

Gauss-Jordan Elimination

In the last lecture, we learned how to solve a system of 2 equations with 2 variables by performing row operations on its augmented matrix. Now, we generalize this method so that it can be applied to any system of linear equations. It is called the Gauss-Jordan elimination.

The idea is very simple: We transform the corresponding augmented matrix by row operations to a simple form. And the solution(s) to the linear system corresponding to this simple form (which is(are) also the solution(s) to the original system) can be obtained easily.

```
Examples
```


Reduced Form

A typical reduced form should look like this:

Gauss-Jordan elimination is the process of transforming an augmented matrix to its reduced form.

Examples

Example 1

Example

Indicate which condition in the definition is violated for each matrix. State the row operation required to transform the matrix into reduced form.
(a) $\left[\begin{array}{cc|c}0 & 1 & -2 \\ 1 & 0 & 3\end{array}\right]$ Ans: $4 \quad\left(R_{1} \leftrightarrow R_{2}\right)$
(b) $\left[\begin{array}{ccc|c}1 & 2 & -2 & 3 \\ 0 & 0 & 1 & -1\end{array}\right]$ Ans: $3\left(R_{1}+2 R_{2} \rightarrow R_{1}\right)$
(c) $\left[\begin{array}{ll|c}1 & 0 & -3 \\ 0 & 0 & 0 \\ 0 & 1 & -2\end{array}\right]$ Ans: $1 \quad\left(R_{2} \leftrightarrow R_{3}\right)$
(d) $\left[\begin{array}{lll|c}1 & 0 & 0 & -1 \\ 0 & 2 & 0 & 3 \\ 0 & 0 & 1 & -5\end{array}\right]$ Ans: $2\left(\frac{1}{2} R_{2} \rightarrow R_{2}\right)$

Examples

Example 1 - Solution Part 1

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
3 & 8 & -1 & -18 \\
2 & 1 & 5 & 8 \\
2 & 4 & 2 & -4
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{3}}\left[\begin{array}{ccc|c}
2 & 4 & 2 & -4 \\
2 & 1 & 5 & 8 \\
3 & 8 & -1 & -18
\end{array}\right]} \\
& \stackrel{1}{2} R_{1} \rightarrow R_{1} \\
&
\end{aligned}\left[\begin{array}{ccc|c}
1 & 2 & 1 & -2 \\
2 & 1 & 5 & 8 \\
3 & 8 & -1 & -18
\end{array}\right] \xrightarrow{\substack{(-2) R_{1}+R_{2} \rightarrow R_{2} \\
(-3) R_{1}+R_{3} \rightarrow R_{3}}}\left[\begin{array}{ccc|c}
1 & 2 & 1 & -2 \\
0 & -3 & 3 & 12 \\
0 & 2 & -4 & -12
\end{array}\right] .
$$

Solving system of linear equations:
Example
Solve $\begin{cases}3 x_{1}+8 x_{2}-x_{3} & =-18 \\ 2 x_{1}+x_{2}+5 x_{3} & =8 \\ 2 x_{1}+4 x_{2}+2 x_{3} & =-4\end{cases}$

Example 1 - Solution Part 2

$$
\begin{aligned}
& \xrightarrow{-\frac{1}{3} R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc|c}
1 & 2 & 1 & -2 \\
0 & 1 & -1 & -4 \\
0 & 2 & -4 & -12
\end{array}\right] \xrightarrow{\substack{(-2) R_{2}+R_{1} \rightarrow R_{1} \\
(-2) R_{2}+R_{3} \rightarrow R_{3}}}\left[\begin{array}{ccc|c}
1 & 0 & 3 & 6 \\
0 & 1 & -1 & -4 \\
0 & 0 & -2 & -4
\end{array}\right] \\
& \xrightarrow{-\frac{1}{2} R_{3} \rightarrow R_{3}}\left[\begin{array}{ccc|c}
1 & 0 & 3 & 6 \\
0 & 1 & -1 & -4 \\
0 & 0 & 1 & 2
\end{array}\right] \xrightarrow{\substack{R_{3}+R_{2} \rightarrow R_{2} \\
(-3) R_{3}+R_{1} \rightarrow R_{1}}}\left[\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 2
\end{array}\right]
\end{aligned}
$$

Example 1 - Solution Part 3

Example 2

Therefore, from the reduced form, we can easily obtain the solution to the linear system:

$$
\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=-2 \\
x_{3}=2
\end{array}\right.
$$

Example
Solve $\begin{cases}2 x_{1}-x_{2}-3 x_{3} & =8 \\ x_{1}-2 x_{2} & =7\end{cases}$

Example 2 - Solution

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
2 & -1 & -3 & 8 \\
1 & -2 & 0 & 7
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{ccc|c}
1 & -2 & 0 & 7 \\
2 & -1 & -3 & 8
\end{array}\right]} \\
& \xrightarrow{(-2) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc|c}
1 & -2 & 0 & 7 \\
0 & 3 & -3 & -6
\end{array}\right] \xrightarrow{\frac{1}{3} R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc|c}
1 & -2 & 0 & 7 \\
0 & 1 & -1 & -2
\end{array}\right] \\
& \xrightarrow{2 R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc|c}
1 & 0 & -2 & 3 \\
0 & 1 & -1 & -2
\end{array}\right]
\end{aligned}
$$

The linear system corresponding to the reduced form is

$$
\left\{\begin{array}{rll}
x_{1} & -2 x_{3} & =3 \\
& x_{2}-x_{3} & =-2
\end{array}\right.
$$

Now we classify the variables of the system into two types:

- Non-free variables: Variables corresponding to the columns that contain the leftmost 1's (x_{1}, x_{2})
- Free variables: The remaining variables (x_{3})

Example 2 - Infinite Number of Solutions

Example 3

We set the free variable $x_{3}=t$, where t is a real parameter. Then by the system of the reduced form, we have

$$
\left\{\begin{aligned}
x_{1} & -2 t & =3 \\
& x_{2}-t & =-2
\end{aligned}\right.
$$

Therefore, the solutions are

$$
\left\{\begin{array}{l}
x_{1}=3+2 t \\
x_{2}=-2+t \\
x_{3}=t
\end{array}\right.
$$

where t is any real number.

Examples

Example 3 Solutions
$\left[\begin{array}{ccc|c}4 & -1 & 2 & 3 \\ -4 & 1 & -3 & -10 \\ 8 & -2 & 9 & -1\end{array}\right] \xrightarrow{\frac{1}{4} R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc|c}1 & -\frac{1}{4} & \frac{1}{2} & \frac{3}{4} \\ -4 & 1 & -3 & -10 \\ 8 & -2 & 9 & -1\end{array}\right]$
$\xrightarrow{\substack{4 R_{1}+R_{2}+R_{2} \\(-8) R_{2}+R_{2} \rightarrow R_{3}}}\left[\begin{array}{ccc|c}1 & -\frac{1}{4} & \frac{1}{2} & \frac{3}{4} \\ 0 & 0 & -1 & -7 \\ 0 & 0 & 5 & -7\end{array}\right] \xrightarrow{R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc|c}1 & -\frac{1}{4} & \frac{1}{2} & \frac{3}{4} \\ 0 & 0 & 1 & 7 \\ 0 & 0 & 5 & -7\end{array}\right]$
$\xrightarrow{\substack{\left(-\frac{1}{2}\right) R_{2}+R_{1} \rightarrow R_{1} \\(-5) R_{2}+R_{3} \rightarrow R_{3}}}\left[\begin{array}{ccc|c}1 & -\frac{1}{4} & 0 & -\frac{17}{4} \\ 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & -42\end{array}\right]$
The last row indicates $0=-42$ a contradiction, the linear system has no solution.

Example
Solve $\begin{cases}4 x_{1}-x_{2}+2 x_{3} & =3 \\ -4 x_{1}+x_{2}-3 x_{3} & =-10 \\ 8 x_{1}-2 x_{2}+9 x_{3} & =-1\end{cases}$

The deadline of WeBWork Homework 1 is

$$
\text { at 11:55pm, } 15 \text { September (Friday). }
$$

The deadline of WeBWork Homework 2 is

```
at 11:55pm, 22 September (Friday).
```

The WeBWork Homework 3 is open. You should finish it on 6 October which is before Midterm 1.

