}\right)^{-6}$

Formula for the Present Value of an Annuity

Theorem
Let $P V=$ present value of all payments(withdrawals),
PMT = periodic payment(withdrawal), $i=$ interest rate per period and $n=$ number of payments(withdrawals). We have

$$
\begin{aligned}
P V & =P M T(1+i)^{-n}+P M T(1+i)^{-(n-1)}+\cdots+P M T(1+i)^{-1} \\
& =P M T \frac{1-(1+i)^{-n}}{i} .
\end{aligned}
$$

Therefore, the amount of inital deposit is

$$
\begin{aligned}
& 100\left(1+\frac{0.06}{2}\right)^{-1}+100\left(1+\frac{0.06}{2}\right)^{-2}+\cdots+100\left(1+\frac{0.06}{2}\right)^{-6} \\
& =\left(1+\frac{0.06}{2}\right)^{-6}\left(100+100\left(1+\frac{0.06}{2}\right)+\cdots+100\left(1+\frac{0.06}{2}\right)^{5}\right) \\
& =\left(1+\frac{0.06}{2}\right)^{-6}\left(100 \cdot \frac{\left(1+\frac{0.06}{2}\right)^{6}-1}{\frac{0.06}{2}}\right) \\
& =100 \cdot \frac{1-\left(1+\frac{0.06}{2}\right)^{-6}}{\frac{0.06}{2}}=\$ 541.72
\end{aligned}
$$

Example 1 A Taste of the Formula

Example

Recently Lion bank offered an ordinary annuity that earned 5\% compounded annually. How much should a person pay into his account, so that he/she can make 20 equal annual withdrawals of $\$ 25000$, reducing the balance in the account to zero for the next 20 years?

Example 1 To be continued

Example 1 To be continued

Solution

Let $P M T=25000, n=20, i=0.05$ and $P V$ be the required amount of money. Then we have

$$
\begin{aligned}
P V & =25000 \cdot \frac{1-(1+0.05)^{-20}}{0.05} \\
& \Rightarrow P V=\$ 311555.2586
\end{aligned}
$$

Example

To make for that amount (\$311555.2586), he/she plans to make equal annual deposits into this account for 30 years. How much must be deposited annually?

Example 1 Combination of the Two Problems

Example

Recently Lion bank offered an ordinary annuity that earned 5\% compounded annually. A person plans to make equal annual deposits into this account for 30 years, so that he/she can make 20 equal annual withdrawals of $\$ 25000$, reducing the balance in the account to zero for the next 20 years. How much must be deposited annually to accumulate sufficient funds to provide for these payments? How much total interest is earned during this entire 50 -year process?

Solution

Let PMT be the annual deposit needed to accumulate $\$ 311555.2586$. We have

$$
\begin{gathered}
\$ 311555.2586=P M T \cdot \frac{(1+0.05)^{30}-1}{0.05} \\
\Rightarrow P M T=\$ 4689.35
\end{gathered}
$$

Example 1 Combination of the Two Problems

To compute the total interest earned in the entire 50 -year process, we have

$$
\begin{aligned}
\text { Interest earned } & =\text { Total withdrawal }- \text { Total payment } \\
& =25000 \times 20-4689.35 \times 30=\$ 359319.39
\end{aligned}
$$

Amortization

The formula for the present value of an annuity can also be used in the following situation:

Example
Suppose you borrow $\$ 10000$ from a bank to buy a car and agree to repay the loan in 24 equal monthly payments, including all interest due. If the bank charges 1% per month on the unpaid balance i.e., 12% per year compounded monthly, how much should each payment be to retire the total debt, including interest in 24 months?
This is called an amortization.

The following two kinds of transactions between you and the bank are basically the same:

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 4)

In general, amortizing a debt means that the debt is retired in a given length of time by equal periodic payments that include compound interest. Paying mortgage is an example. We have the following amortization formula for PMT:

$$
P M T=P V \frac{i}{1-(1+i)^{-n}}
$$

Example 2 Mortgage

Example

A family purchased a home 10 years ago for $\$ 3000000$. The home was financed by paying 30% down and signing a 25 -year mortgage at 6% on the unpaid balance. The net market value of the house (amount received after subtracting all costs involved in selling the house) is now $\$ 4500000$, and the family wishes to sell the house. How much equity does the family have in the house now after making 120 monthly payments?
(note: equity = current net market value - unpaid loan balance)

Solution Part 1
The total loan:

$$
3000000 \times 0.7=\$ 2100000
$$

Let $P M T$ be the monthly payment that the family made. Then we have

$$
\begin{aligned}
P M T= & 2100000 \cdot \frac{\frac{0.06}{12}}{1-\left(1+\frac{0.06}{12}\right)^{-25 \times 12}} \\
& \Rightarrow P M T=\$ 13530.3294
\end{aligned}
$$

Now, we would like to calculate the unpaid loan balance of the family after making 120 monthly payments.

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 4)

A mini example
Borrow \$ 100, annual rate on unpaid balance is 2%, pay back annually for 4 years. The unpaid balance at the end of year 2? The annual payment (Amortization) will be

$$
P M T=100 \times \frac{0.02}{1-1.02^{-4}}=26.26
$$

	Year 0	Year 1	Year 2	Year 3	Year 4
Principal					
Interest incurred					
Payment					
Payment to principal					
Unpaid balance					

Why not PMT $\times 180$

A mini example

Borrow \$ 100, annual rate on unpaid balance is 2%, pay back annually for 4 years. The unpaid balance at the end of year 2?
The annual payment (Amortization) will be

$$
P M T=100 \times \frac{0.02}{1-1.02^{-4}}=26.26 .
$$

	Year 0	Year 1	Year 2	Year 3	Year 4
Principal	100	75.74	50.995	25.755	0.01
Interest incurred	0	2	1.515	1.02	0.515
Payment	0	26.26	26.26	26.26	26.26
Payment to principal	0	24.26	24.745	25.24	25.745
Unpaid balance	0	75.74	50.995	25.755	0.01

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 4)

$$
\begin{aligned}
& \text { Present Value of an Annuity } \\
& \text { Amortization }
\end{aligned}
$$

Review

- Number of stories (choose formulas)
- Draw the time line, if there are more than 1 stories, find the bridge variables (Simultaneous event!!)
- Implementation of the formulas

Why not PMT $\times 180$
Unpaid balance after the first m periods out of total M periods $=$

- compound interest for m periods - an annuity of m payments

$$
100 \times 1.02^{m}-26.26 \times \frac{1.02^{m}-1}{0.02} ;
$$

- present value of an annuity for $(M-m)$ periods

$$
26.26 \times \frac{1-1.02^{-(M-m)}}{0.02}
$$

Remark
Same amount is different at different time!! When summed up, all payments/loans should be of the same time by discounting/cournting interests.

