Systems of Linear Equations in Two Variables

MATH 1003 Calculus and Linear Algebra (Lecture 5)

Maosheng Xiong

Department of Mathematics, HKUST

The following is an example of systems of linear equations in two variables.

Example

Given the following system of linear equations:

$$
\left\{\begin{array}{l}
x-2 y=2 \\
x+y=5
\end{array}\right.
$$

Find its solution.
Remark

- A collection of equations is called a system.
- There are two unknowns (or variables) x and y in the system.
- To find a solution to the system, we need to find the values of x and y that satsify the two equations in the system.
Massheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 5)
Systems of Linear Equations in Two Variables

Method of Elimination

Multiply both sides of (2) by 2 , we have

$$
2 x+2 y=10
$$

Add (1) and (4) together, we have

$$
\begin{gathered}
(x-2 y)+(2 x+2 y)=2+10 \\
\Rightarrow 3 x=12
\end{gathered}
$$

Solving, we have $x=4$.
Substitute the value of x into (1), we have $4-2 y=2$. Solving, we have $y=1$.

Hence the solution is $x=4, y=1$.

Systems of Linear Equations in Two Variables

Solution of (b)

Systems of Linear Equations in Two Variables

Solution of (c)

$$
\left\{\begin{array}{l}
6 x-3 y=9 \\
2 x-y=3
\end{array}\right.
$$

Multiply the second equation by -3 and add to the first equation, we have

$$
\begin{gathered}
(6 x-3 y)+(-6 x+3 y)=9-9 \\
\Rightarrow 0=0
\end{gathered}
$$

Notice that this happens because two equations are essentially the same. Therefore, (x, y) is a solution to the system if it satifies any one equation.

There are infinitely many solutions.

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 5)
Systems of Linear Equations in Two Variables
Types of Linear Systems
Types of Linear Systems

Theorem
The linear system

$$
\left\{\begin{array}{l}
a x+b y=h \tag{3}\\
c x+d y=k
\end{array}\right.
$$

must have
(a) Exactly one solution. In this case, we call the system (3) independent consistent.
(b) Infinitely many solutions. In this case, we call the system (3) dependent consistent.
(c) No solution. In this case, we call the system (3) inconsistent.

$$
\begin{cases}2 x-y & =4 \\ 6 x-3 y & =-18\end{cases}
$$

Multiply the first equation by -3 and add to the second equation, we have

$$
\begin{gathered}
(-6 x+3 y)+(6 x-3 y)=-12-18 \\
\Rightarrow 0=-30
\end{gathered}
$$

A contradiction is obtained. Therefore, there does not exist (x, y) that satisfies the system.

There is no solution.

Supply and Demand

Example

At $\$ 0.6$ per bottle, the daily supply for milk is 450 bottles, and the daily demand is 570 bottles. When the prices is raised to $\$ 0.75$ per bottle, the daily supply increases to 600 bottles, and the daily demand decreases to 495 bottles. Assume that the supply and the demand equation are linear. Find the equilibrium.

Remark

- The equilibrium is the price and quantity that satify both the demand and supply equations.
- The example is not quite realistic because the demand and supply equations are seldom linear.

Systems of Linear Equations in Two Variables
Types of Linear Systems
Supply and Demand

Systems of Linear Equations in Two Variables
Types of Linear Systems

Supply and Demand

p Price of bottle	Supple	Demand
0.6	450	570
0.75	600	495

Solution Part 1
Let $\$ p$ be the price and q be number of bottles of milk.
Given the information about the demand of milk, we can construct the demand equation as follows:

$$
\begin{gathered}
\frac{q-570}{495-570}=\frac{p-0.6}{0.75-0.6} \\
\Rightarrow p+0.002 q=1.74
\end{gathered}
$$

Systems of Linear Equations in Two Variables

Supply and Demand

Solution Part 2
The linear system for this problem is

$$
\begin{aligned}
& p+0.002 q=1.74 \\
& p-0.001 q=0.15
\end{aligned}
$$

Solving, we have $p=0.68, q=530$, which is the required equilibrium.

1. Check www.math.ust.hk/~mamsxiong or Canvas for updates.
2. WeBWork 1 and 2. Check the due date.
3. Practice Exercises from the Textbook (Optional).
