Matrices

MATH 1003 Calculus and Linear Algebra (Lecture 6)

Maosheng Xiong
Department of Mathematics, HKUST

Definition
A matrix is a rectangular array of numbers written within brackets.
Example

$$
A=\left[\begin{array}{ccc}
1 & -5 & 7 \\
0 & 1 / 2 & -\frac{1}{3}
\end{array}\right], \quad B=\left[\begin{array}{cc}
3 & 7 \\
6.8 & 2.3 \\
\frac{1}{2} & \sqrt{2}
\end{array}\right] .
$$

Illustration

Where is the smallest number in this matrix?

Linear Systems and Augmented Matrices

Consider the following linear system:

$$
\begin{cases}3 x_{1}+4 x_{2} & =1 \\ x_{1}-2 x_{2} & =7\end{cases}
$$

We will represent it as an augmented matrix as follows:

$$
\left[\begin{array}{cc|c}
3 & 4 & 1 \\
1 & -2 & 7
\end{array}\right]
$$

Matrices
Linear Systems and Augmented Matrices
Row Operations
Solving Linear Systems by Row Operations

Row Operations

In general, associated with each linear system of the form

$$
\left\{\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}=k_{1} \\
a_{21} x_{1}+a_{22} x_{2}=k_{2}
\end{array}\right.
$$

where x_{1} and x_{2} are variables, is the augmented matrix of the system:

$$
\left[\begin{array}{ll|l}
a_{11} & a_{12} & k_{1} \\
a_{21} & a_{22} & k_{2}
\end{array}\right]
$$

Linear Systems and Augmented Matrices
 Solving Linear Systems by Row Operations

An Example

Consider the augmented matrix $\left[\begin{array}{cc|c}3 & 4 & 1 \\ 1 & -2 & 7\end{array}\right]$:
$-\left[\begin{array}{cc|c}3 & 4 & 1 \\ 1 & -2 & 7\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{cc|c}1 & -2 & 7 \\ 3 & 4 & 1\end{array}\right]$

- $\left[\begin{array}{cc|c}3 & 4 & 1 \\ 1 & -2 & 7\end{array}\right] \xrightarrow{2 R_{2} \rightarrow R_{2}}\left[\begin{array}{cc|c}3 & 4 & 1 \\ 2 & -4 & 14\end{array}\right]$
- $\left(\begin{array}{cc|c}3 & 4 & 1 \\ 1 & -2 & 7\end{array}\right) \xrightarrow{R_{1}+2 R_{2} \rightarrow R_{1}}\left[\begin{array}{cc|c}5 & 0 & 15 \\ 1 & -2 & 7\end{array}\right]$
- A constant multiple of one row is added to another row:
$R_{i}+k R_{j} \rightarrow R_{i}$ means that $i^{\text {th }}$ row is added by k multiple of $j^{\text {th }}$ row.

Notice that the above operations are called the row operations.

- All row operations are reversible.
- If A and B are augmented matrices such that one can be transformed to another by a sequence of row operation(s), then A and B are said to be equivalent.
- If two linear systems have equivalent augmented matrices, both systems have the same set of solution(s).

The aim of using row operations is to reduce the augmented matrix to one of the following simple forms:
(A) $\left[\begin{array}{ll|c}1 & 0 & m \\ 0 & 1 & n\end{array}\right]$, where m and n are real numbers.
(B) $\left[\begin{array}{lc|c}1 & m & n \\ 0 & 0 & 0\end{array}\right]$, where m and n are real numbers.
(C) $\left[\begin{array}{cc|c}1 & m & n \\ 0 & 0 & p\end{array}\right]$, where p, m and n are real numbers and

Linear Systems and Augmented Matrices $\begin{array}{r}\text { Matres }\end{array}$
 Solving Linear Systems by Row Operations

Examples

Example

Solve the following systems of linear equations:
(a) $\begin{cases}3 x_{1}+4 x_{2} & =1 \\ x_{1}-2 x_{2} & =7\end{cases}$
(b) $\begin{cases}2 x_{1}-x_{2} & =4 \\ -6 x_{1}+3 x_{2} & =-12\end{cases}$
(c) $\begin{cases}2 x_{1}+6 x_{2} & =-3 \\ x_{1}+3 x_{2} & =2\end{cases}$

Solution to (a)
$\left[\begin{array}{cc|c}3 & 4 & 1 \\ 1 & -2 & 7\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{cc|c}1 & -2 & 7 \\ 3 & 4 & 1\end{array}\right] \xrightarrow{R_{2}+(-3) R_{1} \rightarrow R_{2}}$
$\left[\begin{array}{cc|c}1 & -2 & 7 \\ 0 & 10 & -20\end{array}\right]$
$\xrightarrow{\frac{1}{10} R_{2} \rightarrow R_{2}}\left[\begin{array}{cc|c}1 & -2 & 7 \\ 0 & 1 & -2\end{array}\right] \xrightarrow{R_{1}+2 R_{2} \rightarrow R_{1}}\left[\begin{array}{cc|c}1 & 0 & 3 \\ 0 & 1 & -2\end{array}\right]$
The solution is $x_{1}=3, x_{2}=-2$. The system is independent consistent.

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
2 & -1 & 4 \\
-6 & 3 & -12
\end{array}\right] \xrightarrow{R_{2}+3 R_{1} \rightarrow R_{2}}\left[\begin{array}{cc|c}
2 & -1 & 4 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{\frac{1}{2} R_{1} \rightarrow R_{1}}} \\
& {\left[\begin{array}{cc|c}
1 & -\frac{1}{2} & 2 \\
0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

There are infinitely many solutions. The system is dependent consistent.

Solution to (c)
$\left[\begin{array}{cc|c}2 & 6 & -3 \\ 1 & 3 & 2\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{cc|c}1 & 3 & 2 \\ 2 & 6 & -3\end{array}\right] \xrightarrow{R_{2}+(-2) R_{1} \rightarrow R_{2}}\left[\begin{array}{cc|c}1 & 3 & 2 \\ 0 & 0 & -7\end{array}\right]$
There is no solution. The system is inconsistent.

Solution to (b)

inear Systems and Augmented Matrices $\begin{array}{r}\text { Mates }\end{array}$
 Solving Linear Systems by Row Operations $\begin{array}{r}\text { Row Oper }\end{array}$

About Homework

Level of importance

1. Web of work (counted as 10% of the final mark, keep trying until you get it correct before the deadline)
2. Problems to be covered by TA class (semi-compulsory)
3. Problems in the mini-lecture (with answers, optional, can be downloaded from the course webpage)
4. Exercises in the textbook (listed in the course webpage, optional)
